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“Smart” or “precision” farming has revolutionized crop agriculture but its application to

livestock farming has raised ethical concerns because of its possible adverse effects

on animal welfare. With rising public concern for animal welfare across the world, some

people see the efficiency gains offered by the new technology as a direct threat to the

animals themselves, allowing producers to get “more for less” in the interests of profit.

Others see major welfare advantages through life-long health monitoring, delivery of

individual care and optimization of environmental conditions. The answer to the question

of whether smart farming improves or damages animal welfare is likely to depend on

three main factors. Firstly, much will depend on how welfare is defined and the extent

to which politicians, scientists, farmers and members of the public can agree on what

welfare means and so come to a common view on how to judge how it is impacted

by technology. Defining welfare as a combination of good health and what the animals

themselves want provides a unifying and animal-centered way forward. It can also be

directly adapted for computer recognition of welfare. A second critical factor will be

whether high welfare standards are made a priority within smart farming systems. To

achieve this, it will be necessary both to develop computer algorithms that can recognize

welfare to the satisfaction of both the public and farmers and also to build good welfare

into the control and decision-making of smart systems. What will matter most in the

end, however, is a third factor, which is whether smart farming can actually deliver its

promised improvements in animal welfare when applied in the real world. An ethical

evaluation will only be possible when the new technologies are more widely deployed on

commercial farms and their full social, environmental, financial and welfare implications

become apparent.
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INTRODUCTION

Smart or precision farming involves the use of technology to monitor and manage the keeping
of farm animals (Banhazi et al., 2012; Berckmans, 2017). It therefore includes sensors to measure
a range of environmental and animal-based variables as well as the control mechanisms to make
management decisions, either with or without human intervention. The ability to monitor animals
continuously in real-time throughout their lives and to control their environments means that both
productivity and welfare can potentially be improved through early detection of health problems
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(Wathes et al., 2008; Banhazi et al., 2012; Berckmans, 2017;
Veissier et al., 2019), leading to targeted (and therefore reduced)
use of medication, lower mortality and improved health. These
outcomes in turn have other social benefits such as less waste,
greater efficiency and lower environmental impact (Clark and
Tilman, 2017; Perakis et al., 2020).

Furthermore, the smart data that can be collected from
thousands of farms can be interrogated to find solutions
to management, disease, welfare, productivity and even
environmental issues that have previously been based only on
the experience of one company or small-scale research projects.
Intelligent use of the large data sets that smart farming makes
possible can be used to further improve the results of smart
farming itself.

On the other hand, however, precision farming also raises
ethical concerns primarily because of its possible adverse effects
on animal welfare (Wathes et al., 2008; Werkheiser, 2020).
The concern is that gains in production and efficiency will
lead to a deterioration in animal welfare through promotion
of more intensive farming (Stevenson, 2017), an emphasis on
group rather than individual welfare (Winckler, 2019) and the
replacement of trained stock people by anonymous algorithms.

Although improved animal welfare is often one of the stated
aims of smart farming (Rowe et al., 2019), it is far from clear that
this is achieved in practice. One reason for this uncertainty is that
much of the technology is still being developed and has not yet
been widely enough applied in practice for its full implications to
be clear. Precision agriculture as applied to livestock is therefore
at a crucial stage where its impact on animal welfare could
become either positive or negative. In this article, I shall argue
that there are three factors that will largely determine the ultimate
ethical verdict on smart farming. These are (i) whether smart
farming adopts a definition of “animal welfare” that is acceptable
to the public and in particular whether that definition includes
the animals’ point of view (ii) whether computer recognition of
animal welfare is successful enough and is given high enough
priority to satisfy the ethical standards that people demand and
to genuinely improve welfare (iii) whether smart farming can
actually deliver its promised improvements in animal welfare
when applied in practice.

AN AGREED DEFINITION OF ANIMAL

WELFARE

The first factor that will determine whether smart farming is seen
as improving or damaging animal welfare is whether it will be
possible to arrive at a definition of “welfare” that everyone—
including scientists, farmers, animal charities andmembers of the
public—can all agree on. This may sound like a trivial problem
but in fact it is a serious stumbling block to a consensus view
on the ethics of smart farming because there is currently no
agreed definition of “welfare” in any context (Green and Mellor,
2011; Thompson, 2017; Ede et al., 2019; Weary and Robbins,
2019). For some people, “good welfare” must include making the
animal’s environment as “natural” as possible (Nussbaum, 2004;
Yeates, 2018), while for others a natural life does not guarantee

good welfare (Bracke and Hopster, 2006) and what animals need
can be better met in a controlled, if artificial, environment in
which technology plays a significant part (Gygax and Hillmann,
2018). The list of proposed measures of welfare now includes
longevity (Hurnik, 1993), reproductive success (Broom, 1991),
behavioral diversity (Rabin, 2003; Cronin and Ross, 2019), heart
rate variability (von Borell et al., 2007; Kovacs et al., 2015), eye
temperature (Gomez et al., 2018), skin temperature (Herborn
et al., 2015) and hormone levels (Ralph and Tilbrook, 2016;
Palme, 2019), along with many others. Such a plethora of
different welfare “measures” means that what is an ethical way of
keeping animals for one person is unethical for another. Without
a definition of animal welfare that everyone can subscribe to
and that genuinely improves animal welfare, precision farming
could run into considerable opposition on the grounds that it
does not meet the standards of a particular definition and does
not live up to its promise of improving the lives of animals.
For all the potential that Machine Learning has for determining
the conditions that give rise to the best welfare outcomes, we
still need a specification of what a “good” or desirable welfare
outcome is (Morota et al., 2018).

A possible unifying definition of good welfare is that an
animal is (i) in a state of good physical health and (ii) has what
it wants (Dawkins, 2008, 2012, 2021). This is a distillation of
many other widely used approaches such as the Ten General
principles (OIE, 2012; Fraser et al., 2013), Five Freedoms (FAWC,
2009), the Five Provisions or Domains (Mellor, 2016), the Four
Principles put forward by the Welfare Quality R© project (Welfare
Quality R©, 2018) and the Three Circles of Welfare (Fraser, 2008)
and so captures what many people from different perspectives
mean by welfare (Dawkins, 2021). All of these schemes stress the
fundamental importance of physical health to good welfare and
“what animals want” gives a prominent place to the animals’ own
view of their environments (Welfare Quality R©, 2018; Franks,
2019). It is also in line with the recent trends to move away from
defining welfare negatively as absence of suffering to defining it
more positively so that animals have a Life Worth Living (LWL)
or, even better, a positively Good Life (Broom, 2007; FAWC, 2009;
Wathes, 2010; Green andMellor, 2011; Webb et al., 2019). “What
animals want” has been discussed in the scientific literature as
animals having “positive emotions” (Boissy et al., 2007) or being
in a “positive affective state” (Mendl et al., 2010; Gygax, 2017)
but the simpler wording is more understandable to non-scientists
andmore directly indicative of the data that needs to be collected.

COMPUTER RECOGNITION OF ANIMAL

WELFARE

Defining welfare explicitly in terms of health and what animals
want has the further advantage that it lends itself directly
to computer recognition of animal welfare. This is important
because the ethical credentials of smart farming will depend to
a very large extent on people being convinced that computers
are capable of recognizing and assessing animal welfare and
then that the computers are programmed to make sure that
good welfare is a high priority. The definition of welfare used in
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smart farming must therefore be directly translatable into terms a
computer can be programmed to recognize and apply in practice.
The technology now available for smart farming includes “smart
sensors” that collect real time information from animals and/or
their environment (Neethirajan, 2017; Fogarty et al., 2018), the
integration of different sorts of information into big data sets that
can be used for Machine Learning to give the best production
and welfare outcomes (Liakos et al., 2018; Bahlo et al., 2019)
and systems that deliver fine control of an animal’s environment
and diet (Astill et al., 2020). Translating all of this data into
practical improvements in welfare, however, depends crucially on
how good computers are at interpreting the data they collect in
welfare terms. How well are computers able to recognize the two
elements of good welfare?

Computer Recognition of Health and

Disease
Veterinary medicine has so far made much more limited use
of computers to measure health than human medicine but
there is now increasing use of automated methods for detecting
signs of disease or injury in farm animals (Fournel et al., 2017;
Awaysheh et al., 2019). This is most advanced in the dairy
sector, where changes in the health status of each individual
cow have an appreciable economic impact and so farmers find
investment in the technology that gives detailed information on
each animal to be important to their entire business (Lovarelli
et al., 2020). For example, lameness in dairy cows can now
be automatically detected in a variety of ways including visual
images, accelerometer data from devices fitted to the cows’ legs,
pressure sensitive pads that record the way cows distribute
their weight and even from the sound of their footfall (Alsaaod
et al., 2019; Eckelkamp, 2019; Volkmann et al., 2019; Pilette
et al., 2020). Changes in behavior such as longer bouts of lying,
shorter bouts of feeding or ruminating can be automatically
derived from visual images and accelerometers and serve as early
warnings of both lameness and other health problems (Beer
et al., 2016; Alsaaod et al., 2019; Eckelkamp, 2019; Grinter et al.,
2019). In pigs, changes in tail position can be automatically
detected by cameras and used as warnings for outbreaks of tail-
biting, a serious source of injury (D’Eath et al., 2018). Digital
imaging technology can also be used to analyze different postures
indicating sick or injured birds (Zhuang et al., 2018) or to pick
out lame broilers by abnormalities of their body oscillations, step
frequency and step length (Aydin, 2017).

Large animals such as cows or sows can be individually
monitored either by placing tags, trackers or measuring devices
on or even inside each animal or by visually recognizing
individual animals from camera data (Jorquera-Chavez et al.,
2019; Sun et al., 2019; Baxter and O’Connell, 2020). Such devices
can contribute to animal welfare by enabling each animal to
have its own individualized diet and medical treatment (Caja
et al., 2016). Computer vision and machine learning can now
identify facial expressions of pain in sheep, giving early warning
of diseases such as foot rot and mastitis and enabling an affected
individual to be treated before the disease spreads to the rest of
the flock (McLennan and Mahmoud, 2019).

However, where thousands of smaller animals are kept
together, individual recognition is currently difficult and the
entire group is assessed and treated as a whole. Commercially
reared poultry, for example, do not have feed, vaccination,
medication, drinker height, lighting and other factors adjusted
for single individuals but, rather, set for the average needs of
the entire flock. Welfare assessment is similarly based on group
outcomes such as % of a flock with gait defects, % mortality,
sounds or movements of whole flocks (Dawkins et al., 2012,
2017). This is one area where precision farming is currently
limited but could in future make a real contribution to the
welfare of group-housed animals. The “precision” in precision
crop agriculture refers to the measurement of soil properties,
moisture levels, weeds and diseases in specific parts of a field and
the application of treatments such as fertilizers and herbicides
precisely where these are really needed rather than to the field
as a whole (Yufeng et al., 2011; Yost et al., 2017). The welfare of
chickens could, similarly, benefit from technology that allowed
farmers to identify injured birds and treat them individually or
to be alerted to a particular areas of a house where a potential
problem such smothering or over-crowding was beginning to
occur. Houses containing many thousands of birds would no
longer be treated as a single unit but as flocks ofmany individuals,
experiencing different conditions and having different welfare
outcomes. This would enable greater focus on the welfare of
individual animals than either farmers or machines are able to
do at the moment.

Even with current technology, however, valuable health
information can be gained from monitoring the whole group
without distinguishing individuals. For example, the sound
of coughing has been used to automatically detect early
signs of Bovine Respiratory Disease, despite the difficulties of
distinguishing the sound of a cough from other background
noises (Vandermeulen et al., 2016; Carpentier et al., 2018). The
sounds of coughing in pigs (Silva et al., 2008) and sneezing in
chickens (Carpentier et al., 2019) have also been used to detect
respiratory diseases. Using visual images, broiler chicken flocks
with high levels of leg damage and lameness can be automatically
detected from anomalies in flock movement (Fernandez et al.,
2018), even before these become apparent to the human eye
(Dawkins et al., 2012, 2017, 2021; Zhuang et al., 2018).

It is thus clear that technology already has the ability to
measure at least one element of good welfare—animal health—
at both individual and group level. New automated ways of doing
this are rapidly being developed and their use is likely to increase
markedly in the near future as diagnostic tools become better
able to focus on individual animals and to give early warning of
incipient health problems (Eckelkamp, 2019; Wurtz et al., 2019;
Li et al., 2020; Rios et al., 2020).

Computer Recognition of What Animals

Want (the Animal’s Point of View)
While signs of ill-health are comparatively easy for computers
to recognize, there is more to good welfare than just absence of
injury and disease and so a key question is whether computers
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are also capable of delivering on the second component of animal
welfare—what animals want.

Specifying Welfare Algorithms
The success of an algorithm to detect when animals have what
they want will depend on a computer being able to discriminate
between the behavior or physiological state of animals that have
what they want and the behavior or physiological state of animals
that do not have what they want. Animal welfare scientists have
already made great progress in drawing up these “body language”
lists for different species and indeed they are often used as
measures of either positive or negative welfare. Many can now be
detected automatically with sensors, including hormone levels,
activity levels, vocalizations, skin temperature, eye temperature,
pupil size, heart rate variability and many more.

With such a large number of measures now available, there
would appear to be a strong empirical base fromwhich to develop
welfare algorithms suitable for inclusion in smart farming
systems. Unfortunately, it turns out that many of these measures
are problematic because they fail to discriminate between animals
having what they want and the complete opposite—animals not
having what they want or being forced to remain in conditions
they want to avoid or escape from. For example, cows showed
a decrease in eye temperature when confined in a cattle crush
to have their feet trimmed but also when given highly palatable
food (Gomez et al., 2018). Large increases in glucocorticoid
levels (often called “stress” hormones) are shown by animals
that have what they want (such as food, voluntary exercise or
a sexual partner) as well as by animals that want to escape or
avoid something (Rushen, 1986; Koolhaas et al., 2011; Ralph and
Tilbrook, 2016).

This ambiguity of many currently used measures of welfare—
the fact that many can be interpreted as much as expressions
of an excited animal having what it wants as an aroused animal
attempting to avoid what is not wanted—means that an extra test
needs to be applied before any should used in a welfare algorithm.
That test is empirical evidence that the measure used is a genuine
diagnostic of whether the animals themselves regard a given
situation as something they want to continue/repeat (that is, they
find it positive or rewarding) or as something they want to avoid
(negative or punishing) (Dawkins, 1990, 2021; Guesgen and
Bench, 2017; Gygax, 2017; Franks, 2019). This positive/negative
classification is also called valence (Mendl et al., 2010).

Determining Valence
There are now a number of well-tried and tested ways of
finding out what animals want including operant conditioning
(Kilgour et al., 1991; Patterson-Kane et al., 2008), various sorts
of choice tests, spatial distribution and other more indirect
methods (Dawkins, 2021). The simplest of these include offering
animals choices between various options and seeing which
one they choose initially or where they go over a longer
period. For example, when broiler chickens are offered a choice
between traditional bar perches and platform perches, they
spend considerably more time on the platforms than the bars,
particularly as they get older, heavier and find it more difficult

to balance on bars (Baxter et al., 2020). Their point of view is
expressed in where they choose to spend their time.

Evidence of what animals want becomes even more
convincing if animals can be shown to actually “work” to
get what they want or pay a cost to obtain their reward. For
example, dairy cows will learn to operate a switch to activate the
motors of rotating brushes, which they then rub up against to
groom themselves (Westerath et al., 2014). Furthermore, they
will make great efforts to get to these brushes if it is made more
difficult for them, for example if they have to push open a heavy
gate (McConnachie et al., 2018). Cows clearly want the physical
grooming provided by the brushes.

Traditionally, studies of animal choices and resource use are
conducted by direct human observation or tedious analysis of
video, which greatly limits their scope. Long-term computer
analysis of where animals spend their time and how often and
how much they will work for different resources provides much
more quantitative data. It shows how choices change on a diurnal
basis and as the animals age (Kashiha et al., 2014). It thus
helps to overcome objections that have been raised to the use
of choice tests in welfare assessment (Fraser and Nicol, 2011)
such as animals not being familiar with the options available, the
choices changing with experience or animals initially “wanting”
something but then not “liking” it when they obtain it (Berridge
et al., 2009).

The Expression of Valence
Although establishing what animals want is an essential first
stage in the development of welfare algorithms, it is knowing
how animals express themselves when they have (or do not have)
what they want that enables the often ambiguous data from
sensors to be correctly interpreted in welfare terms (Guesgen
and Bench, 2017). Once it is known what animals want, then
it is possible to observe them in the presence both of things or
environments they have shown they want and in the presence
of situations they have shown they want to avoid. If there are
diagnostic differences between their behavior and physiology in
these two situations—that is, reliable indicators of valence—then
these are the ones that can be used with confidence as part
of a welfare algorithm. These might be characteristic sounds,
patterns of behavior or hormone profiles that enable a machine
(or stockperson) to make a welfare assessment and any necessary
management changes. For example, growing chicks give loud
high high-pitched “distress” calls when they are cold, hungry,
thirsty or isolated (i.e., do not have what they want) and soft,
“twitter” calls when they are with the mother or other chicks, at
the right temperature and otherwise have what they want (Collias
and Joos, 1953; Wood-Gush, 1971). The calls are distinct and
easy for both humans and computers to distinguish. The current
welfare of chicks can therefore be assessed by monitoring these
calls (Herborn et al., 2020), since their value as diagnostic valence
indicators has already been established.

Computers, with their immense power to learn from large data
sets could greatly increase the accuracy of welfare recognition
algorithms and their ability to distinguish behavior of different
valence. For example, the grunts emitted by pigs are different
depending on whether the pigs are in situations they find
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rewarding or punishing (Leliveld et al., 2016), but there is a great
deal overlap between the two categories of grunts, making them,
at present, unreliable indicators of whether pigs have what they
want (Friel et al., 2019). However, what we now see as unreliable
signs of what the pigs want, could, with the power of machine
learning to interpret them, become much more reliable, either
because computers detect distinctions that escape us, or because
they are able combine them with other behaviors and interpret
them in context. Machine Learning, using very large data sets for
training and testing deep learning models, will almost certainly
detect as yet unknown correlations and insights into how to
achieve better welfare outcomes than we currently have available
(Liakos et al., 2018; Morota et al., 2018; Li et al., 2020).

There are, however, particular challenges posed by the
automated analysis of behavior due to its variety. An animal that
wants food will behave differently from the same animal when
it wants a mate or wants warmth. Even wanting one thing such
as food may sometimes take the form of searching a large area,
at other times vocalizing and at yet other times sitting still to
conserve energy. “Searching” in turn may consist of running,
stalking, digging, turning over stones or any number of other
behaviors that may themselves vary on different occasions even
within the same individual. An added complication is that when
the animal has found food, it will switch from “wanting” food to
“liking” it (Berridge et al., 2009; Gygax, 2017) and show a whole
new set of behavior associated with eating and post-prandial
digestion. The body language list for recognizing when animals
have what they want will therefore have to be extensive for each
species and include this variety of different behaviors.

The list is likely to be even longer for how animals express
themselves when they do not have what they want because there
are so many different situations that animals may want to avoid
or escape from, each giving rise to different behavior. An animal
that does not have but can see what it wants (is “thwarted”
or “frustrated”) will behave differently from one in a barren
environment (is “deprived” or “bored”). An animal that wants to
avoid danger (is “fearful”) will show a range of behaviors from
vigilance to full-scale flight depending on the degree of danger.
Aggression can take many forms and real fighting can actually
look very similar to play fighting. The only thing that could unite
these diverse behaviors and put them on the same negative list
is that, from the animal’s point of view, they are all indication of
something that is not wanted nor liked.

Note that these animal-centered lists may not be the same as
the lists that well-meaning humans, without the benefit of this
background research, might come up with. For example, not
all “natural” behaviors will make it to the positive list of what
animals want. Some behaviors that occur naturally in the wild,
such as being chased by a predator, may be the opposite of what
an animal wants and be seen as indicative of poor welfare (Bracke
and Hopster, 2006; Dawkins, 2021).

Once these lists have been compiled, however, they can be
used to develop the validated welfare algorithms that smart
farming needs if it is to be of practical use to farmers. Consumers
can be assured that the welfare algorithms being used are based
on what keeps animals healthy and also on the animals’ own
verdicts on what they do or do not want.

Computers Can Provide What Animals

Want
More actively, computers can be used not just to measure what
animals want but to actually give themwhat they want. Voluntary
milking for cows (Munksgaard et al., 2011; Rodenberg, 2017)
for example, or systems in which animals can control their
own level of illumination (Taylor et al., 1996) show how smart
farming could even lead to animal-centered environments in
which animals adjust their environments to their own liking. The
full welfare implications of this have yet to be understood.

Some Remaining Problems With Machine

Analysis of Welfare
Having emphasized the role that computers could play in the
recognition and assessment of animal welfare, it is important also
to identify the problems that still remain. With sound, it may be
difficult to distinguish vocalizations from background noise or
there may be genuine overlap between vocalizations indicating
positive or negative welfare.

With machine vision technology, there is an even greater
range of technical problems still to be overcome (Dominiak
and Kristensen, 2017; Liakos et al., 2018; Wurtz et al., 2019).
The human brain is so good at recognizing people, subtle facial
expressions, letters of the alphabet written in different scripts and
objects that are only partially visible that it sometimes comes as
a surprise that we still out-perform any computer on many of
these visual tasks (Rolls, 2021). We excel at view-invariance—
that is, at being able to recognize the same object even though
its appearance may be very different depending on the angle,
distance or orientation at which we see it. A pen looks long
and thin when held one way but like a small round coin when
looked at end-on but we still know it is a pen. A bus is still a
bus to us even though half hidden by a wall so that it no longer
has a typical bus shape. Such tasks are difficult for computers
even with static objects presented in a uniform way (which is
why tests of whether you are a robot on a website work). When
confronted by active behavior sequences of moving animals
seen from different angles, different distances from the camera,
in different lighting conditions and often obscured by other
animals, the task becomes even more difficult. If these problems
are not solved satisfactorily, computer recognition will give false
positive or false negative results, both of which detract from its
usefulness in practice (Dominiak and Kristensen, 2017; Liakos
et al., 2018).

Consequently, there is still a long way to go before welfare
algorithms will do what is required of them as a reliable part of
smart farming systems operating in commercial farm conditions
(Wurtz et al., 2019). Progress is, however, beingmade all the time.
The widespread use of video surveillance has driven the need for
view-invariant computer recognition of different kinds of human
activity that can operate independently of light level, camera
angle background or other variables encountered in real life
(Ramanathan et al., 2019; Singh et al., 2019). Such developments
are of direct relevance to the problems of machine recognition of
animal behavior in farm conditions (Li et al., 2021).
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CAN SMART FARMING DELIVER ON ITS

PROMISED BENEFITS TO ANIMAL

WELFARE?

Smart or precision livestock farming promises both greater
efficiency to farmers and higher welfare standards for animals,
but to quote a landmark paper by Wathes et al. (2008) it is still
not clear whether smart farming is the animals “friend or foe” or
the farmers “panacea or pitfall”. Despite the major progress that
has been made since this paper was published, precision livestock
farming still lags behind plant crop production in its application
of precision technology in many sectors (dairy farming being
an exception). Many of its most ambitious features—such as
automated welfare assessment—are still in the development
phase (Rowe et al., 2019) and have yet to prove their value
when applied to real farming conditions. As a result, many
farmers particularly those in the poultry sector, are yet to be
convinced that smart farming techniques are right for them or
that they give any better results than be achieved without the
help of expensive technology. Only when there is widespread
commercial application and evidence of the results of smart
farming in practice will we be able to judge its true outcomes.
These outcomes will need to include whether it results in a
reduction of waste, whether it reduces the incidence of disease
and consequently reduces or increases the use of medication,
what effects it has on the environment and the people working
with animals and on whether it allows farmers to make a living.

Economic factors will be crucial. Only if farmers can see
commercial benefits will they make the necessary investment
in smart farming equipment and it is this emphasis on
profit and efficiency that causes the most concern for animal
welfare. There is a common belief that animal welfare is
in conflict with efficient farming because its benefits are
intangible and derive from ethics and moral values or what
the public see as a “good” (Christensen et al., 2012). However,
animal welfare also has direct financial benefits too and
once these are appreciated animal welfare is less likely to
be seen as in conflict with efficient farming (Guy et al.,
2012; Dawkins, 2016). It is therefore worth considering the
possible effects of smart farming on the two components of
animal welfare discussed in this article in the light of their
financial implications.

The impact of precision farming on the first component of
animal welfare—good health—is likely to be positive and also
to be financially beneficial. By having the greater control over
environmental conditions that smart farming offers, animals
can be kept in conditions that are optimal for their health,
which makes them less likely to die or need medication or to
be a source of disease to each other or to humans. Keeping
broiler chickens within recommended limits of temperature
and humidity, particularly during the first week of life, reduces
not only mortality but other key health indicators as well
such as hockburn, foot pad dermatitis and lameness (Dawkins
et al., 2004; Jones et al., 2005). A broiler farm with 10
houses could be producing as many as 3 million birds a year
so that even a 1% saving in mortality could be financially

crucial for poultry producers. If the controlled environment
achievable with precision farming also reduced downgrades due
to leg and foot lesions, breast blisters and other signs of ill-
health this could be an additional financial gain. Making sure
that birds all grow at an even rate is another consideration
with economic implications since supermarkets often demand
birds all of the same weight. This is also important for
bird welfare since underweight birds may find difficulty in
accessing food and water. If precision farming results a higher
percentage of saleable, healthy birds of even weight, farmers
will gain financially and bird welfare will be improved at the
same time.

With the second component of good welfare—animals having
what they want—precision farming also has the potential to
deliver efficiency and profit alongside better welfare. There is
growing evidence that links “stress” to an impaired immune
system (Hoerr, 2010; Inbaraj et al., 2019; Pratelli et al., 2021).
In humans, good immune function is closely related to peoples’
subjective reports of being happy and satisfied with their lives
(Nakata et al., 2010; Takao et al., 2018), which is a promising
model for relating immunity to non-human animals having
what they want (Dawkins, 2019). This is an area where research
is urgently needed, specifically to test the hypothesis that
keeping animals in high welfare conditions (where they are
both healthy and have what they want) boosts their immune
systems, makes them more resistance to disease and leads to
healthier more contented animals. If precision farming can
provide the conditions that animals show by their behavior

they want and like and they are also healthier, then this
will provide a direct and immediate commercial advantage. If

monitoring the animals’ behavior can be shown to be useful

in indicating when conditions are less than optimal from the
animal’s point of view, then the extra technology will have its own

financial justification.
In addition to the direct financial benefits of giving priority to

animal welfare, there are also indirect benefits, such as the public
viewing farmers favorably and choosing to buy the products of

precision farming because they are seen as “welfare friendly.”
This is likely to become increasingly important as new trade deals
lead to greater competition and animal welfare becomes a key
selling point for producers who can achieve it. A retailer or food
outlet that is able reassure its customers that there is constant
welfare monitoring on the farms it buys from and is able to
explain what this means and even how the welfare is measured
will be at a (commercial) advantage.

We do not yet knowwhether these promises of smart livestock
farming will be fulfilled in practice. That will only become clear
as systems become more widely used and as the smart systems
themselves becomemore fully developed. Large data sets that can
be interrogated by deep learning techniques will be crucial both
to evaluating the effects of smart farming and to improving what
it can achieve. Of these effects, animal welfare will be key to the
future of smart farming, both as a major factor in its financial
success or failure but more importantly as its ethical judge. Smart
farming may stand or fall by whether it really can improve the
lives of animals.
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CONCLUSIONS

Smart or precision farming is a collection of relatively new
technologies whose effects on animal welfare have yet to become
clear. The ethical verdict on smart farming is likely to depend on
how the technology is developed over the next few years and how
much priority is given to animal welfare. Three developments
will be crucial to the ethical evaluation of smart farming in
its treatment of animals: the definition of “welfare” it adopts,

computer recognition of welfare and crucially, whether the
welfare of farmed animals is actually improved by the application
smart farming technology.
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