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The provision of adequate and balanced nutrients is critical for efficient and

profitable animal protein production. However, non-nutritive components in

feedstuffs can elicit responses that can negatively impact nutrient utilization

efficiency. For example, dietary b-mannans are recognizable by cell surface

mannose receptors are pivotal for diverse cellular functions. This review will

evaluate the physiological implications of dietary native b-mannans, the utility

of supplemental feed b-mannanase in hydrolyzing b-mannans, and

subsequent metabolic responses. Dietary native b-mannans have been

implicated in inadvertent stimulation of immune response through a

phenomenon called the feed-induced immune response (FIIR), that has been

associated with intestinal inflammation and depression in animal performance.

Supplemental b-mannanase blunted the FIIR by hydrolyzing native b-mannans

to smaller fragments with a reduced ability to stimulate the innate immune

system as indicated by the modulation of oxidative stress, mucosal

permeability, and blood concentration of acute phase proteins and

immunoglobulins in broilers and piglet models. Moreover, b-mannanase

hydrolysis of native b-mannans to mannooligosaccharides (MOS) impacted

gastrointestinal microbial ecology. Indeed, b-mannanase-derived MOS

reduced the concentration of pathogenic bacteria such as Escherichia coli

and Salmonella and increased the production of short-chain fatty acids in

gastrointestinal tracts of various animal models. Consequently, by hydrolyzing

native b-mannans, supplemental b-mannanase may have nutritional,

metabolic, and microbial ecology benefits. In summary, integrating multi-

functional feed additives such as b-mannanase into feeding programs for

monogastric animals will be critical for efficient and sustainable animal

protein production in the context of evolving challenges such as the

mandated elimination of use of antibiotics for growth promotion.

KEYWORDS

b-mannanase, pig and poultry nutrition, feed-induced inflammatory response,
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Introduction

Monogastric farm animals are ranked highly in terms of

efficiency of conversion of feed to food products. From

production cost perspectives, feed accounts for more than 60%

of the variable inputs cost, with dietary energy and protein (amino

acids) accounting for a significant portion. Yet, these animals

excrete significant amounts of undigested nutrients (Schedle,

2016). Most of the variation in dry matter digestibility in

feedstuffs is related to the presence of anti-nutritional factors

(ANFs) and indigestible complexes (NRC, 1994; NRC, 2012). The

implications of insufficient and variable nutrient digestibility

include increased feed costs due to poor feed efficiency,

increased risk of enteric pathogens, and increased excretion of

nutrients into the environment among others (Kiarie et al., 2013;

Kiarie et al., 2016). Moreover, indigestible complexes stimulate

growth of visceral organs and, as such, increase partitioning of

more energy and nutrients for maintenance at the expense of

growth, lactation, and reproduction (Cant et al., 1996). Thus, the

basis for the utility of exogenous feed enzymes (FE) is to address

the inherent digestive insufficiency of monogastric animals

(Bedford, 1996; Bedford and Schulze, 1998; Kiarie, 2020).

Therefore, the concepts of commercial and practical application

of FE technology in animal nutrition are to target ANF in

feedstuffs and to complement endogenous enzymes in animals

with immature and/or compromised gut function. Indeed, the

utility of FE in enhancing the nutritive value of feedstuffs for

monogastric farm animals has received extensive critical

appraisals in the last three decades (Bedford and Schulze, 1998;

Adeola and Cowieson, 2011; Slominski, 2011; Ravindran, 2012;

Dersjant-Li et al., 2015). Arguably, features and functionality of FE

are designed and set by the source organism and target substrate.

However, the utility in animal nutrition is dependent on the

mechanism of action (Kiarie et al., 2013). For example, feed b-
mannanase has been demonstrated to benefit growth performance
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and digestibility in pigs and poultry, as summarized in numerous

reviews (Shastak et al., 2015; Torres-Pitarch et al., 2019; Saeed

et al., 2019; Kipper et al., 2020; Kiarie et al., 2021). However,

native/intact feed b-mannans, the target substrate for b-
mannanase, not only have anti-nutrient properties but have also

been linked to stimulating immune responses with implications

on post-absorptive nutrients utilization. The present review will

evaluate physiological implications of dietary native b-mannans,

utility of supplemental feed b-mannanase in hydrolyzing b-
mannans, and subsequent impact on immunometabolism and

gut health.
Implications of b-mannans on
gastrointestinal physiology and ecology

Plant feedstuffs used in monogastric animal diets are rich in

non-starch polysaccharides, with hemicellulose and cellulose as

dominating fractions (Bach Knudsen, 1997). Protein feedstuffs are

particularly rich in b-mannans, a type of hemicellulose rich in D-

mannose units linked in b-(1-4) glycosidic bonds (Chen et al.,

2018a). We recently reported the structure, abundance, and

nutritional implications of b-mannans in common feedstuffs

(Kiarie et al., 2021). In general, the major b-mannans in

feedstuffs are glucomannan and galactomannan, and the

concentration can be as high as 30% DM in some feedstuffs

(Kiarie et al., 2021). Figure 1 illustrates the framework for

gastrointestinal and ecology responses to intact feed b-mannans.

Unlike other dietary non-starch polysaccharides, b-mannans are

similar to carbohydrate moieties present in the cell walls of

microorganisms that are recognizable by cell membrane

mannose receptors (MR) (Arsenault et al., 2017; Mathiesen

et al., 2019). As C-type lectin, MR are expressed by

macrophages and dendritic cells and are pivotal for antigen

detection and adhesion, pathogen infections, and signal
FIGURE 1

Framework for implications of feed b-mannans on gastrointestinal physiology and ecology.
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transduction (Taylor et al., 2005; Arsenault et al., 2017). In this

context, b-mannans are recognizable as pathogen-associated

molecular patterns (PAMP) via several cell MR lining the

gastrointestinal tract. It has been postulated that b-mannans

bind to intestinal cells or are absorbed into the bloodstream to

exert local and systematic immune responses (Zhang and Tizard,

1996; Duncan et al., 2002; Arsenault and Kogut, 2015; Arsenault

et al., 2017). Consequently, feed b-mannans are associated with

inadvertent immune response stimulation through a

phenomenon coined feed-induced immune response (FIIR)

leading to intestinal inflammation, poor nutrient utilization, and

diminished animal productivity (Daskiran et al., 2004; Gabler and

Spurlock, 2008; Arsenault et al., 2017). For example, aloe vera b-
mannans are chemically similar to soybean meal b-mannans and

were demonstrated to increase synthesis of nitric oxide by

activating MR in macrophages (Karaca et al., 1995;

Ramamoorthy et al., 1996). As such, the host immune system

recognizes b-mannans for invading antigens/pathogens and

mounting cellular immune response (Wu et al., 2005; Arsenault

et al., 2017). Intact feed b-mannans can also impede normal

digestion and absorption processes of nutrients with implications

on gastrointestinal microbial ecology. Luminal compounds

(dietary and/or endogenous) in the gastrointestinal tract serves

as a substrate for the microbiota (Kiarie et al., 2013). Soluble b-
mannans increase digesta viscosity of intestinal contents,

effectively reducing digestion and absorption of nutrients

(Rainbird et al., 1984; Lee et al., 2003; Blackburn and Johnson,

2007; Rainbird et al., 2007). The undigested nutrients increase the

risk of proliferation of enteric pathogens such as Clostridium

perfringens, enterotoxigenic Escherichia coli (Kiarie et al., 2013).

Moreover, increased flow of ileal undigestible protein in the

hindgut can result in proteolytic fermentation in the large

intestine of pigs and the cecum of poultry that can negatively

affect their performance and health (Kiarie et al., 2013).
Concepts of feed b-mannanase in
modulating host physiology and
gut ecology

Immunometabolism

The supplementation of ß-mannanase has been shown to

improve energy and nutrients utilization in broilers (Li et al.,

2010), laying hens (Wu et al., 2005), and pigs (Yoon et al., 2010;

Kim et al., 2013; Lv et al., 2013). However, the main effect of

supplementation of ß-mannanase in monogastric diets has been

associated with blunting ß-mannan-induced inflammatory

responses and/or releasing prebiotic-like hydrolysis products in

the intestinal tract. Various studies have characterized immune

system modulation of supplemental ß-mannanase (Klasing, 2007;

Arsenault and Kogut, 2015; Arsenault et al., 2017). For example, a
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positive correlation between the concentration of blood acute

phase proteins (APP) and dietary b-mannans has been

demonstrated (Arsenault et al., 2017; Huntley et al., 2018).

Chicken-specific immunometabolism kinome array was used to

characterize jejunal cellular signaling dynamics in broiler chicken

fed diets supplemented with b-mannanase (Arsenault et al., 2017).

The authors demonstrated that ß-mannan-induced gut

inflammation was reduced by supplemental b-mannanase,

confirming anti-inflammatory and energy sparing effects of b-
mannanase. Specifically, metabolic processes such as insulin,

adipocytokine, and mTOR pathway and gut integrity indicators

such as tight junctions were modified by supplemental b-
mannanase (Arsenault et al., 2017). These observations

corroborated earlier studies that showed that mice fed

hydrolyzed guar b-mannans upregulated expression of nine

genes related to host defense functions (Yasukawa et al., 2012).

Moreover, ß-1-4-mannoligosaccharides (MOS) from coffee b-
mannans were shown to reduce interleukin-10 production

(Ozaki et al., 2007). The native locust bean galactomannan

stimulated cells to produce inflammatory cytokine tumor

necrosis factor alpha (TNF-a) and b-hexosaminidase secretion

(Chen et al., 2018b). These effects were reversed if the native locust

bean galactomannan was hydrolyzed with b-mannanase (Chen

et al., 2018b). The peculiarity is that b-mannanase hydrolysis of

intact native b-mannans results in MOS fragments that can no

longer be recognized by toll-like receptors and consequently

conserve valuable energy for growth and performance

(Anderson and Hsiao, 2006; Arsenault and Kogut, 2015;

Arsenault et al., 2017).
Gastrointestinal ecology

The gut immune system has the challenge of responding to

pathogenic and non-pathogenic antigens while remaining

relatively unresponsive to commensal microflora. Dietary fiber

components such as b-mannans are known to influence

gastrointestinal microbiota ecology. Thus, hydrolyzing fiber

fraction with fiber-degrading enzymes such as b-mannanase

can potentially release fiber fragments that can modulate

microbial ecology (Kiarie et al., 2013). In vitro studies

demonstrated that ß-mannanase released short ß-1,4-

mannoligosaccharides (ß-1-4-MOS) from the ß-mannans

backbone (McCleary, 1979; Okubo et al., 1994; Mudgil et al.,

2018; Mary et al., 2019; Yin et al., 2020; Suryawanshi and Kango,

2021). Further in vitro studies demonstrated that shorter ß-1-4-

MOS promoted lactic acid production and inhibited

enteropathogenic bacteria such as E. coli and Salmonella in

monoculture and co-culture fermentations (Okubo et al., 1994;

Mudgil et al., 2018; Mary et al., 2019). These studies suggested

that ß-mannans hydrolysis products were preferentially utilized

by microorganisms associated with good gut health such as

Bifidobacteria and Lactobacilli.
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The cell surface molecule structure of most enteric pathogens

is critical in the colonization and infection through the host

docking sites lining the intestinal mucosa (Giron et al., 2002).

For example, D-mannose sugar has been characterized for its

competitive inhibition of bacteria adhesion to cellular membranes

due to its functional similarity to bacteria type 1 fimbriae

(Mirelman et al., 1980; Corrigan et al., 2015). Incubating

common feedstuffs with xylanase, cellulases, and ß-mannanase

released a range of sugars (Kiarie, 2008). Interestingly,

mannose was one of the major sugars released from soybean

meal and wheat middlings and was shown to protect against

enterotoxigenic E. coli infection in a piglet intestinal model

(Kiarie, 2008; Kiarie et al., 2010). Although in vivo monitoring

of the production ofmannose has not been reported, they could be

linked to changes in gut microbiome observed in animals fed diets

supplemented with ß-mannanase as presented and discussed later.
Responses in poultry

Thus, the impact of ß-mannanase supplementation on energy

utilization was partly associated with reduced inflammatory

response linked to lighter lymphoid organs (thymus, spleen, and

bursa) (Li et al., 2010). The addition of ß-mannanase in corn and

soybean meal (SBM)-based diets or the removal of SBM reduced

the plasma concentration of APP, indicating a lesser immune

response (Dale et al., 2008). Studies in broiler chickens and turkeys

showed significant improvement in feed conversion concomitant

with the reduction in acute phase protein due supplemental b-
mannanase in corn–SBM diets (Anderson and Hsiao, 2006).

Upon hydrolysis by ß-mannanase, ß-mannans are no longer

recognized by the immune system, and more energy is left

available to the bird for growth, rather than being consumed by

FIIR. Enteric pathogens are of great concern to the poultry

industry due to the impact on animal and human health

through contamination of poultry products (Williams, 2005;

Timbermont et al., 2011). The bird husbandry status is an

important consideration in assessing the magnitude of response

to ß-mannanase supplementation. For example, ß-mannanase

effects might be more pronounced in birds exposed to poor

sanitary and health conditions. There are many research

investigations that have used major poultry enteric pathogens

such as Eimeria and C. perfringens models for evaluating the

efficacy of feed additive or dietary strategy (Cooper and Songer,

2010; Peek and Landman, 2011). These in vivo challenge models

permit the characterization of the responses of dietary

intervention in the context of the presence of enteric pathogens

(Kiarie et al., 2019).

The immunological benefits of b-mannanase supplementation

in broiler chicken diets were linked to reduction in intestinal

damage in necrotic enteritis challenge model (Jackson et al., 2003).

ß-Mannanase supplementation reduced the challenge severity as

further indicated by improved growth and lower intestinal lesions
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compared to control (Jackson et al., 2003). Moreover, the

performance of birds fed ß-mannanase was commensurate to

that of birds fed bacitracin methylene disalicilate and salinomycin.

The serum concentration of APP was higher in birds challenged

with Eimeria, and the addition of b-mannanase reduced serum

APP (Anderson and Hsiao, 2006). Another study showed that

supplemental b-mannanase increased serum IgM concentration in

broiler chickens linked to the proliferation of T lymphocytes (Zou

et al., 2006). ß-Mannanase improvement of growth performance

was not seen in a study that used overdose of Eimeria vaccine

(Scapini et al., 2019). However, birds fed ß-mannanase had

shallow jejunum crypt depth and as such improved their villus

to crypt ratio, indicating reduced rate of cell proliferation and thus

better intestinal health. Adding ß-mannanase to a corn and SBM

fed to broiler chickens resulted in decreased goblet cell number

and epithelial thickness and increased villus height to crypt depth

ratio in different sections of the small intestine (Mehri et al., 2010).

In another study, ß-mannanase fed broiler chickens had improved

duodenal villi height and width but increased crypt depth, reduced

jejunal and ileal crypt depth, and increased ileal villi length

(Karimi and Zhandi, 2015). This corroborated data showing that

feeding broiler chickens diets supplemented with b-mannanase-

hydrolyzed coprameal improved growth and feed efficiency linked

to improved intestinal histomorphology (Ibuki et al., 2014). These

changes in the morphological structure of the small intestine have

been linked to a reduction in immune challenge. Overall, these

studies demonstrated evidence for the efficacy of b-mannanase

in immunomodulation.

Fiber-degrading enzymes modulation of gastrointestinal

microbial ecology is related to increased digestibility of nutrients,

thus reducing the host and microbiota competition for the same

and release of prebiotic fiber hydrolysis products (Kiarie et al.,

2013). The flow of undigested feed materials in the ceca,

particularly those rich in protein fractions, is associated with

production of toxic metabolites such as thiols, amines,

ammonia, and indoles (Nyachoti et al., 2006). However,

something very critical to ceca fermentation of protein-rich

materials is the elevation of digesta pH that promotes

proliferation of pathogens such as C. perfringens (Williams,

2005; Timbermont et al., 2011). There have been considerable

efforts on pre-treating ß-1-4-mannan-rich feedstuffs such as palm

kernel meal, guar meal, and copra meal to derive ß-1-4-MOS for

feed application. Broiler chickens fed ß-1-4-MOS showed reduced

susceptibility to Salmonella enterica infection through higher IgA

and inhibition of Salmonella colonization (Agunos et al., 2007). ß-

1-4-MOS derived from the hydrolyses of ß-mannan-rich guar,

palm kernel, and copra meal inhibited intestinal colonization of

Salmonella in broiler and layer chicks (Morikoshi and yokomizo,

2004). Further work demonstrated reduction in Salmonella

enteritidis colonization in hens fed corn–SBM plus guar meal

diet supplemented with ß-mannanase (Gutierrez et al., 2008).

Broiler chickens fed ß-mannanase-pre-treated copra meal

exhibited lower E. coli and Salmonella population in excreta
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relative to broilers fed native copra meal (Khanongnuch

et al., 2006).

It has been demonstrated that coccidiosis decreased small

intestine pH but increased ceca pH in broiler chickens (Ruff et al.,

1974). Thus, it is interesting that fiber-degrading enzymes have

been shown to increase concentration of short chain fatty acids

such as lactic, acetic, and butyric acids with concomitant

reduction in pH in in vitro and in vivo models (Kiarie et al.,

2014; Rho et al., 2020). Apajalahti et al. (2004) associated feed-

enzyme-induced reduction in coccidiosis intestinal lesion scores

in broiler chickens to production of short-chain fatty acids. Acetic

acid was demonstrated to have similar effects to Amprolium (a

coccidiostat) in reducing negative effects of coccidiosis in broiler

chicken growth (Abbas et al., 2011). Such observations suggested

that feed enzymes can influence survivability of Eimeria or limit

intestinal damage. An attempt was made to investigate the impact

of b-mannanase on the gut health and function of broiler chickens

challenged with excess coccidiosis vaccine (Bortoluzzi et al., 2019).

The data demonstrated that b-mannanase supplementation

impacted intestinal microbiota. Specifically, b-mannanase

increased abundance of gut-health-associated microbiota (e.g.,

Lactobacillus, Ruminococcaceae, and Akkermansia) and reduced

bacteria associated with poor feed efficiency (Bortoluzzi et al.,

2019). Further research showed that broiler chickens fed 0.035%

of MOS extracted from copra meal increased lactic acid bacteria

(Putri et al., 2017).

Foot pad dermatitis (FPD) is a health, quality, and welfare

issue in broiler chicken production, with significant economic

effects as chicken feet are a delicacy in many cultures (Chen et al.,

2016). The condition is indicated with dermatitis lesions on feed

plantar surfaces (Chen et al., 2016). Dietary and non-dietary

factors that stimulated higher water consumption and excretion

have been linked to incidences and severity of FPD (Swiatkiewicz

et al., 2017). Viscous non-starch polysaccharides have been linked

to FPD through wet and sticky droppings (Kaukonen et al., 2016).

As such supplementation with fiber-degrading enzymes in poultry

diets based on viscous feedstuffs such as wheat, rye, and barley has

been shown to improve litter quality (Bedford and Schulze, 1998;

Slominski, 2011; Swiatkiewicz et al., 2017). It is therefore relevant

that supplemental ß-mannanase decreased water consumption

per unit of feed consumed in broiler chickens (Daskiran et al.,

2004). In another study, ß-mannanase reduced digesta viscosity in

broiler chickens, but there was no impact on the incidence and

severity of FPD or ammonia volatilization rate (Cengız et al.,

2012). However, a commercial trial in two farms in Europe

demonstrated that b-mannanase reduced intestinal and excreta

moisture content (Grieve et al., 2016). This was associated with

flocks fed b-mannanase showing cleaner vents and footpads.

Further investigations on the role of b-mannanase on FPD

incidences in commercial broiler production applied Health

Tracking System (HTSi), a surveillance system for capturing

flock-level health and performance information (Kasab-Bachi

et al., 2017). Analyses of 44 commercial farms in Europe
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showed that b-mannanase reduced the incidence and severity of

pododermatitis (unpublished, Elanco). Incidences of pendulous

crop in turkey production is a serious welfare issue and is

indicated by stagnant liquid or semi-liquid content leading to

temporary or permanent distension (Wheeler et al., 1960). In

severe cases, fatalities may result from the rupture of crops or from

starvation (Wheeler et al., 1960). Incidences of pendulous crop

have been associated with many factors including genetics,

hatching conditions, diet, and management (Wheeler et al.,

1960; Almeida et al., 2018). However, Opoku et al. (2015) did

not find differences in incidences of pendulous crop and water

intake in turkey hens fed diets of diverse composition (wheat,

corn, pork meal, SBM, and wheat DDGs) without or with

ß-mannanase.
Responses in pigs

There are many bacterial enteric diseases that afflict pigs that

can be modulated with nutrition (Pluske et al., 2002). Moreover,

weaning is very stressful due to convergence of multiple factors

ranging from management to immature and unstable gut

physiology (Pluske, 2016). Therefore, using b-mannanase to

prevent the unnecessary energy-demanding pro-inflammatory

stimulation of innate immune system by intact b-mannans

would be beneficial to weaned pigs. The incubation of corn

DDGS with b-mannanase increased the production of butyrate

in a simulated pig gastrointestinal tract and increased jejunal

concentration of tight junction proteins and tended to reduce

mucosal malondialdehyde in piglets fed corn–SBM diet with 15%

corn DDGS (Tiwari et al., 2018). However, the authors did not

observe b-mannanase benefits on digesta viscosity, pH, small

intestine histomorphology (villi height and crypt depth), and

plasma or intestinal concentration of tumor necrosis factor-a
(Tiwari et al., 2018). b-Mannanase supplementation did not

influence diarrhea and fecal concentration of lactobacilli bacteria

in piglets but reduced fecal E. coli shedding (Balamuralikrishnan

et al., 2018). Similarly, b-mannanase reduced fecal shedding of

coliforms in growing pigs fed corn–SBM but had no effects on

fecal lactobacilli populations (Upadhaya et al., 2016). These data

are indicative that dietary b-mannanase may exert effects at gut

level by modulating oxidative stress, mucosal permeability, and

microbial ecology in younger pigs presumably mediated by b-
mannan hydrolysis products. Serum haptoglobin and interleukin-

1-alpha concentrations were decreased in nursery pigs fed corn–

SBM diet with 10% soy hulls with b-mannanase (Huntley et al.,

2018). However, the maintenance energy requirement was similar

between control and b-mannanase fed pigs (Huntley et al., 2018).

In another study, the concentrations of acute phase protein,

superoxide dismutase, and glutathione peroxidase in nursery

pigs fed corn–SBM diet was not impacted by b-mannanase

supplementation (Jang et al., 2020a). Increasing dietary b-
mannans concentration to (2.8%) by adding 10% copra meal in
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a corn–SBM diet (0.4% b-mannans) had no effect on the

concentration of serum acute phase proteins (C-reactive protein

and haptoglobin) (Huntley et al . , 2020). Likewise,

supplementation of b-mannanase had no impact on the serum

concentration of acute phase proteins. b-Mannanase

supplementation in a corn–SBM diet did not impact nursery pig

serum proinflammatory cytokines, haptoglobin, or mannose

binding lectin concentrations. However, serum haptoglobin and

IL-1a concentrations were reduced in pigs fed diets supplemented

with b-mannanase (Huntley et al., 2018). These studies indicated

that b-mannanase can reduce acute phase proteins in pigs with

the potential of preventing an energy-demanding immune

response in weaned pigs. However, more investigations are

required to unravel circumstances under which benefits are

more pronounced.

It is weight that increasing dietary fiber levels reduces

dressing weight because pigs increase gut volume and weight

to sustain critical nutrient intake (Nyachoti et al., 2004;

Agyekum et al., 2012). Heavier portal vein drained viscera are

associated with greater maintenance energy and nutrient

requirements, subsequently reducing allocation for production

(Just et al., 1983). It is therefore plausible that supplemental

fiber-degrading enzymes will have benefits on aspects of carcass

yield and pork quality. Thus, Pettey et al. (2002) demonstrated

that pigs fed diets supplemented with b-mannanase exhibited

greater fat-free lean index than pigs fed diets containing no

enzyme. However, other studies reported no benefits of b-
mannanase supplementation in growing and finishing pig diets

and had no effects on pork quality indices (dressing percentage,

backfat, lean percentage, drip loss, WHC, pH, loin area, and

marbling) (Wang et al., 2009; Yoon et al., 2010; Kim et al., 2017;

Jang et al., 2020b). Overall, it does not seem plausible that

supplemental b-mannanase has an impact on carcass quality

in pigs.
Conclusions and future perspectives

Feed cost is and will remain a decisive factor for profitable and

sustainable animal protein production. Exogenous FE are widely

accepted for managing feed costs through flexible utility of

opportunity feed ingredients and abatement of the

environmental impact of animal production. However,

emerging issues such as the restriction on the use antibiotic use

for growth promotion is stimulating new concepts in FE

application. The relation between feed enzymes and the host

responses is linked to the effects of target substrates on physiology

and the modification of these effects by FE to the extent of

substrates degradation or modification in the gastrointestinal

tract. Thus, the degradation of native dietary b-mannans by

supplemental b-mannanase blunt feed induced immune

response with implications on improved feed efficiency. The

release of mannans hydrolysis products enhanced gut health, as
Frontiers in Animal Science 06
indicated by the reduction in pathogenic bacteria and increased

production of short-chain fatty acids. The recognition that FE

such as b-mannanase modulate inflammation and gut microbiota

will stimulate development of FE capable of benefitting animal

health under specific production conditions. However, more

research is needed to further elucidate and refine host–microbial

ecology–feed b-mannans interactions. For example, there are

many published studies that investigated the effects of yeast cell

mannans hydrolysis products on poultry and swine performance

and health. However, unlike plant ß-1-4-mannans, yeast mannans

are characterized with a-1-6-linked mannose chain and side

chains of varied features. It is plausible that there could be

efficacy variations between plant and yeast hydrolysis products

that warrant further studies. Furthermore, differences may be

apparent between feedstuffs; for example, ß-1-4-MOS produced

from SBMmay be quite different from those produced from copra

and guar meals.
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