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Background: Muscle wasting is a common finding in critically ill patients
associated with increased days of mechanical ventilation in the ICU. Muscle
wasting and associated morphological changes are hallmarks of ICU-acquired
weakness. Muscle wasting can be diagnosed and quantified by muscle biopsy,
but biopsies can cause multiple adverse effects. MuscleSound® has developed
a non-invasive, real-time novel MusculoSkeletal (MSK) ultrasound approach to
measure the ratio between percentage intramuscular adipose tissue (%IMAT)
with muscle cross-section area (MCSA) (termed IMAT-Index). The present
study aimed to assess the IMAT-Index in ICU patients longitudinally and
compare it to age-matched healthy controls.
Methods: Transverse (short-axis) ultrasound images of the rectus femoris
muscle were obtained upon admission and discharge in 35 ICU patients and
compared to age-matched healthy controls (n= 975). The echo intensity of
the image taken from the muscle is used to automatically calculate the ratio
between intramuscular adipose tissue by cm2 (IMAT-Index), the cross-
sectional area of the muscle (MCSA), and muscle thickness (MT).
Results: IMAT-Index was successfully measured in all subjects. The mean
IMAT-index (%IMAT/cm2) upon admission was significantly higher in critically ill
patients compared to healthy controls (7.4 ± 4.3 vs. 3.1 ± 0.9, p < 0.001). At ICU
discharge, the IMAT-index increased in the ICU group compared to admission
(8.1 ± 3.5 vs. 7.4 ± 4.3, p < 0.05).
Abbreviations

IMAT, intramuscular adipose tissue; %IMAT, percentage Intramuscular adipose tissue; MT, muscle
thickness; MCSA, muscle cross-sectional area; IMAT-Index, ratio%IMAT and MCSA; CT, computed
tomography, NMR, nuclear magnetic resonance; MRI, magnetic resonance imaging; LVAD, left
ventricular assisted device; ARDS, acute respiratory distress syndrome; MSK, musculoskeletal.
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Conclusion: Real-time noninvasive MSK ultrasound IMAT-Index was higher in ICU
patients than in healthy controls and increased during the ICU stay, both in male
and female patients.

KEYWORDS

IMAT intermuscular adipose tissue, muscle ultrasound, ICU acquired muscle weakness,
muscle wasting, muscle weakneess, critical illness
Introduction

ICU-acquired weakness (ICU-AW) is a significant complication in

critically ill patients, characterized by muscle wasting and

neuromuscular disorders that develop due to admission to the

intensive care unit (ICU). The pathophysiology of ICU-AW is

complex and includes an inflammatory response, bioenergetic

dysfunction, altered protein balance, neuronal axon degeneration,

changes in muscle histology, and muscle wasting (1–4). Impaired

muscle protein homeostasis eventually reduces muscle mass and

strength, independent survival predictors (2, 5–10). Eighty to a

hundred percent of survivors of critical illness still exhibit exercise

limitation, decreased physical quality of life, and increased costs and

use of health care services after twelvemonths to evenfive years (11–13).

A growing body of evidence suggests that the decline in muscle

function and physical fitness before, during, and after critical illness

results from reduced skeletal muscle mass and muscle quality,

including muscle composition and morphology (14–17). Skeletal

muscle quality is recognized as a marker of function in healthy

individuals and critically ill patients; it is also an emerging

descriptor of prognosis characterized by the accumulation of

intra- and intermyocellular lipids, defined as myosteatosis. All are

associated with altered muscle function, insulin resistance, type 2

diabetes, obesity, and survival in critical illness (7, 15, 18–24).

Body composition alterations with a loss of muscle density and

surface, measured by computed tomography (CT) in mechanically

ventilated patients, are independently associated with higher

6-month mortality in different populations (10, 16, 25–27).

Intramuscular adipose tissue (IMAT) can also be derived from CT

and MRI images and correlate well with functional outcomes,

physical fitness, and mortality in the elderly and patients

undergoing major abdominal surgery (17, 22, 28–30). Muscle

protein breakdown, as determined by reduced rectus femoris

muscle cross-sectional area (MSCA) and skeletal muscle

bioenergetic status, is observed during the first week of critical

illness and is more severe in patients with multiorgan failure

(7, 8). Muscle quality can also be assessed by quantification of

lipid components (IMAT) in the muscle tissue using high-

resolution NMR spectroscopy and MRI (21, 29, 31). However,

these techniques have limitations because they are minimally

invasive, expensive, and mostly unavailable. Thus, there is a need

to develop new, fast, noninvasive approaches for muscle analyses.

MuscleSound (Denver, CO, USA) developed a real-time,

noninvasive novel AI MusculoSkeletal (MSK) ultrasound approach

to determine IMAT-Index, quickly triage patients in ICU, assess

their risk, and set new standards in patient personalized care.

MSK ultrasound has become an important tool for assessing

muscle composition in both health and disease (32, 33). It is cost-

effective, non-invasive, and sensitive to changes over time compared
02
to other assessments such as muscle biopsy, CT, or NMR/MRI

(25, 34–42). Ultrasound imaging is based on the fundamental

principle that ultrasound waves are reflected by tissue in the path of

the ultrasound beam. Differences in acoustic impedance between

tissues determine the amount of sound reflected. The amount of

sound reflected is determined by the product of tissue density and

acoustic velocity (43, 44). Healthy muscle is predominantly

hypoechoic, with only scattered small hyperechoic regions, resulting

in a “starry night” appearance (40, 45, 46). Muscle wasting increases

intramuscular adipose tissue (IMAT), fibrosis, myonecrosis, and

effusion surrounding the fascicles (7, 8, 47). The reflection of

ultrasonic waves at the tissue interface level results in diffuse

backscattering which can be quantified as the number of

intramuscular tissue interactions within each muscle of interest

(45, 46, 48–50). Muscles with high intramuscular fat infiltration

(IMAT) have predominantly hyperechoic appearances, with

only minor hypoechoic regions (51–53).

Equations intended to quantify and translate muscle echo

Intensity into percent intramuscular adipose tissue (%IMAT) on

the rectus femoris muscle were introduced by Young et al. through

a comparison of intramuscular adipose tissue (IMAT) determined

from T1-weighted MRI image with ultrasound images of the rectus

femoris muscle (54). Historically, these determinations of echo

intensity were made manually using imaging software such as

Image-J (https://imagej.nih.gov/ij/). More recently, these equations

have been incorporated into an automated dicom (image) analysis

algorithm as part of MuscleSound® (Denver, CO, USA)

Technology. MuscleSound® (Denver, CO, USA) dicom (image)

analysis uses proprietary software to identify muscle and fat

boundaries and analyze muscle composition using the principles,

calibration equations, and algorithms outlined above (51). The

technology has been extensively used in healthy individuals,

including athletes, where temporal changes in muscle

composition, including intramuscular glycogen content, have been

described and validated by muscle biopsies (55, 56). Research has

shown inconsistent results regarding muscle wasting and

composition with functional outcomes during ICU stay (7).

Therefore, there is a need for valid and reliable measures of

skeletal muscle quality (57). This study aimed to use ultrasound in

critically ill patients to assess IMAT and cross-sectional muscle

size (MSCA) longitudinally in the rectus femoris muscle.
Methods

This longitudinal observational feasibility study was conducted

at the ICU department of the Erasmus Medical Centre (MC) in

Rotterdam, the Netherlands. The Erasmus MC’s Medical Ethical

Committee approved the study. The patients’ legal representatives
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gave written informed consent when the patient was unable to give

consent (October 2,016—July 2017).

All adult patients admitted to the ICU between the period of

October 2016 and July 2017 (8 months) were eligible for inclusion,

and no exclusion criteria were set. The chosen sample size of

n = 35 for this observational longitudinal study is based on the

recommendations of Kiesser and Wassmer (58). Patients’ data

were compared with healthy controls. The authors analyzed a

secondary de-identified dataset obtained via secure electronic

means from MuscleSound® (Denver, CO, USA). The dataset

contained anthropometric and MSK-ultrasound data of a

reference population comprising healthy adult volunteers of

multiple age groups. Each subject signed an authorization for

disclosure of Protected Health Information (PHI) to

MuscleSound® and granted MuscleSound® authorization to access

PHI as necessary for research purposes. The reference population

was recruited from facilities such as, but not limited to, healthcare

clinics, university labs, academic research centers, fitness training

centers, and physical therapy centers. Only subjects who were self-

declared to be in their baseline state of health and not admitted to

the hospital at the time of assessment were included in the dataset.

Assessors trained and certified by MuscleSound obtained MSK-

ultrasound parameters of the RFM. US examinations were

performed in the morning and before training.

The imaging protocol used a linear array transducer (Philips

Lumify L12-4, frequency range 4–12 MHz) in the factory

musculoskeletal (MSK) preset mode, with standard gain at 50%

and depth set at 3.5 cm. Subjects were placed supine with knees

at 10–15o and in neutral rotation if possible. The image was

taken at the midpoint of the estimated femoral craniocaudal

diameter (in inches), calculated by the revised Steele method

(with height in inches) (59):

(((((subject height�2:54)� 66:125))=2:245)=2:54)=2
FIGURE 1

Echo-Intensity (EI) heatmap MuscleSound® IMAT-Index, healthy control (ma
connective tissue/aponeurosis, yellow= fascia. M. rectus femoris.
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The obtained distance was measured from the upper border of the

patella, indicating the precise point of insonation. The calibration

equations and algorithms were optimized and corrected for the

use of the Philips Lumify ultrasound device. A minimum of

two short-axis scan images were taken bilaterally. The images

were assessed for inconsistency in the fat/muscle area and fat/

muscle depth. The corresponding image was not used in the

analyses if the variance was high due to inconsistent scanning

position and pressure. Short-axis high-resolution B-mode

DICOM images were recorded and uploaded to the

MuscleSound® analytic portal for online analysis by its

proprietary algorithms (see Figure 1).

All measurements were done by one experienced researcher

(JM). Images were taken at baseline within 48 h after ICU

admission and 12 h before discharge. In the controls, all images

were taken simultaneously every day for three consecutive days

using the same scanning protocol used in the ICU patients.

All images from both legs were analyzed by MuscleSound®

(Denver, CO, USA) algorithm, an FDA-registered automated

MSK ultrasound AI analytics platform, for inconsistency using a

proprietary algorithm from Young et al. (51).

The MuscleSound® algorithm determined if the variance was

too high due to inconsistent scanning position or pressure; the

corresponding image was not used in the analyses. The

analyses did not use an average of 16% of all images due to

high variance. The MuscleSound® algorithm identifies and

crops the muscle (Figure 1) of interest automatically and

calculates the muscle thickness (MT), muscle cross-sectional

area (MCSA), and%IMAT. Combining%IMAT with MCSA

produces the IMAT-Index (%IMAT/cm2). IMAT-Index will

give insight into the combined changes of%IMAT and MCSA.

A compromised metabolic muscle phenotype will show a

higher%IMAT with a reduced MCSA, which results in an

elevated IMAT-Index.
le); red dots (neon pink) = high EI, blue dots (dark purple) =low IE, white:
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Assessing IMAT-Index, muscle thickness, and area have been

reported to have high reliability (intraclass correlation coefficients

[1.1] = 0.857–0.959 (60).

Descriptive statistics of baseline characteristics and ultrasound

measurements of muscle were performed, and the data were

assessed for normality using the Shapiro-Wilk test (W = 0.87,

p > 0.05). Analyses were conducted using the student’s t-test and

the Pearson correlation coefficient (r-value). A p-value < 0.05 was

considered statistically significant. Results are given for all

patients and controls and men and women, as there is a known

difference in IMAT-index between sexes (51). Statistical analyses

were performed in PRISM 10.0.
Results

Thirty-five patients and a dataset of healthy controls were

included in this study. Baseline characteristics of the patients are

shown in Table 1. The control group consisted of 975 adults

(369 women (38%) and 606 men (62%), mean age 34 (SD ± 14.0)

years, Body Mass Index (BMI) 24.9 (SD ± 10.7)). The patient

group comprised 13 women (37%) and 22 men (63%). All

patient’s mean age was 41.9 (SD ± 18.8) years, and they had a BMI
TABLE 1 Baseline characteristics patients: all-ICU female and male/healthy c

ALL-ICU Female Mal
N 35 13 (37%) 22 (63

Age (years) 41.9 (±18.8) 45.1 (±19.9) 40.4 (±1

BMI 24.7 (±4.1) 24.2 (±6.5) 25.0 (±

LOS before ICU ad. (days) 14,4 (±45.4) 12.6 (±26.5) 15.5 (±5

Duration mech. vent (days) 16.0 (±14.0) 26 (±18.6) 12.9 (±1

ICU LOS (days) 30.5 (±36.4) 50 (±45.8) 26.1 (±3

Hospital LOS (days) 63.7 (±91.5) 73.0 (±42.9) 59.9 (±1

Apache II 20.1 (±7.7) 13.5 (±8.2) 21.6 (±

ICU survival (n,%) 68 (%) 80 (%) 60 (%

TABLE 2 Healthy control All (n = 975) versus ICU All (n = 35).

Controls-All ICU-All ICU

T0 T
MCSA 5.1 (±0.66) 2.7 (±1.3) 2.3 (

MT 1.9 (±.0.2) 1.1 (±0.4) 1.0 (

IMAT-I 3.1 (±0.8) 7.4 (±4.3) 8.1 (

All m. rectus femoris muscle outcomes upon admission (T0) compared to the controls and disc
T0 = admission. T1 = discharge. ns = non-significant.

MCSA, muscle cross-sectional area (cm2); MT, muscle thickness (cm); IMAT-I, IMAT-index (%

TABLE 3 Healthy control women (n = 369) versus ICU women (n = 13).

Controls-♀ ICU-♀ ICU

T0 T
MCSA 4.7 (±0.6) 1.6 (±0.6) 1.5 (±

MT 1.8 (±0.2) 0.8 (±0.2) 0.7 (±

IMAT-I 3.8 (±0.8) 11.3 (±4.2) 11.8 (

All m. rectus femoris muscle outcomes upon admission (T0) compared to the healthy controls

T0 = admission. T1 = discharge. ns = non-significant.

MCSA, muscle cross-sectional area (cm2); MT, muscle thickness (cm); IMAT-I, IMAT-index (%
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of 24.7 (SD ± 4.1); age was statistically significantly (p < 0.001)

higher in the patients group.

Reasons for ICU admission were acute respiratory distress

syndrome (ARDS) (40%), sepsis (29%), neurotrauma (17%), heart-

and lung transplant (8%), and left ventricular assisted device

(LVAD)(6%) insertion. Co-morbidities were seen in 20% of all

patients: 3 patients with hypertension, 3 patients with diabetes

type II, 2 patients with morbid obesity, 2 patients with COPD,

and 1 patient with ischemic heart disease. Renal replacement

therapy was done in 10 patients (29%). Hydrocortisone was given

to 6 patients (17%) upon admission. All patients were lung- and

heart-transplant and received physiotherapy (early mobilization) as

the standard of care. ICU mortality was 32%.

All patients have significantly (p < 0.001) lower MCSA and MT

both at admission and discharge than healthy controls (Table 2).

IMAT-Index was significantly higher (p < 0.001) in patients at

admission and discharge compared to aged-matched healthy

controls. During ICU stay, there was a significant (p < 0.05)

increase in IMAT-Index comparing ICU All at admission to

discharge. Tables 3 and 4. show the results dependent on sex, as

MCSA and MT were significantly higher in males than in females’

controls (p < 0.001) and patients at admission (p < 0.05). Similar

to males, female patients also have a significantly lower%IMAT
ontrols female and male. Data are given as standard deviations (SD).

e Healthy controls Female Men
%) 975 369 (38%) 606 (62%)

8.4) 34.3 (±14.0) 34.4 (±14.8) 34.3 (±13.5)

3.6) 24.9 (±10.7) 23.6 (±4.3) 25.7 (±13.0)

1.9)

2.3)

1.9)

06.0)

1.9)

)

-All

1 C- T0 C- T1 T0- T1
±1.0) p < 0.001 p < 0.001 ns

±0.3) p < 0.001 p < 0.001 ns

±3.5) p < 0.001 p < 0.001 p < 0.05

harge (T1). Student t-test for repeated measures is used.

IMAT/cm2).

-♀

1 C- T0 C- T1 T0- T1
0.6) P < 0.001 P < 0.001 ns

0.2) P < 0.001 P < 0.001 ns

±2.4) P < 0.001 P < 0.001 ns

and discharge (T1). Student t-test for repeated measures is used.

IMAT/cm2).
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TABLE 4 Healthy control men (n = 606) versus ICU men (n = 22).

Controls-♂ ICU-♂ ICU-♂

T0 T1 C- T0 C- T1 T0- T1
MCSA 5.6 (±0.4) 3.1 (±1.3) 2.6 (±0.9) p < 0.001 p < 0.001 ns

MT 2.1 (±0.01) 1.2 (±0.4) 1.1 (±0.3) p < 0.001 p < 0.001 ns

IMAT-I 2.4 (±0.2) 5.9 (±3.5) 6.6 (±2.6) p < 0.05 p < 0.001 ns

All m. rectus femoris muscle outcomes upon admission (T0) compared to the controls and discharge (T1). Student t-test for repeated measures is used.

T0 = admission. T1 = discharge. ns = non-significant.

MCSA, muscle cross-sectional area (cm2); MT, muscle thickness (cm); IMAT-I, IMAT-index (%IMAT/cm2).
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and IMAT-Index than female controls (Table 3). During the ICU

stay, there was a slight decrease in MCSA and MT and an

increase in IMAT-Index, not reaching the level of statistical

significance in all groups. Between male patients at admission and

healthy controls, numerous significant differences were found MT

(p < 0.001), MCSA (p < 0.001), and IMAT-Index (p < 0.001)

(Table 4). IMAT-Index assessed upon admission correlated low

(r = 0.51) though significantly (p < 0.05) with ICU length of stay.

The change of IMAT-Index over time is reflected by the finding

that IMAT-Index at discharge correlated (r = 0.58) significantly

(p < 0.05) with total length of stay in the hospital, and there was a

high correlation between IMAT-Index at discharge and duration of

mechanical ventilation (r = 0.81) (p < 0.05). In the ICU group, a

high correlation (r = 0.84) (P < 0.05) was seen between IMAT-Index

upon admission and APACHE II scores.
Discussion

This study demonstrates that ultrasound in critically ill patients

can measure muscle quality in the ICU. Muscle quality was defined

as the ratio between%IMAT and MCSA, resulting in IMAT-Index.

Differences in muscle quality were observed between critically ill

patients and controls in both male and female groups. The

method employed also facilitated the description of temporal

changes in IMAT-index among critically ill patients upon

admission and discharge.

IMAT-Index was significantly higher in patients upon

admission than controls and further increased during ICU stay.

There was no significant difference in BMI between the male

controls and the male ICU group, nor was there any significant

difference between the female groups. A possible explanation of

the difference found in IMAT-Index between the control group

and the ICU group upon admission lies in the older average age

of the ICU patients and the presence of comorbidities, which

could have affected the muscle metabolic profiles. Also, the

length of hospital stay prior to admission to the ICU could

potentially have resulted in higher values of IMAT-Index and

lower values of MCSA and MT (61, 62).

We did find a weak but significant correlation between IMAT-

Index measured upon admission and ICU length of stay, suggesting

that there are differences in patients in which patients with a low

IMAT-Index at admission are less vulnerable for extended ICU

stay than those with a high IMAT-Index, but this was not an

endpoint of this study and warrants further research.
Frontiers in Anesthesiology 05
The significant increased IMAT-Index has been described

previously during critical care admission (7, 8). Puthucheary et al.

found that intramuscular lipid accumulation, assessed by muscle

biopsies, results in dysregulated lipid oxidation and reduced ATP

bioavailability, contributing to a compromised skeletal muscle

bioenergetic status (7). Thus, the accumulation of intramuscular

lipids, and therefore increased IMAT-Index during ICU stay

combined with the decrease of MCSA, indicates a compromised

skeletal muscle metabolic status, which is synonymous with acute

mitochondrial dysfunction and even perturbed regeneration (7, 8,

63). The hypoxic or inflammatory stimuli associated with critical

illness impair muscle protein synthesis and replacement of the

functional muscle tissue with IMAT due to reduced mitochondrial

biogenesis (63–65). This might also explain our finding of a

significant correlation between IMAT-Index at discharge and

length of mechanical ventilation (r = .58) (p < 0.05) and hospital

stay (r = .81) (p < 0.05). The systemic inflammatory response gives

rise to skeletal muscle wasting within 24 h upon admission to the

ICU. Acute skeletal muscle wasting occurs early and is rapidly

defined as the reduction in mitochondrial beta-oxidation,

mitochondrial biogenesis markers, and intramuscular ATP content

(7). This could be explanatory of why the IMAT-index upon

admission correlates highly (r = .84) (p < 0.05) with the APACHE

II score. A high IMAT-index is also correlated with decreased

functional performances like muscle strength, speed, agility, and

cardiorespiratory fitness in adults and children (17, 66–68).

One limitation of the work carried out by Young et al., which

forms the basis for IMAT estimations in the MuscleSound®

(Denver, CO, USA) algorithm, is that IMAT-Index validations

were not taken in a clinical population with known skeletal

muscle abnormalities such as COPD, CHF, and neuromuscular

diseases (51). Further, all ultrasound images were only taken

from the rectus femoris muscle. This muscle group may respond

differently during critical illness regarding MT, MCSA, and

IMAT-Index than other muscle groups. We also need to consider

the heterogeneity, and therefore the potential confounding effect,

of the population. The muscle metabolic phenotype of ARDS,

sepsis, and neurotrauma can differ based on the etiology of the

disease state prior to admission.

The limiting factor of the IMAT-Index algorithm is not being

able to distinguish between muscular lipids stored either in

interstitial adipose tissue (extramyocellular lipid) or in lipid

droplets within muscle cells (intramyocellular lipid). The high

content of intramyocellular lipids is primarily associated with

obesity, type 2 diabetes, and the development of insulin
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resistance (54, 69–71). Further studies are necessary to confirm the

temporal changes described in this study in a more extensive and

better-defined population and their further role in recovering

ICU-acquired muscle weakness. Validation of%IMAT and IMAT-

Index in the clinical population is needed. Comparative analysis

of ultrasound images with CT images will be the next step.
Conclusion

Demonstrating feasibility, MSK ultrasound was employed to

quantify muscle quality, specifically IMAT-Index, sequentially in

critically ill patients. Significant differences in IMAT-Index were

observed between healthy controls and patients, as well as

between patients at admission and discharge. Muscle wasting in

critical illness serves as a marker of systemic metabolic health

and prognosis. Prioritizing the ongoing development of clinically

relevant techniques to assess muscle phenotype in intensive care

is crucial for understanding the critical illness phenotype and

monitoring disease and therapeutic trajectories.
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