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Intraoperative hypotension (IOH) poses significant risks during surgeries,
necessitating effective management to ensure patient safety and successful
outcomes. The Hypotension Prediction Index (HPI) software was developed as a
decision support model to assist anesthesiologists in monitoring and addressing
hypotensive episodes during non-cardiac surgeries. We have utilized the
predictive capabilities of HPI and the physiological variables provided by the
Hemosphere monitor to create a Decision Support System (HPI-DSS) for
hemodynamic management. This article presents a comprehensive overview of
the HPI-DSS, detailing its model for hemodynamic decision support. The
system’s performance and its ability to enhance intraoperative management
are discussed. The article explores the methodology, results, and limitations
of the HPI-DSS. It also covers potential applications of the system and offers
suggestions for further research to improve and refine its capabilities.
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Introduction

Hemodynamic optimization in perioperative care involves two main priorities: volume

optimization and maintaining arterial blood pressure within acceptable physiological

ranges. To prevent excessive or insufficient fluid intake, a hemodynamic optimization

strategy guided by advanced cardiac output (CO) monitoring has been recommended

for high-risk surgical patients (1). This approach aims to tailor treatments by

prescribing fluids and vasopressor/inotropic medications based on hemodynamic

indexes such as stroke volume (SV) and CO (2). Several studies have shown that

implementing this strategy can reduce postoperative complications (3). The association

between low hypotension and postoperative complications, particularly renal and

cardiovascular complications, has been extensively observed. Large-scale observational

prospective studies have suggested a possible causal link between perioperative

hypotension and postoperative morbidity (4). As a result, a tailored hemodynamic
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approach that simultaneously optimizes flow and mean arterial

pressure (MAP) has been proposed for high-risk patients to

reduce postoperative complications (5).

The Hypotension Prediction Index (HPI) software (Edwards

Lifesciences) is a valuable tool in the management of

intraoperative hypotension (IOH). The HPI software utilizes

advanced algorithms and machine learning (ML) techniques to

analyze real-time hemodynamic data and generate predictive

indicators of impending hypotensive events (6). The HPI

software can identify patterns and trends that may indicate an

increased risk of hypotension. This early warning system allows

anesthesiologists to intervene before complications arise, and

allows for proactive interventions, such as fluid administration,

vasopressor use, or adjustments in anesthesia management, to

maintain stable blood pressure, potentially preventing adverse

outcomes (7).

To enhance adherence to hemodynamic optimization

protocols, interactive tools such as decision-making support

systems and automated devices are being developed (8, 9). These

advancements have the potential to facilitate the widespread

implementation of hemodynamic optimization practices and

improve patient outcomes. Based on the predictive capabilities of

HPI, as well as the physiological variables offered by the

Hemosphere monitor (Edwards Lifesciences), we have created a

Decision support system (HPI-DSS) for hemodynamic

management, which through dedicated software and by obtaining

real-time data from the Hemosphere platform, allows for

comprehensive hemodynamic management guidance.
FIGURE 1

Hemodynamic therapeutic algorithm.
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Methods

The aim of this study was to develop an assisted Decision

support system (HPI-DSS) based on a hemodynamic algorithm

(Figure 1) that has been shown to reduce IOH practically to zero

when used in centers with expertise in the management of HPI

(10). While the Predict-H study laid the foundation for using

HPI in hemodynamic management (10), our study introduces

significant enhancements by integrating additional hemodynamic

parameters and a comprehensive HPI-DSS. This integration aims

to provide a more nuanced and precise approach to managing

intraoperative hypotension, thereby expanding upon the

groundwork established by Predict-H.

This HPI-DSS utilized the hemodynamic parameters

provided by the Edwards Hemosphere monitoring system with

the HPI software during surgical interventions (Table 1). The

goal was to improve the management of arterial hypotension

and intraoperative hemodynamics. The study followed a

retrospective observational design, collecting data from eligible

patients undergoing elective surgery. After create the software,

new data were collected and analyzed in real-time using the

developed application.
Inclusion criteria

All hemodynamic data was collected from patients with at least

18 years old and had an American Society of Anesthesiologists
frontiersin.org
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TABLE 1 Hemodynamic parameters provided by the monitor.

Main hemodynamic variables Acronym Units
Hypotension prediction index HPI %

Stroke volumen variation SVV %

Dynamic arterial elastance Eadyn –

Maximum slope of the systolic upward slope of the
arterial pressure curve

DP/dtmax mmHg/s

Systemic vascular resistance index RVSI dyn·s/cm5/m2

Heart rate HR bpm

Cardiac index CI L/min/m2

Stroke volume index SVI ml/m2/beat

Mean arterial pressure MAP mmHg

Pulse pressure variation PPV %

Systolic blood pressure SBP mmHg

Diastolic blood pressure DBP mmHg

TABLE 2 Hemodynamic parameters not provided by the monitor.

Secondary
Hemodynamic
variables

Acronym Ecuationa Units

Difference in SBP ΔSBP SBP(k)� SBP(k� 1) mmHg

Difference in DBP ΔDBP DBP(k)� DBP(k� 1) mmHg

Pulse pressure PP DBP(k)� SBP(k) mmHg

Beat duration Ts (HR=60)�1 s

Difference in beat duration ΔTs Ts(k)� Ts(k� 1) s

aWhere “k” means the current moment, and “k–1” the previous one.
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(ASA) physical status of 2–4 who underwent scheduled major

abdominal surgery with an anticipated operative duration of at

least 90 min. The surgeries were performed in a center where

anesthesiologists had previously received training in the use of

the HPI software for predicting and managing arterial

hypotension during surgery.

The sample size for this observational, retrospective study was

determined based on the availability of relevant patient data within

the study period and the need to detect clinically meaningful

differences in outcomes. The sample size was influenced by the

existing data and the inherent variability in the time-weighted

average (TWA) of hypotension across different surgical populations.

This variability necessitates a larger sample to ensure robust and

generalizable findings. We also recognize that the TWA of

hypotension can vary significantly between individuals and surgical

procedures, further justifying our sample size.
Method description

Data extraction and processing
Data were extracted in real-time from patients undergoing

elective surgery who required intraoperative monitoring through

an invasive arterial line connected to the Edwards Hemosphere

monitoring system with the HPI software. The data extraction

process followed the instructions provided in the Hardware

Connection Guide available on the VitalDB website.

Once the monitoring system was successfully connected to a

personal computer, the data processing phase began. Each

individual reading from the monitoring system was considered as

an independent “case.”

The processing of each reading involved obtaining three

essential elements: hemodynamic parameters not provided by the

monitor (Table 2), the phenotype of the case, and the trend of

the HPI over time (Equation 1). These elements were crucial for

the subsequent analysis and decision-making process. To extract

the hemodynamic parameters not provided by the monitor,

mathematical calculations and algorithms were applied to the

available data. These calculations allowed for the estimation of

parameters such as systemic vascular resistance (SVR). The
Frontiers in Anesthesiology 03
inclusion of these additional parameters provided a more

comprehensive understanding of the patient’s hemodynamic

status. The phenotype of each case was determined based on the

processed data. The algorithm used a combination of the

obtained hemodynamic parameters, their trends over time, and

predefined thresholds to classify the patient into different

phenotypes or subtypes of hemodynamic instability. This

classification was crucial for tailoring the appropriate treatment

interventions for each patient.

slope [%=s] ¼ HPI(t2)�HPI(t1)
t2 � t1

(1)

Hemodynamic instability (HI) was defined as an HPI value

greater than 80% based on the results of the hypotension

prediction analysis compared to the actual occurrence of

hypotensive events in the HPI validation study. The study defined

different types of HI based on a clinical decision-making

therapeutic protocol grounded in cardiovascular pathophysiology.

Intraoperative HI is a critical condition associated with significant

postoperative morbidity and mortality. Accurate identification and

classification of IHI subtypes are essential for effective therapeutic

intervention. Based on cardiovascular pathophysiology, we have

defined five distinct patterns of IHI: absolute hypovolemia, relative

hypovolemia, vasoplegia, myocardial depression, and myocardial

depression with vasoplegia. Absolute hypovolemia is characterized

by a stroke volume variation (SVV) greater than 13% and an

arterial elastance (Eadyn) greater than 1, indicating a significant

reduction in intravascular volume that can compromise cardiac

output. Relative hypovolemia presents with an SVV greater

than 13% and an Eadyn less than 1, reflecting a redistribution of

intravascular volume without an absolute loss, still affecting

preload and cardiac function. Vasoplegia, defined by an SVV less

than 13% and a peak arterial pressure derivative (dP/dt)

greater than 400 mmHg/s, suggests excessive vasodilation with

decreased systemic vascular resistance. Myocardial depression

with vasoplegia, characterized by an SVV less than 13%, a dP/dt

less than 400 mmHg/s, and a systemic vascular resistance

index (SVRI) less than 1,500 dyn s/cm5/m2, indicates myocardial

contractile dysfunction combined with vasodilation, presenting

a particularly challenging management scenario. Myocardial

depression, defined by an SVV less than 13%, a dP/dt

less than 400 mmHg/s, and an SVRI greater than
frontiersin.org
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1,500 dyn s/cm5/m2, reflects decreased myocardial contractility

without significant vasodilation.

The classification of these subtypes is based on the necessity to

identify the underlying pathophysiological mechanism to select the

appropriate therapy.

The systemic vascular resistance index (SVRI) was calculated

by subtracting the central venous pressure (CVP) from the MAP,

dividing by the cardiac index (CI), and multiplying by 80. If

continuous measurement of CVP was not available, a fixed value

of 5 mmHg was used.

We only consider that the patient has entered a hypotensive

episode when we received three consecutive cases (samples) with

the same phenotype, because the sample rate of the HPI system

is 3 cases per minute.
Graphical representation

Various types of graphs were used in the HPI-DSS to visually

represent the trends and results. Line charts were used to display

the progression of the HPI over time, showing both the “HPI in

the last 5 min” and the “HPI since the beginning of the surgical

operation”. These line charts provided a comprehensive view of

the HPI trends throughout the surgical procedure. Spider plots

were utilized to depict the current state of the patient, including
FIGURE 2

Normal operation of the decision support system HPI.
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any present phenotype, and the phenotype of the last episode.

These plots enabled an assessment of the patient’s evolution and

facilitated the identification of patterns or changes in the

patient’s condition (Figures 2, 3).

An alert pop-up system was implemented in the HPI-DSS to

show changes in the patient’s HPI value (Table 3). The system

consisted of three types of alerts: Stability (HPI < 50) (Figures 4, 5),

Alert (HPI < 80) (Figure 6), and Warning (HPI > 80) (Figure 7).

Each alert type in the decision assistance system provided a

suggested course of action based not only on the severity of the

HPI value but also in combination with multiple parameters such

as SVV, Eadyn, and dP/dt. For example, an alert for impending

hypotension would suggest interventions based on a low HPI

value combined with a high SVV and low dP/dt. This

integrated approach ensures that the recommended actions are

tailored to the patient’s specific hemodynamic profile, providing

a more targeted and effective management strategy. For the

Stability notification, two scenarios were differentiated: when

the HPI was below 30 and when it was above 30 but below 50.

This differentiation allowed for appropriate action to be taken

based on the specific HPI range. In the warning notification,

not only was immediate action suggested, but a specific

treatment recommendation based on the diagnosed phenotype

was also provided. This enhanced the clinical decision-making

process and ensured timely intervention.
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FIGURE 3

Hipotensive event in the decision support system HPI.
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Our algorithm is based on the HPI-guided hemodynamic

management proposed by Lorente et al (10), and is grounded

on the hypotension alert provided by HPI in combination with

SVV, the maximum rise of arterial pressure (dP/dtmax) as a

surrogate for assessing left ventricular contractility, and

dynamic arterial elastance (Eadyn) for determining the

pressure-responsiveness. This hemodynamic optimization

protocol aims to prevent the main mechanisms leading to

arterial hypotension: hypovolemia, impaired contractility, and

vasoplegia. When HPI rises above 80%, the HPI-DSS first check

the SVV, if SVV is <13% and dP/dtmax is >400 mmHg s, a

vasoconstrictor is recommended, whereas an inotrope is

recommended if dP/dtmax is <400 mmHg s. On the other hand,
TABLE 3 HPI alert system.

Icon Notification HPI value

Info: Hemodynamic stability
HPI < 30

Info: Hemodynamic stability
30 < HPI < 50

Alert: Possible hemodynamic instability 50 < HPI < 80

Warning: Hemodynamic instability HPI > 80

Frontiers in Anesthesiology 05
if SVV is >13% and the Eadyn value is >1, a fluid bolus of

250 ml of colloid is recommended, while a vasoconstrictor is

recommended if the Eadyn is <1.

In addition to the graphical representation and alert

system, the application also facilitated communication and

reporting. Sample numbers and HPI slopes were

communicated to the relevant healthcare providers through

text messages. This real-time communication allowed for

prompt awareness and response to changes in the patient’s

hemodynamic status. Furthermore, the HPI-DSS generated

comprehensive reports summarizing the patient’s

hemodynamic parameters, HPI trends, and phenotype

classification. These reports were automatically generated at
Action Phenotype Treatment
Observe No phenotype detected No treatment needed

Observe No phenotype detected No treatment needed

Diagnose cause No phenotype detected No treatment needed

Apply treatment Phenotype Treatment

frontiersin.org
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FIGURE 4

Stability notification with HPI < 30.

FIGURE 5

Stability notification with 30 < HPI < 50.

FIGURE 6

Alert notification.

FIGURE 7

Warning notification.
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the end of each surgical procedure and could be easily

accessed and shared with the healthcare team for further

analysis and documentation.

The entire methodology was implemented using MATLAB®

(R2023a), a programming and numerical computing platform.

MATLAB provided the necessary tools for data extraction,

processing, graphical representation, alert system implementation,

communication, and reporting.
Discussion

Our decision support system based on the HPI model provides

significant value by offering healthcare professionals real-time

information and precise recommendations for managing

hemodynamics and preventing arterial hypotension during the

intraoperative and postoperative periods. By combining clinical

expertise with objective data and algorithms, our system

enhances the accuracy and efficiency of decision-making,

optimizing patient care and reducing the risks associated with IOH.

Many organizations, including some European medical societies,

developed and approved Goal-Directed Hemodynamic Therapy

(GDHT) protocols for perioperative hemodynamic management

(11, 12) but the complexity and diversity of the GDHT algorithms

make them difficult to implement, so the compliance with this
Frontiers in Anesthesiology 06
algorithm is often poor (13). Joosten et al. assessed the effects of

using a real time clinical decision-support system, Assisted Fluid

Management (AFM), to guide GDFT during major abdominal

surgery. They showed that patients in the AFM group spent more

time during surgery with hemodynamic stability, defined as time

with stroke volume variation <13% (14). Similarly, for patients

with intermediate to high risk surgery, computer-assisted

personalized hemodynamic management significantly reduces

intraoperative hypotension compared to manual targeting (15).

The HPI is a monitoring tool based on ML and one of the first

ML-derived predictive algorithms used in the perioperative period

(6). Recent trials have compared the HPI-guided approach with

standard intraoperative hemodynamic management, with or

without GDHT that did not incorporate HPI. The results

overwhelmingly favored the implementation of HPI-guided

management, leading to a notable decrease in IOH (10, 16, 17).

HPI-based management has proven to be a proactive and

effective strategy, ensuring hemodynamic stability. However, to

achieve a significant reduction in IOH with the HPI-based

approach, it is crucial for responsible clinicians to fully comply

with the treatment protocol (18). To address this issue,

implementing an HPI-based assisted decision system could assist

clinicians in adhering to hemodynamic protocols, promoting

consistency and optimal patient care, ultimately leading to a

decrease in IOH. One of the key strengths of the HPI-DSS is its

ability to provide predictive indicators of impending hypotensive
frontiersin.org
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episodes. By analyzing real-time hemodynamic data, the software

generates an HPI-based assisted decision support that helps

anesthesiologists identify patients at risk of developing

hypotension. This early warning system enables proactive

interventions, such as fluid administration, vasopressor use, or

adjustments in anesthesia management, to maintain stable blood

pressure. Furthermore, the visual representations of HPI trends

and the patient’s hemodynamic profile offer a clear and

accessible overview, facilitating quick assessment of the severity

and trajectory of hypotensive events. The graphical interface

enhances the usability of the software, enabling efficient and

intuitive navigation for healthcare professionals.

However, the HPI-DSS does have limitations that need to be

addressed. An important consideration in the performance of the

HPI-DSS is the inherent uncertainty associated with the FloTrac

platform. While the FloTrac system has evolved, significant clinical

variations persist in its ability to calculate cardiac output,

especially during the administration of vasopressors or changes in

arterial waveform characteristics (19). This uncertainty must be

explicitly acknowledged and addressed when evaluating the utility

and reliability of the HPI-DSS. Data accuracy is a critical concern,

as the reliability and quality of hemodynamic data extracted from

monitoring systems can be affected by noise, artifacts, and

calibration errors. Ensuring accurate data acquisition is essential

for the HPI software—and the HPI-DSS—to generate reliable

predictions. Regular calibration checks and quality control

measures should be implemented to minimize data inaccuracies

and improve the overall reliability of the software. Additionally,

usability is another crucial aspect of any decision support tool,

including the HPI-DSS. The user interface and overall usability of

the software have been carefully designed and tested to ensure

ease of use and user satisfaction. Incorporating user feedback and

iterative testing can help identify and address any usability issues,

further improving the software’s interface and functionality.

Implementing the HPI-DSS requires addressing potential biases

that may arise from skewed or incomplete training data. Ensuring

representative and unbiased training data is crucial for accurate

recommendations. Regular evaluation and refinement of the

algorithm can help mitigate biases arising from flawed assumptions

or inherent biases in the training data, enhancing the reliability

and effectiveness of the decision support system. Despite potential

biases, the HPI-DSS offers several advantages over closed-loop

systems, providing flexibility and adaptability for personalized

decision-making based on individual patient variability and real-

time changes in hemodynamic status. By incorporating healthcare

professionals’ clinical expertise with objective data from the HPI

software, informed decision-making is facilitated, leading to

improved patient management and clinical outcomes.

By utilizing the HPI decision support system, healthcare

professionals can receive real-time information and

recommendations to guide their management of arterial

hypotension, benefiting both physicians responsible for critical

decisions during surgery and nurses monitoring patients’

hemodynamic status and implementing interventions.

Furthermore, the HPI-DSS also has research implications,

allowing for large-scale data collection and analysis to further
Frontiers in Anesthesiology 07
understand the impact of IOH on patient outcomes and evaluate

the effectiveness of interventions. Prospective clinical trials in

diverse surgical settings are needed to validate the software’s

effectiveness and assess its impact on patient outcomes.

Customization based on individual patient characteristics and

surgical procedures should be explored to improve prediction

accuracy and provide personalized recommendations for IOH

management. Ultimately, integrating the HPI-DSS into clinical

practice can enhance patient safety, improve surgical outcomes,

and optimize perioperative hemodynamic management.

For the HPI-DSS to be widely adopted in clinical practice, it is

crucial that our findings are validated through extensive real-world

testing. Such studies should be conducted by independent groups

to ensure objectivity and mitigate any potential biases. These

efforts will help ascertain the generalizability and robustness of

the HPI-DSS across diverse clinical settings.
Conclusion

The Hypotension Prediction Index Decision support system

offers a model for decision support in the management of

intraoperative hypotension. By leveraging real-time hemodynamic

data and providing predictive indicators, the software empowers

anesthesiologists to proactively address and manage hypotensive

episodes, leading to improved patient safety and outcomes.

However, further research, validation, customization, and

integration efforts are necessary to address limitations and

enhance the applicability and effectiveness of the HPI-DSS in

various clinical settings.
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