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Background: Precise monitoring of the Depth of Anesthesia (DoA) is essential to
prevent intra-operative awareness (in case of underdosage) or increased post-
operative morbi-mortality (in case of overdosage). The recording of a high-
frequency multimodal monitoring during general anesthesia (GA) and the
capability of classification of dynamic networks should have the potential to
help predicting the DoA in a clinical practice. In this study, we aimed at
predicting the DoA according four levels (Awake, Loss of Consciousness
(LOC), Anesthesia, Return of Consciousness (ROC), Emergence) thanks to a
Hidden Markov Model (HMM) relying on four common physiologic variables:
Mean Blood Pressure (MBP), Heart Rate (HR), Respiratory Rate (RR), and end-
expiratory concentration of sevoflurane (AAEt).
Methods: After induction by sufentanil and propofol, the anesthesia was
maintained by sevoflurane. We recorded the physiological variables at a high
frequency during all the procedure [cardiopulmonary variables, AAEt, 2-
channel ElectroEncephaloGraphy (EEG) data, and BIS values]. In the training
phase, the different states (Awake, LOC, Anesthesia, ROC, Emergence) were
identified according to the reading of the spectrograms of the two EEG
channels. However, the prediction with the HMM were only based on the four
physiological variables.
Results:On a dataset consisting of 60 patients under general anaesthesia, results
suggested that the HMM had a true positive rate (TPR) for identifying Awake,
Anesthesia and Emergence of 88%, 72% and 58%, respectively.
Conclusion: To our knowledge, this is the first application of such a model to
identify the DoA without relying on EEG data. We suggest that a HMM can
help the anesthetist monitoring the DoA out of a set of current physiologic
variables without necessity of brain monitoring. The model could be improved
by increasing the number of patients in the database and accuracy would
probably benefit from adding in the model the data of a single EEG channel.
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1 Introduction

Adequate Depth of Anesthesia (DoA) has been defined by

experts as “the probability of non-response to stimulation,

calibrated against the strength of the stimulus, the difficulty of

suppressing the response, and the drug-induced probability of

non-responsiveness at defined effect site concentrations” (1).

Precise knowledge of the DoA is essential to allow accurate

titration of the drugs administered. The objective of the tailored

anesthesia is twofold: (i) to avoid excessively deep narcosis,

associated with a higher risk of post-operative cognitive

dysfunction and delayed awakening, (ii) to prevent underdosing,

which is associated with a risk of awareness (2). The

determination of the optimal doses of anesthetics necessary for

the induction and maintenance of General Anesthesia (GA) is

based firstly on pharmacological knowledge of the drugs used

and secondly on non-specific clinical signs related to the

(generally deleterious) effects of these products. This reasoning

takes little or no account of the great inter-and intra-individual

variability of patients.

Carrying out the monitoring of DoA in the best possible way

implies a tool meeting three fundamental criteria (3): (i) the

observed changes must be correlated with the concentration of

anesthetic agents, and this, in an identical manner whatever the

agent or combinations used, (ii) the result of the prediction

should be sensitive to changes in the intensity of the anesthetic

or surgical stimulus, and (iii) it must be able to detect the loss

and return of consciousness to prevent the risk of overdosage

or memorization.

Compulsory monitoring during the anesthesia includes heart

rate (HR), blood pressure (BP), respiratory, and muscle function,

but it does not include the brain, despite being the main target

of the anesthetics (4). To date, only a few teams aimed at

evaluating the DoA using multiple parameters analysis. In 2014,

Schneider et al. developed the Anesthesia Multimodal Index of

Consciousness (AMIC) (5). Their model included demographic

data from the patients, the nature and quantity of the drugs

injected, and standard physiological signals such as HR, mean

BP, and ElectroEncephaloGraphy (EEG) features (Approximate

entropy or Weighted spectral median frequency). While it

demonstrated a significantly better predictive value of the DoA

compared to BIS values, in this study, the sampling rates for

analysis of the physiological signals only ranged between 10 s

and 5 min. Their multimodal approach produced promising

results but we believe that increasing the sampling rate is critical

in order to develop a real time approach.

Another approach of the prediction of the DoA consists in

interpreting multiple EEG features. Classification methods

developed recently have been proved to be efficient to treat EEG

data (6, 7). For instance, several studies have shown that artificial

neural networks fed with several standard EEG parameters

recorded during anesthesia could effectively assess the DoA (8, 9).

In both studies, the authors used the BIS as the comparator

and required the recording of several EEG channels. Finally,

putting together the recording of a high-frequency multimodal

monitoring during GA and the capability of classification of the
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recent techniques should have the potential to improve the

prediction of the DoA in a clinical perspective.

In that context, our aim was to improve the assessment of DoA

in clinical routine. First, we continuously recorded at high

frequency the physiologic parameters routinely monitored during

anesthesia. While not used in the final prediction, we included a

2-channel EEG in order to build a database of properly labeled

states. Then using a HMM learned on this database, we aimed at

predicting the state of anesthesia (classification task) relying only

on four common physiologic variables.
2 Methods

2.1 Subjects and anesthesia protocol

The study has been conducted in the Begin military teaching

hospital, Saint-Mandé, France. The criteria of inclusions were:

age >18 years, low-risk surgery under GA, acceptance of the

patient with low comorbidity score (only 3 patients were

classified ASA 3). All methods were carried out in accordance

with relevant guidelines and regulations. The protocol has been

approved by Pr. JE Bazin, head of the ethics committee of the

French society of anesthesiology (SFAR) under the number

IRB00010254-2016-018. Informed written consent was obtained

from all subjects involved in the study. This manuscript adheres

to the applicable CONSORT guidelines.

All the patients were pre-oxygenated by 100% oxygen for at

least 3 min before induction via face-mask ventilation. Sufentanil

0.3 mg/kg was injected rapidly followed 3 min later by 2–4 mg/kg

propofol in combination with ketamine 20 mg. When required

for the surgery, patients were paralyzed following induction with

a bolus of 0.17 mg/kg of cisatracurium. After connection to the

ventilator, patients were ventilated with tidal volume of 6 mg/kg

ideal-body weight, 5 cmH2O Positive endexpiratory Pressure

(PEEP) and a respiratory rate between 10 and 14 to maintain

EtCO2 between 30 and 40 mmHg. Anesthesia was maintained

with sevoflurane MAC age-adjusted (e.g., 1.0). Dose adjustments

were made by the anesthetist in charge of the patient depending

on clinical variables available.
2.2 Equipment and variables

Patients were continuously monitored with the multi-

parameter CARESCAPETM Monitor B850 from General Electrics

Healthcare Finland Oy, Helsinki, Finland. Monitoring included

electrocardiogram (ECG), pulsed oxygen saturation, non-invasive

blood pressure, bispectral index or BIS (with the BISTM Quatro

Sensor from Medtronic), inhaled and exhaled concentrations of

halogens, oxygen and CO2. The continuously recorded EEG has

been chosen as the gold standard for evaluating the DoA and

testing the reliability of our algorithm. The variables were

recorded at a frequency of 1 Hz except for the EEG (see below).

For the first two thirds of the patients, we recorded 2 EEG

channels at 100 Hz each using the E-EEG module for the
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CARESCAPETM monitor B850. In order to correctly detect the

anterior displacement of alpha waves identified under GA, we

used electrodes F4 and C4 with electrode A1 (contralateral

mastoid) as a reference. The data were recorded by a personal

software, SmartRéa, allowing synchronized recording of the

values of interest (10). For the last third of the cohort, a 32-

channel EEG was recorded using the Brain Vision actiCHamp.
2.3 EEG analysis and identification of the
depth of anesthesia (training phase)

To preserve the frequencies characteristic of GA, we digitally

filtered the EEG signal with a bandpass filter between 1 and

20 Hz. Then, on each channel a Short Time Fourier Transform is

used with window size equals to 1,024 samples and 50% overlap

to compute their respective spectrograms. For all patients,

spectrograms were plotted and visually analyzed regarding the

presence or not of δ, α and θ waves as the signature of

anesthesia under sevoflurane (11). Five phases of GA were

characterized: Awake, Loss of Consciousness (LOC), Anesthesia,

Return of Consciousness (ROC) and Emergence (see Figure 1 for

an example). Surgical anesthesia under sevoflurane is defined by

the presence of a strong θ oscillation at 4–8 Hz. LOC, referring

to the transition from Awake to Anesthesia, was identified by the

increased α power between 8 and 12 Hz on the spectrogram,

before the appearance of the θ waves. ROC was characterized by

the progressive disappearance of the θ wave, while the α 8–12 Hz

wave persisted. Finally, Emergence was defined by the decrease

and disappearance of the α 8–12 Hz wave.

The two transition stages LOC and ROC were also clinically

validated according to classic clinical signs (loss of ciliary reflex

at LOC, motor response to simple order for ROC). In case of

disagreement, the subject was excluded.
2.4 Model and data included

The HMM (12) includes four simple variables, constantly

monitored in the operating room and whose evolution under GA
FIGURE 1

Typical spectrogram with sevoflurane. Units are seconds (s) for the
time, Hertz (Hz) for the frequencies. The Loss Of Consciousness
(LOC) stage is delimited by the red lines and the Recovery Of
Consciousness (ROC) stage by the white ones.
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was related to the degree of DoA: HR, MBP, RR and AAEt. It

permits to predict the most likely states (Awake, LOC,

Anesthesia, ROC, and Emergence) through the observations (i.e.,

the physiological variables).

To fit the data under the HMM framework, we had to

transform the continuous variables into nominal features.

Therefore, we individually discretized the variables into classes of

amplitude 0, 1, 2, 3 in order to group similar physiological

signals within the same class and to reduce intra-individual

variability while maintaining inter-individual variability. For each

patient, class 0 corresponded to the lowest values and class 3 to

the highest values. Discretization was performed by the Ckmeans

algorithm (13) except for the variable AAEt which was

discretized using the 1% and 3% thresholds commonly used in

anesthesia (see an example Figure 2). As each patient is unique,

thresholds values for each class were personalized. Then, as we

also recorded the EEG, we knew the ground-truth and we could

directly learn the HMM on this preprocessed dataset using

classical empirical distribution functions. Each of the five steps

Awake, LOC, Anesthesia, ROC, and Emergence was therefore

coded as a state of a HMM, S = 0, 1, 2, 3, 4. The full protocol

used in this experiment has been recently published (10).
2.5 Dataset and metrics

The algorithm was trained on 40 patients, and then tested on

the remaining 20 patients. The patients were randomly assigned

to each set. We evaluated the performance of the algorithm using

confusion matrices. “True positives” and “true negatives” were

the states correctly identified and discriminated by the algorithm

out of a set of variables, in contrast with “false positives” and

“false negatives”. Four usual standard metrics (14, 15) were then

extracted from the confusion matrices:

- True Positive Rate (TPR) or sensitivity, calculated as the ratio of

true positives to the sum of true positives and false negatives

- True Negative Rate (TNR) or specificity, calculated as the ratio

of true negatives to the sum of true negatives and false positives

- Positive Predictive Value (PPV) or precision: calculated as

the ratio of true positives to the sum of true positives and

false positives

- Negative Predictive Value (NPV): calculated as the ratio of true

negatives to the sum of true negatives and false negatives

We repeated this operation 10 times and thus obtained 10 train/test

datasets of 40/20 patients and computed a confusion matrix

for each.
3 Results

3.1 Subjects included and demographic data

Between February 2016 and May 2018, 88 subjects have been

included end 60 were retained for the final analysis (see Figure 3

for the flow chart).
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FIGURE 2

Example of discretization of the 4 variables of a patient as a function of time. For each variable, are represented: Bottom: discrete values in 4 classes
from 0 to 3. Top: evolution of actual values over time.

FIGURE 3

Flow chart.

TABLE 1 Demographic and epidemiologic data.

Variable Median (IQR) or n (%)
Age (years) 52.5 (37.5–70.8)

Women 24 (40)

Weight (kg) 74.5 (60.0–86.3)

Height (cm) 172 (165–175)

de Rocquigny et al. 10.3389/fanes.2024.1391877
Demographic data of the population are presented in Table 1.

Patients were excluded when more than 20% of the recording was

not available, or when the 5 states of anesthesia (Awake, Loss of

Consciousness (LOC), Anesthesia, Return of Consciousness

(ROC), Emergence) were not clearly identifiable. This mainly

occurred due to electrical artefacts on the EEG recordings.
BMI (kg.m−2) 24.3 (23.0–30.0)

ASA score 1/2/3 30 (34)/55 (63)/3 (3)

Duration of surgery (min) 46.0 (29.0–64.5)

Duration of anesthesia (min) 74.0 (51.5–98.0)

Propofol dose at induction (mg.kg−1) 3.8 (3.1–4.5)

Sufentanil dose at induction (µg.kg−1) 0.31 (0.28–0.33)
3.2 Result with four observations

We describe the complete performances of the classification

obtained by our model with a normalized confusion matrix and
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several metrics. Results including four variables are presented in

the Figure 4A. The rows present the true states identified by the

EEG and the columns present the states predicted by the

algorithm. In the Table 2, we present four different metrics

assessing the performance of our method when four variables

were included. For the prediction of the Anesthesia state, the

true positive rate (TPR) is 72% with a high positive predictive

value (PPV) of 84%. However, the negative predictive value is

rather low with 59%: when the model predicts that the patient is

not in the Anesthesia state, it is wrong in 41% of the cases.

The LOC and ROC states represent 5% and 9% of the true

states respectively. They are both poorly predicted with TPR of

21% and 20%. The model tends to predict LOC and ROC with

delay. Indeed, LOC and ROC are mostly wrongly identified as

the state before (LOC is identified as Awake in 51% of cases and

ROC is identified as Anesthesia in 49% of cases).
3.3 Result with only three observations

To ensure that the classification of our model was not

excessively based on the variable AAEt, we evaluated the
FIGURE 4

(A) Average of the 10 normalized confusion matrices obtained when 4 variab
matrices obtained when 3 variables are included in the HMM. For each panel
axis: predicted state by the model. The intensity of the color is correlated w

TABLE 2 Intrinsic characteristics (avg ± std) of the model including 4 variable

Metrics Awake LOC
True positive rate (TPR) 0.88 ± 0.04 0.21 ± 0.08

True negative rate (TNR) 0.96 ± 0.01 0.95 ± 0.02

Positive predictive value (PPV) 0.67 ± 0.05 0.20 ± 0.07

Negative predictive value (PPV) 0.99 ± 0.01 0.95 ± 0.01

LOC, loss of consciousness; ROC, recovery of consciousness.
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predictions when excluding this variable. Results including only

MBP, HR and RR are presented in the Figure 4B. The Table 3

presents the intrinsic characteristics of this model.

The TPR for the prediction of the state Anesthesia is 47%. This

poor sensitivity is related to the fact that the model with three

observations tends to overpredict LOC and ROC, with 6% and

9% of the true states respectively compared to 20% and 15% of

the predicted states respectively. By way of consequence, the

model with three observations is associated with an increased

TPR for predicting LOC (from 21% to 38%) and ROC (from

20% to 36%) compared to the model with four observations.

However, LOC is still wrongly identified as Awake in 44% of

cases and discrimination between ROC and Anesthesia or

Emergence remains poor. Last but not least, Emergence is

predicted as Awake or LOC in 11% of the cases in the model

with three observations.

The positive predictive values (i.e., precision) are higher for the

prediction of all states (ROC excepted) in the model with four

observations. The measurement of the expired fraction of

halogenated gas does not contain all the information by itself but

appears to improve the model in a significant way.
les are included in the HMM. (B) Average of the 10 normalized confusion
, on the vertical axis: actual state according to the EEG, on the horizontal
ith the number. HMM, hidden Markov model.

s.

Anesthesia ROC Emergence
0.72 ± 0.09 0.20 ± 0.07 0.58 ± 0.10

0.73 ± 0.05 0.90 ± 0.05 0.91 ± 0.05

0.84 ± 0.04 0.20 ± 0.12 0.44 ± 0.11

0.59 ± 0.10 0.92 ± 0.01 0.95 ± 0.02
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TABLE 3 intrinsic characteristics (avg ± std) of the model including 3 variables.

Metrics Awake LOC Anesthesia ROC Emergence
True positive rate (TPR) 0.84 ± 0.09 0.38 ± 0.11 0.47 ± 0.10 0.36 ± 0.10 0.40 ± 0.13

True negative rate (TNR) 0.92 ± 0.05 0.81 ± 0.08 0.83 ± 0.05 0.86 ± 0.09 0.91 ± 0.06

Positive predictive value (PPV) 0.55 ± 0.17 0.13 ± 0.08 0.84 ± 0.04 0.25 ± 0.10 0.41 ± 0.18

Negative predictive value (PPV) 0.98 ± 0.01 0.96 ± 0.01 0.45 ± 0.06 0.93 ± 0.01 0.93 ± 0.02

LOC, loss of consciousness; ROC, recovery of consciousness.

FIGURE 5

(A) Confusion matrix obtained on one split of the dataset and when 4 variables are included in the HMM. (B) Confusion matrix obtained on one split of
the dataset and when 3 variables are included in the HMM. For each panel, on the vertical axis: actual state according to the EEG, on the horizontal
axis: predicted state by the model. The intensity of the color is correlated with the number. HMM, hidden Markov model.
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3.4 Examples of the results

To better visualize the classification of our method with 4

observations, we present in the Figure 5A the example of one

(non-normalized) confusion matrix for one split of the dataset.

We did the same with including only 3 variables, and on the

same split of the dataset, see Figure 5B.

Figure 6 displays the prediction of the state of consciousness in

two patients. Our results showed that the algorithm well predicted

anesthesia and never mixed up the LOC and the ROC. However,

these transition states were misplaced in time in a few cases.

Finally, Figure 6B shows an example where at the end of the

anesthesia the BIS failed to detect the beginning of the ROC

while our algorithm detected it precisely.
4 Discussion

Our method demonstrated an acceptable agreement between the

prediction of the DoA by a simple model that takes into account only
Frontiers in Anesthesiology 06
4 of the variables that must be monitored during any GA (MBP, HR,

RR, and AAEt) and the actual DoA assessed by the EEG. The TPR of

our model for the identification of the Awake, Anesthesia and

Emergence states were 88%, 72% and 58% respectively.

To predict DoA without including EEG data could seem

incomplete. On the contrary, the interest of our model is to

highlight how high-frequency recording of simple clinical

variables combined with machine learning can help in assessing

the DoA through the reactivity of the autonomic nervous system.

Anesthesiologists have to consider the pre- and post-induction

values of HR, BP, RR and AAEt and monitor them every 10-min

during routine anesthesia. It means that the assessment of the

patient’s DoA is routinely based on the comparison of a maximum

of about 24 values per hour. In contrast, the algorithm processed

these variables every second. For a low-risk patient with BP assessed

every 5 min, it represents 10.820 values every hour. The interest of

this approach is twofold: (i) simplicity in its construction and

understanding: unlike the multimodal index of consciousness

developed by Schneider et al. (5), our model is based only on four

variables that are easy to apprehend by the anesthetist and
frontiersin.org
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FIGURE 6

Prediction on two patients (A) and (B) for each subfigure, the upper part corresponds to the states S= {0, 1, 2, 3, 4} = {awake, LOC, anesthesia, ROC,
emergence} predicted by the algorithm (in orange) compared to the reality (in dash-blue line) as assessed by the EEG. The lower part corresponds to
the BIS value between 0 and 100. LOC, loss of consciousness; ROC, recovery of consciousness.
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compulsory monitored for any anesthesia, and (ii) would not require

any additional equipment as the data included are all mandatory for

the anesthesia practice. It could prove to be helpful to identify the

moment when the anesthesia is deep enough to authorize the

surgical incision when EEG monitoring is not available or poorly

reliable, or when the cost benefit ratio is unfavorable.

Our choice of the four variables MBP, HR, RR, and AAEt was

pragmatic: they are simple clinical parameters, monitored

obligatorily during any GA and familiar to the anesthetist

physician. There is an interdependence between these

parameters, but each one contains its own part of information.

In our opinion, RR is a relevant variable of the patient’s

autonomic nervous system as a surrogate of EtCO2 regardless of

the use of a neuromuscular blockade. Indeed, RR is set up by the

anesthesiologist in order to obtain a targeted EtCO2 between 35

and 40 mmHg. RR adjustments under general anesthesia are thus

correlated to variations of CO2 production and cardiac output.

However, this correlation would probably no longer be valid in the

case of intraoperative absorption of CO2 (pneumoperitoneum).

As MBP and HR are highly dependent on other factors than DoA

(major fluid loss, vasoactive agents or some anesthetic drugs

with specific heartrate-slowing effect), our results can only be

extrapolated to relatively healthy patients undergoing simple surgery.

Obviously, other parameters would also be relevant, notably

HR variability, which is the most studied parameter in this field

(16, 17). However, the integration of this parameter necessarily

induces a time lag (for the calculation of the variability over a

given window) which we wanted to avoid.

Since the DoA is an intrinsically dynamic process, we decided to

use a Hidden Markov Model (HMM) (12), which is the simplest

form of Bayesian dynamic network. The main advantage of

HMMs lies in their probabilistic nature adapted to time-dependent

signals (such as speech or handwriting). Another motivation to use

such model was that HMMS have already been used successfully

for the recognition of various patterns, including language (18, 19)
Frontiers in Anesthesiology 07
and handwriting recognition (20), analysis of biological sequences

(21), and even sleep-wake recognition by EEG analysis (22, 23).

To identify the five hidden states in the learning phase of the

HMM, we visualized spectrograms and defined each state with

the presence or not of δ, α and θ waves as the signature of

Anesthesia under sevoflurane (11). We found only one study

which identifies like us all the stages of anesthesia in real

conditions by reading the spectrogram (24). The subjective and

still little validated character of this method represents the main

limitation of our study. The difficulty was to characterize LOC

and ROC with sufficient precision on the spectrogram for

learning HMM. Most studies interested in the identification of

LOC and ROC consider these stages as the punctual transition

from one stable state to another (Awake to Anesthesia and

Anesthesia to Emergence). In the healthy volunteer where hypnotic

concentrations are progressively increased before complete arrest

and awakening of the subject, LOC and ROC are clinically described

by the loss and recovery of the simple order response and thus limit

the unconscious phase without prejudging the reactivity to pain.

Temporal correlation with the spectrogram of a frontal EEG

channel identifies them by the appearance and disappearance of

alpha and delta waves (25, 26). In these studies, LOC and ROC

result in time- symmetrical electroencephalographic changes (25).

We chose to apply this method by symmetrically bounding LOC

and ROC by the presence of alpha/delta waves and the absence of

theta waves. However, it has been shown in real life that LOC and

ROC are not explained by the same neurophysiobiological processes

(27) and that ROC may present different EEG signals depending on

age or brain vulnerability (26, 28, 29). This imprecision probably

explains in part the disappointing performance of our algorithm

for LOC and ROC. Moreover, those transition states are less

represented with LOC and ROC corresponding to only 5% and 9%

of the recordings, respectively.

Other limitations include the relatively small number of

patients included, the duration of the study (prolonged on 3
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years due to the authors’ operational constraints), and the offline

aspect of the current prediction.

But these limitations are counterbalanced by several strengths.

Our methodology sought to be pragmatic by reproducing the real

conditions of medical practice. Balanced anesthesia is the most

commonly used protocol in our hospital and in France. It

associates an intravenous injection of opioid followed by

propofol, then neuromuscular blockade if needed; the

maintenance of the anesthesia is done by inhaled halogen. The

immediate impact is to associate in each patient, and thus on

each spectrogram, the signature of propofol (used for induction)

and that of sevoflurane (used for maintenance).

Our model differs from most other monitoring systems (5) in

that it does not emit a numerical value but the direct identification

of a state of interest. The advantage is to translate the DoA in real

time and in a concrete way without imposing on the doctor the

analysis of a number whose construction is unknown. The

disadvantage is the purely qualitative nature of our model which

does not allow the detection of overdosage. Moreover, we have

chosen a unidirectional model considering that the course of a

GA is itself a one-way process, with an imposed succession of

states. This choice does not make it possible to envisage the

transition from LOC to Awake (in the event of stopping or

lightening the anesthesia for example) and ROC to Anesthesia

(in the event of intra-operative awakening leading to a deepening

of the anesthesia).

In conclusion, our method demonstrated promising results for

the prediction of the DoA integrating 4 variables compulsory

monitored during anesthesia. Future work will focus on adding

the data from a single EEG channel in the model, in parallel with

the increase of the cohort to improve the accuracy of the model.
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