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Two experiments evaluated the addition of an exogenous sfericase protease in

broiler diets. Experiments were run (Exp1 and Exp2) with 1,848 and 2,100 one-day-

old male chicks being allocated into 84 floor pens with 14 replicates of 22 and 25

birds each, respectively. The studies were conducted in completely randomized

designs. In Exp1, Standard diets were formulated with energy and AA at marginally

lower levels than usual by the Brazilian integration such that broilers were expected

to grow at comparatively reduced rates to the industry whereas in Exp2, the

Standard diets were formulated using energy and AA as usual by the Brazilian

integrations such that broilers were expected to grow comparable to industry

rates. Standard diets had ideally balanced amino acids (AA). Matrix diets, in contrast,

had reductions of 6% digestible lysine and of 20 kcal AME/kg compared to the

Standard. Matrix diets were supplemented with an sfericase protease at 0, 10,000,

and 30,000 New Feed Protease units (NFP)/kg. Outcomes showed no interaction

between diet and protease in any of the experiments. However, broilers fed

Standard diets had higher cumulative body weight gain (BWG) to 35 and 42 d

when compared to Matrix fed birds whereas FCR were worse for birds fed the

Matrix diets at 35 d in EXP1 and at 35 and 42 d in EXP2. Improvements in FCR were

observed when the sfericase protease was added throughout all ages in EXP1 with

a beneficial trend (P<0.067) observed in the cumulative FCR at 42 d in EXP2. The

ileal digestible crude protein (IDCP) was significantly higher for birds fed Standard

feeds in EXP1 with no other differences in digestibility found in any of the

experiments. Protease addition led to improvements in ileal digestibility of dry

matter (IDM) and IDCP (P < 0.05) compared to no protease addition in EXP1 as well

as in ileal digestibility of energy (IDE) when 30,000 protease units were added. The

present report demonstrates that the novel sfericase protease was successful in

compensate broiler performance when reductions of 6% digestible Lys and 20

kcal/kg AME were imposed. This compensation, however, seemed more notable

when birds were fed diets formulated to support moderate rather than maximum

growth and having animal protein in the feed formula.
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Introduction

Protein has always been a costly nutrient in poultry feeds (Beski

et al., 2015). The quest for the reduction in feed costs has evolved

through a sequential implementation of technologies that improve

feed protein utilization. Major reductions in feed costs have first

occurred with the use of synthetic amino acids in poultry feeds with

further increases in the efficiency of protein utilization resulting from

the implementation of the ideal protein concept (Baker, 1994;

Lemme, 2003). Supplementation of proteases has lastly emerged as

a tool to improve dietary protein utilization (Stefanello et al., 2016).

Apart from animal performance, supplemental proteases have

demonstrated to reduce feed costs as well as nitrogen excretion

(Leinonen and Williams, 2015; McCafferty et al., 2022).

Decreasing supplies of protein feedstuffs have been pressuring the

existing growing demands of protein to feed humans worldwide

(OECD/FAO, 2022). Soy, regardless of its commercially available

presentation as a feedstuff (whole bean heat treated, soybean meals

with variable CP contents, soybean meal extracted with the use of

polar solvents, etc.), remains the primary protein source in animal

feeds (Erdaw et al., 2016). The soybean market price has increased

90% in average worldwide in the last 5 years (USDA, 2022). All other

protein sources, either from plant or animal origin, have followed up

in parallel (FAO, 2021). The increase in protein market price is

expected to continue a path of increase since protein daily intake in

the world has been steadily increasing (OECD/FAO, 2021).

Simultaneously, increased public concerns regarding the

environment and sustainability have been pressuring for the

reduction of the waste generated by animal production, which

includes nitrogen in excreta. Therefore, technologies that potentially

improve protein retention of animals grown to feed humans

are welcome.

Digestion of protein by birds is dependent on proteases

endogenously released in the gastrointestinal tract, which largely

degrade protein down to peptides and amino acids that are further

absorbed (Sklan and Hurwitz, 1980; Recoules et al., 2017). However, it

has been demonstrated that significant amounts of dietary protein

present in commercial feeds are not thoroughly digested (Parsons

et al., 1997; Adedokun et al., 2008; Bryan et al., 2019). Research on the

use of exogenous proteases has been ongoing for years and many

commercially available products are currently utilized in poultry

feeds. Reports on the effects of supplemental proteases have been

related to benefits in performance (Ghazi et al., 2002; Angel et al.,

2011; Moss et al., 2017; McCafferty et al., 2022), nutrient digestibility

(Freitas et al., 2011; Liu et al., 2013; Stefanello et al., 2016), intestinal

health (Xu et al., 2017; Cowieson et al., 2018), and immune

competence of broilers (Peek et al., 2009; Cowieson et al., 2017).

Exogenous proteases that can compete and succeed commercially

are required to function at corresponding pH’s in the gastrointestinal

tract, but they also must sustain digestive capabilities after being heat

treated at temperatures regularly used in feed processing mills

(Ravindran, 2013). Broad substrate specificity of some exogenous

proteases, as well as their higher concentrations at the entry of

digestive tracts, may produce benefits as effective catalyzers,

enabling them to break peptides down faster when compared to

feeds not supplemented with proteases (Ravindran, 2013; Cupi

et al., 2022).
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The objective of the present research was to evaluate the effects of a

novel exogenous sfericase protease when added to commercial broiler

feeds. Evaluations were conducted on growth performance and extended

to ileal digestibility of broilers fed varying AA and energy concentrations.

We hypothesized that the protease enzyme increases protein digestibility

and, therefore, live performance. It was also hypothesized that protease

responses are more evident in diets having reduced AA and energy

contents than their counterparts formulated to maximize growth.
Materials and methods

Two experiments were carried out at Santa Livia Research Farm,

Farroupilha, Rio Grande do Sul, Brazil. All procedures conducted in

the present study were approved by the local Ethics Committee on

Animal Use.
Bird husbandry and experimental design

One-day-old slow feathering Cobb x Cobb 500 male broiler chicks,

vaccinated for Marek’s disease, were obtained from a local hatchery

(Carrer Alimentos Ltda., Encantado, RS, Brazil). In both experiments

chicks were allocated to one of 6 feeding treatments. Corn-soybean meal

feeds were provided in a four-phases program having pre-starter (1 to 7

d), starter (8 to 21 d), grower (22 to 35 d) and finisher (35 to 42 d) feeds

(Tables 1, 2). Experimental designs were completely randomized 2 x 3

factorials with chicks placed in 84 replicate floor pens (1.65 x 1.65m). The

number of chicks per pen was 22 in experiment 1 and 25 in experiment 2,

with the total chick number at the beginning being 1,848 and 2,100 in the

first and second experiments. The variation in bird density was due to the

availability of healthy chicks at the moment of placement.
Supplemental protease

The tested protease was a novel subtilisin protease from Bacillus

sp. produced in Bacillus licheniformis (Cupi et al., 2022). This is a

sfericase protease, an endopeptidase from the serine protease family,

subtilisin subfamily A, MEROPS ID S08.113 (Rawlings et al., 2014).

Activity for this protease is defined in New Feed Protease units (NFP),

which measures the enzyme amount required to hydrolyze 1 µmol of

para-nitroaniline (pNA) from 1 M substrate Suc-Ala-Ala-Pro-Phe-

pNA (Cupi et al., 2022). Enzyme activity in the feeds of the present

study were conducted in an Infinite M200 Pro microtiter plate reader

(Tecan Lifesciences, Switzerland), with the amount of released yellow

pNA being proportional to the protease activity of the enzyme

measured photometrically at a wavelength of 405 nm. The utilized

protease product was granulated and had 600,000 NFP per g (ProAct

360®, DSM Nutritional Products AG, Kaiseraugst, Switzerland).
Dietary treatments

Both experiments were 2 x 3 factorials having two dietaries

formulations (Standard and Matrix) and three levels of protease

feeds supplementations (0, 10,000 and 30,000 NFPs per kg feed).
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Standard diets were formulated to contain energy and nutrients to

provide animal well-being without limitations for health. However,

since the modern broiler responds widely to protein and energy with

continuous improvements in feed conversion ratios (FCR), the

studies were based in different set ups for growth. In experiment 1

(EXP1), Standard diets were formulated with energy and AA at

marginally lower concentrations than usual by the Brazilian

integrations expecting broilers to grow at comparatively reduced

rates when compared to the average industry (Table 1). In

experiment 2 (EXP2), Standard diets were formulated using energy
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and AA as usual by the Brazilian integrations projecting birds to grow

at average rates comparable to obtained by the industry (Table 2).

Meat and bone meal was included in the diets of EXP1 whereas all

vegetable corn-soy diets were used in the EXP2.

In comparison to Standard, Matrix diets were formulated with

reductions in AME (20 kcal AME/kg) and 6% digestible Lys (Tables 1,

2), with all other nutrients being similar and resembling levels

presently used commercially. An indigestible marker (Celite Corp.,

Lompoc, CA) was added at 10 g/kg in the finisher and starter diets,

respectively in EXP1 and EXP2 to allow digestibility analyses.
TABLE 1 Composition of feeds formulated in experiment 11.

Ingredients, kg Pre-starter, 0 to 7 d Starter, 8 to 21 d Grower, 22 to 35 d Finisher, 36 to 42 d

Standard Matrix Standard Matrix Standard Matrix Standard Matrix

Corn 584.45 600.80 619.15 634.50 652.30 667.65 669.50 683.70

Soybean meal 46% 351.00 337.45 307.00 294.45 264.00 251.45 237.00 225.45

Meat and bone meal 25.00 25.00 30.00 30.00 35.00 35.00 27.00 27.00

Soybean oil 14.00 12.00 23.00 21.00 32.00 30.00 41.00 39.00

Dicalcium phosphate 4.00 4.00 1.10 1.20 – – – –

Limestone 6.00 6.00 5.40 5.40 3.50 3.50 3.80 3.80

Salt 4.90 4.90 4.40 4.40 4.00 4.00 3.90 3.90

DL-Methionine 99% 3.65 3.45 3.25 2.95 2.95 2.65 2.55 2.30

L-Lysine HCl 78% 3.15 3.00 3.05 2.90 2.95 2.85 2.65 2.55

L-Threonine 98.5% 1.15 0.80 1.05 0.70 1.00 0.70 0.80 0.50

L-Valine 98% 0.30 0.20 0.20 0.10 0.20 0.10 – –

Choline chloride 60% 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Mineral & vitamin premix2 1.85 1.85 1.85 1.85 1.55 1.55 1.25 1.25

Indigestible marker3 – – – – – – 10.00 10.00

Protease4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Total 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Nutrient composition, % or as follow

AME, kcal/kg 2,950 2,930 3,050 3,030 3,150 3,130 3,200 3,180

Crude protein 22.0 20.7 20.5 19.3 19.0 17.9 18.2 17.1

Digestible Lys 1.28 1.20 1.18 1.11 1.08 1.02 0.98 0.92

Digestible TSAA 0.94 0.88 0.87 0.82 0.81 0.76 0.74 0.70

Digestible Thr 0.83 0.78 0.76 0.71 0.71 0.67 0.64 0.60

Digestible Val 0.96 0.90 0.88 0.83 0.82 0.77 0.75 0.71

Av. P 0.48 0.48 0.45 0.45 0.45 0.45 0.40 0.40

Total Ca 0.92 0.92 0.90 0.90 0.86 0.86 0.76 0.76

Na 0.23 0.23 0.21 0.21 0.19 0.19 0.17 0.17
1Standard diets were formulated with energy and AA at marginally lower contents than usual by the Brazilian integration such that broilers were expected to grow at comparatively reduced rates to the
industry.
2Composition per kg feed: iron, 40 mg; zinc, 80 mg; manganese, 80 mg; copper, 10 mg; iodine, 0.7 mg; selenium, 0.40 mg: vitamin A, 8,000 IU; vitamin D3, 2,000 IU; vitamin E, 30 IU; vitamin K3, 2 mg;
thiamine, 2 mg; riboflavin, 6 mg; pyridoxine, 2.5 mg; cyanocobalamin, 0.012 mg, pantothenic acid, 15 mg; niacin, 35 mg; folic acid, 1 mg; biotin, 0.08 mg; phytase at 1,000 FYT/kg (Ronozyme HiPhos
GT 20000®, DSM Nutritional Products, Switzerland, provided 1.5 kg/ton Av.P and total Ca); Salinomycin at 60 mg/kg (Coxifarm, Farmabase Animal Health, Jaguariúna, Brazil).
3Celite®, Celite Corp., Lompoc, CA.
4ProAct360®, DSM Nutritional Products, Switzerland; 500 g/ton corn diluted premixes had 0, 17 or 50 of the protease corresponding to 0, 10,000 and 30,000 NFP units.
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Feeds were prepared in 400 kg batches, mixed for 3.5 minutes. The

feed mixer was thoroughly cleaned between the mixing of sequential

treatments to avoid residual enzymes from the feed previously prepared.

Samples (1 kg) were taken from each mixing batch for further analysis.
Data collection

Chick body weight from each pen was individually obtained at

placement (49.5 ± 0.85 and 48.4 ± 1.29, respectively in EXP1 and

EXP2) whereas pen totals were taken and averaged at 7, 21, 35 and 42

d. Feed intake, body weight gain (BWG) and FCR corrected for the

weight of dead birds were calculated between feed changes and at the
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end of the studies. In both studies, 5 birds were randomly taken from

each pen and euthanized by cervical dislocation at 42 and 21 d,

respectively in EXP 1 and 2. Contents from the Meckel’s diverticulum

to approximately 3 cm cranial to the ileo-cecal junction were

collected, flushed with distilled water into plastic containers, pooled

by pen, frozen immediately in liquid nitrogen, and stored in a freezer

at -20°C. Diet and ileal contents were freeze-dried and ground for dry

matter analysis. Feed and ileal digesta samples were then analyzed for

gross energy (GE) using a calorimeter (IKAWerke, Parr Instruments,

Staufen, Germany). Nitrogen analysis was done using Kjeldahl (1883).

Estimations of ileal digestibility were calculated for dry matter (IDM),

energy (IDE), and crude protein (IDCP) as described by Kong and

Adeola (2014). Acid insoluble ash concentration in the diets and
TABLE 2 Composition of feeds formulated in experiment 21.

Ingredients, kg Pre-starter, 0 to 7 d Starter, 8 to 21 d Grower, 22 to 35 d Finisher, 36 to42 d

Standard Matrix Standard Matrix Standard Matrix Standard Matrix

Corn 540.90 556.85 557.50 573.40 630.30 644.00 647.00 659.55

Soybean meal 46% 399.00 386.00 353.00 341.00 294.00 283.00 275.00 265.00

Soybean oil 21.00 19.00 42.00 39.00 41.00 39.00 48.00 46.00

Dicalcium phosphate 11.50 11.50 11.40 11.40 10.70 10.80 8.20 8.30

Limestone 10.40 10.40 10.20 10.20 9.80 9.80 8.60 8.60

Salt 5.30 5.30 4.80 4.80 4.50 4.50 4.20 4.20

DL-Methionine 99% 4.35 4.00 3.95 3.60 3.30 3.00 3.05 2.80

L-Lysine HCl 78% 3.15 2.95 2.95 2.75 2.75 2.60 2.70 2.55

L-Threonine 98.5% 1.50 1.10 1.30 0.95 1.05 0.75 0.95 0.70

Choline chloride 60% 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Mineral & vitamin premix2 2.35 2.35 2.35 2.35 2.05 2.00 1.75 1.75

Indigestible marker3 – – 10.00 10.00 – – – –

Protease4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Total 1,000

Nutrient composition, % or as follow

AME 2,950 2,930 3,080 3,060 3,180 3,160 3,250 3,230

Crude protein 23.4 22.0 21.3 20.0 19.3 18.1 18.4 17.3

Digestible Lys 1.38 1.30 1.25 1.18 1.1 1.03 1.05 0.99

Digestible TSAA 1.05 0.99 0.96 0.90 0.86 0.81 0.82 0.77

Digestible Thr 0.91 0.86 0.83 0.78 0.73 0.69 0.69 0.65

Digestible Val 0.98 0.92 0.9 0.85 0.82 0.77 0.78 0.73

Av. P 0.48 0.48 0.47 0.47 0.45 0.45 0.40 0.40

Total Ca 0.92 0.92 0.90 0.90 0.86 0.86 0.76 0.76

Na 0.23 0.23 0.21 0.21 0.19 0.19 0.17 0.17
1Standard diets were formulated using energy and AA as usual by the Brazilian integration levels such that broilers were expected to grow comparable to industry rates.
2Composition per kg of feed: iron, 40 mg; zinc, 80 mg; manganese, 80 mg; copper, 10 mg; iodine, 0.7 mg; selenium, 0.3 mg: vitamin A, 8,000 IU; vitamin D3, 2,000 IU; vitamin E, 30 IU; vitamin K3, 2
mg; thiamine, 2 mg; riboflavin, 6 mg; pyridoxine, 2.5 mg; cyanocobalamin, 0.012 mg, pantothenic acid, 15 mg; niacin, 35 mg; folic acid, 1 mg; biotin, 0.08 mg; Phytase at 1,000 FYT/kg (Ronozyme
HiPhos GT 20000®, DSM Nutritional Products, Switzerland provided 1.5 kg/ton Av.P and total Ca); Salinomycin at 60 mg/kg (Coxifarm, Farmabase Animal Health, Jaguariúna, Brazil).
3Celite®, Celite Corp., Lompoc, CA.
4ProAct360®, DSM Nutritional Products, Switzerland; 500 g/ton corn diluted premixes had 0, 17 or 50 of the protease corresponding to 0, 10,000 and 30,000 NFP units.
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ileum samples were determined using the method described by

Vogtmann et al. (1975) and Choct and Annison (1992).
Statistical analyses

Collected data from the two experiments were analyzed

independently using SAS 9.4 (SAS, 2013). Data was first subjected

to the Levene and Shapiro Wilkinson normality tests for the

homogeneity of variances (Levene, 1960; Shapiro and Wilk, 1965).

Normally distributed data were then subjected to ANOVA using the

general linear model (GLM) procedure in a completely randomized 2

x 3 factorials design with 14 replicates per treatment in each study.

The Tukey-Kramer test was used for means comparison with

differences being considered significant at P < 0.05, whereas 0.05 <

P < 0.10 was considered to indicate a trend towards significant effects

(Tukey, 1991).
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Results

Analysis of the protease added to the experimental diets showed

similar activities with the declared values in both studies (Table 3). Feed

intake was not affected by the treatments in any of the experiments

(P>0.05). Overall mortality was low and not affected by the treatments

either (Grand means were of 2.87% and 2.62% in EXP1 and EXP2,

respectively). Growth performance of broilers are presented in Tables 4,

5, respectively for EXP1 and EXP2. There were no interaction effects

between diet and protease on performance variables (P > 0.05),

therefore data in the tables are presented as main factor means.

Growth in both experiments was affected by diet formulation at

35 and 42 d. Significant reductions in BWG were observed for birds

fed the Matrix diets (reductions ranged from as low as 1.4% at 42 d in

EXP1 to as high as 1.9% in EXP2). Standard diets presented better

FCR at 35 d in EXP1 and at 35 and 42 d in EXP2 (P<0.01). A trend for

improvement at 42 d was observed in EXP1 (P<0.078).
TABLE 3 Declared and analyzed activities of the protease supplemented feeds in experiments 1 and 2, NFP/kg1.

Experiment 1 Experiment 2

Declared Analyzed Declared Analyzed

Pre-starter

Standard
0

10,000
30,000

< LOD2

8,912
48,778

0
10,000
30,000

< LOD
10,862
29,722

Matrix
0

10,000
30,000

< LOD
17,070
45,453

0
10,000
30,000

< LOD
14,771
27,774

Starter

Standard
0

10,000
30,000

< LOD
18,349
41,970

0
10,000
30,000

< LOD
7,552
32,368

Matrix
0

10,000
30,000

< LOD
20,113
44,699

0
10,000
30,000

<LOD
23,052
50,423

Grower

Standard
0

10,000
30,000

< LOD
6,582
39,082

0
10,000
30,000

< LOD
10,237
37,895

Matrix
0

10,000
30,000

< LOD
9,665
30,570

0
10,000
30,000

< LOD
7,919
29,696

Finisher

Standard
0

10,000
30,000

< LOD
7,813
27,408

0
10,000
30,000

< LOD
7,157
32,297

Matrix
0

10,000
30,000

< LOD
14,139
38,306

0
10,000
30,000

< LOD
7,774
27,871
1 New feed protease units.
2 Limit of detection.
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The protease added to the diets showed no significant effects on

BWG (P>0.05) in both experiments. A trend to increase BWG

(P<0.052) was observed at 21 d in EXP1. On the other hand, the

protease led to significant improvements in FCR in all cumulative age

measurements in EXP1 regardless of the protease level added. A trend

for improvement (P<0.067) was observed in the cumulative FCR at 42

d in EXP2.

Digestibility responses obtained in both experiments are

presented in Table 6. No interaction was observed between the diet

and protease (P>0.05). Except for an increase IDCP for birds fed the

Standard diet in EXP1 (P<0.038), there were no effects of diet in the
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digestibility variables. Protease addition led to improvements in IDM

and IDCP (P < 0.05) when compared to no protease addition in

EXP1; however, IDE was only increased when 30,000 units were

added. No effects of protease were observed in EXP2 (P>0.05).
Discussion

An impressive number of studies with poultry fed diets

supplemented with exogenous proteases have been reported in the

last few years. Outcomes from these studies vary from absence of
TABLE 4 Growth performance of broilers fed diets added with a sfericase protease in experiment 11.

Feed intake, g Body weight gain, g Feed conversion ratio

Feed 1 to 21 d 1 to 35 d 1 to 42 d 1 to 21 d 1 to 35 d 1 to 42 d 1 to 21d 1 to 35d 1 to 42d

Standard 1,133 3,446 5,176 818 2,203 3,161 1.386 1.564 1.636

Matrix 1,139 3,422 5,127 818 2,164 3,113 1.392 1.581 1.647

Protease, NFP/kg2

0 1,142 3,440 5,170 812 2,169 3,121 1.408b 1.586b 1.656b

10,000 1,129 3,416 5,134 815 2,178 3,137 1.386a 1.568a 1.636a

30,000 1,138 3,446 5,149 828 2,204 3,154 1.374a 1.563a 1.632a

SEM 3.42 12.17 14.08 2.92 8.54 7.92 0.004 0.003 0.003

Probability

Diet 0.454 0.329 0.091 0.975 0.022 0.002 0.366 0.004 0.078

Protease 0.256 0.572 0.563 0.052 0.209 0.202 <0.001 0.004 0.002

Diet x Protease 0.344 0.319 0.324 0.636 0.454 0.262 0.864 0.934 0.987
fro
a>bMeans with different letters in the same column indicate significant differences (P < 0.05).
1Standard feeds formulated with energy and AA at marginally lower levels than usual by the Brazilian integration such that broilers were expected to grow at comparatively reduced rates to the
industry.
2ProAct360®, DSM Nutritional Products, Switzerland; 50 g/ton corn diluted premixes had 0, 17 or 50 of the protease corresponding to 0, 10,000 and 30,000 New Feed Protease (NFP) units.
TABLE 5 Growth performance of broilers fed diets added with a sfericase protease in experiment 21.

Feed intake, g Body weight gain, g Feed conversion ratio

Feed 1 to 21 d 1 to 35 d 1 to 42 d 1 to 21 d 1 to 35 d 1 to 42 d 1 to 21d 1 to 35d 1 to 42d

Standard 1,286 3,715 5,009 990 2,381 3,109 1.299 1.559 1.610

Matrix 1,294 3,681 4,963 988 2,335 3,050 1.310 1.576 1.627

Protease, NFP/kg2

0 1,291 3,705 4,997 984 2,349 3,063 1.312 1.577 1.631

10,000 1,287 3,682 4,971 991 2,356 3,080 1.299 1.563 1.613

30,000 1,293 3,707 4,991 993 2,370 3,096 1.302 1.564 1.612

SEM 5.14 14.45 16.28 4.19 8.92 9.05 0.005 0.004 0.003

P-value

Diet 0.465 0.257 0.166 0.708 0.009 <0.001 0.334 0.048 0.024

Protease 0.921 0.749 0.799 0.919 0.614 0.308 0.617 0.326 0.067

Diet x Protease 0.604 0.903 0.675 0.814 0.978 0.680 0.843 0.773 0.919
a>b Means with different letters in the same column indicate significant differences Tukey.
1Standard feeds were formulated using energy and AA as usual by the Brazilian integration levels such that broilers were expected to grow comparable to industry rates.
2ProAct360®, DSM Nutritional Products, Switzerland; 50 g/ton corn diluted premixes had 0, 17 or 50 of the protease corresponding to 0, 10,000 and 30,000 New Feed Protease (NFP) units.
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effects (Kaczmarek et al., 2014; Yuan et al., 2017; Walk et al., 2019) to

significant improvements in growth performance of broilers (Freitas

et al., 2011; Lee et al., 2018; Jabbar et al., 2021; McCafferty et al., 2022).

Synergy between proteases with other in feed supplemental enzymes,

such as phytases, xylanases and amylases have also been reported

(Cowieson and Adeola, 2005; Amerah et al., 2017; Cowieson et al.,

2019). In the present study, phytase was added to all feeds since this is

economically mandatory in presently commercial feeds.

Enzymes only interact with one type or a group of similar

substrates such that the enzyme-substrate reaction products are

yielded. In the case of supplemental proteases, expected yields of

dietary protein degradation resulting from supplemental proteases are

absorbable short peptides or amino acids (Gilbert et al., 2014). Broiler

responses to increased intestinal contents of available amino acids

depend on their amount and degree of essentiality. The modern

broiler has demonstrated to respond to increasing dietary intake of

protein from amino acids balanced feeds with improved growth, feed

conversion as well as meat yields in a wide range of contents (Lemme

et al., 2006; Dozier et al., 2008; Cruz et al., 2017).

Expected benefits from supplemental proteases are dependent on

the presence of protein that can function as a reactive substrate to the

specific enzyme added (Vieira et al., 2014). In the present study,

Matrix diets were formulated with a fair reduction in protein but a

small decrease in energy when compared to the Standard diets in both

experiments. These differences were expected to allow for the

detection in performance and digestibility when birds were fed

them and, therefore, benefits due to the protease in the Matrix diets

should be able to provide a compensation for their lower AA and

AME contents. Performance of broilers was negatively affected by

birds fed the Matrix diets at 35 and 42 d (P<0.078 for FCR at 42 d in

EXP1). However, diets with the added protease provided significant

improvements in FCR in EXP1 throughout all phases, regardless of

the diet and the dose added. In EXP2 the protease numerical
Frontiers in Animal Science 07
improvements in FCR at 42 d had a P<0.067. On the other hand,

protease improvements were more noticeable in FCR and could be

explained by the parallel increased digestibility (IDM, IDE and IDCP)

in EXP1 (which did not occur in EXP2).

An important difference in the protein profile existed between

diets formulated in both experiments. Meat and bone meal, included

in EXP1 but not in EXP2, have reduced AA digestibility when

compared to SBM (Vieira et al., 2014). It seems that, the presence

of a mix of more complex proteins in EXP1 has provided a more

adequate substrate for the presently used protease.

In conclusion, commercial diets supplemented with 10,000 NFP/

kg or 30,000 NFP/kg lead to improvements in FCR regardless of AA

density utilized.
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TABLE 6 Dry matter digestibility, ileal energy digestibility, and crude protein digestibility of broilers in experiments 1 and 21.

Experiment 1 Experiment 2

IDM2 IDE IDCP IDM2 IDE IDCP

Standard 77.0 3,748 86.7 64.5 3,239 80.7

Matrix 77.8 3,711 85.7 66.4 3,324 81.0

Protease, NFP/kg3

0 75.5b 3,670b 85.0b 64.6 3,239 80.3

10,000 77.9a 3,751ab 86.9a 65.9 3,280 80.1

30,000 78.9a 3,766a 86.8a 66.0 3,325 82.3

P-value

SEM 0.36 14.97 0.24 0.65 29.85 0.56

Diet 0.213 0.21 0.038 0.153 0.15 0.735

Protease 0.001 0.017 0.001 0.60 0.487 0.188

Diet x Protease 0.067 0.56 0.074 0.793 0.302 0.143
a>b Means with different letters in the same column indicate significant differences (P < 0.05).
1 Standard feeds formulated using AA and energy marginally lower (Exp1) or as usual (Exp2) by the Brazilian integrations whereas Matrix feeds had a reduction in AA as well as of 20 kcal/kg
corresponding to the expected improvements by the protease; 2 IDM=ileal dry matter digestibility, IDE=ileal digestible energy, IDCP=ileal digestible crude protein.
3 ProAct360®, DSM Nutritional Products, Switzerland; 50 g/ton corn diluted premixes had 0, 17 or 50 of the protease corresponding to 0, 10,000 and 30,000 New Feed Protease (NFP) units.
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