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Bacterial communities play major roles in rumen and uterine function toward optimal
animal performance and may be affected by changes occurring during heifer development
such as nutritional supplementation for optimal growth and the attainment of puberty. The
effect of different levels of protein supplementation on ruminal and uterine bacterial
communities following weaning was examined through first breeding of heifers. Angus
heifers (n = 39) were blocked by initial body weight (BW) and randomly assigned to one of
three 163-day (d) crude protein (CP) supplementation diets including control (10% CP, n =
14), 20% CP (n = 11), or 40% CP (n = 14) treatment groups. Growth and development
were monitored by body weight, with blood progesterone concentration determined every
14 d to determine pubertal status. Uterine flush and rumen fluid were collected on d 56,
112, and 163 relative to the start of supplementation. Bacterial DNA was extracted from
fluid samples, the V1–V3 hypervariable region of the 16S rRNA gene was amplified, and
amplicons were sequenced then processed in R 4.1. Statistical analyses were performed
in SAS 9.4 with a GLIMMIX procedure utilizing fixed effects of protein, month, pubertal
status, and interactions, with random effects including BW, interaction of BW and protein,
and heifer within the interaction, and repeated measures of day. In the uterus, pubertal
status and day of supplementation affected the observed amplicon sequence variants
(ASVs) and led to clustering of samples in a principal coordinate analysis (PCoA; P < 0.05),
but no effect of protein supplementation was observed. Ruminal samples clustered in
PCoA (P = 0.001), and observed ASVs were impacted over time (P < 0.0001), but no
effect of protein supplementation was detected. In contrast, protein supplementation,
pubertal status, and day of supplementation affected the abundance of multiple phyla and
genera in the uterus and rumen (P < 0.05). Temporal and pubertal status effects on the
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heifer’s uterine bacterial communities potentially indicate a maturing uterine microbiome.
Protein supplementation did not impact microbial diversity measures but did affect the
abundance of individual bacterial phyla and genera that may provide future opportunities
to manipulate bacterial community composition and maximize productivity.
Keywords: bacteria, beef heifer, development, nutrition, protein, rumen, uterus
INTRODUCTION

The development of replacement heifers is crucial for their
incorporation into a breeding cow herd. The nutrition
provided to heifers during the time of development can
affect reproductive efficiency as it influences age at puberty,
future success as a breeding cow, and longevity in the herd
(Bellows and Short, 1971). Therefore, to support future
reproductive performance, it is crucial to provide the
required nutrition to meet the demands of the growing
heifer. Heifers should ideally reach puberty early, attain
approximately 60% of their mature body weight by the first
breeding, and achieve a successful pregnancy with as few
inseminations as possible to calve by 2 years of age (Larson,
2007; Kuehn et al., 2011; Perry, 2016). Weaned heifers are
often developed during a time of dormant forages with
lower quality in operations that employ defined breeding
seasons. Protein is one of the most vital nutrients for
development and reproduction but is often the first
limiting nutrient in dormant forages (Marston et al.,
1995). Previous studies have shown that supplementing
heifers with protein increases their breeding success,
muscle growth, and weight gain (Lalman et al., 1993;
Martin et al., 2007; Dickinson et al., 2019). Therefore,
supplemental feeds high in crude protein are often
provided to heifers for continued growth and development
for future reproductive success.

The rumen microbiome has been well established as the
major producer of energy for the ruminant through the
conversions of indigestible feed stuffs to provide volatile
fatty acids (VFA), amino acids, metabolites, vitamins, and
other useful nutrients (Bergman, 1990). Ruminal bacterial
communities can be affected by different feedstuffs that vary
in amount and quality of protein, and other components such
as fiber and starches (Belanche et al., 2012). Shifts in the
rumen bacterial community composition may alter the
nutrients metabolized and absorbed for use by the
ruminant, which has been shown to have effects systemically
and in the reproductive tract through immune system
responses (Zebeli et al., 2012; Bilal et al., 2016). Providing
supplemented protein in excess has been shown to potentially
impact the pH of the reproductive tract by increased plasma
urea and ammonia reaching the uterus through histotrophic
secretions of the endometrium (Elrod and Butler, 1993;
Dawuda et al., 2002). Histotroph contains a variety of
nutrients and other factors that contribute to overall uterine
health and embryo development (Bazer et al., 2015).
Therefore, differences in the nutrient profiles of variable
in.org 2
feedstuffs, which impact the rumen microbial communities,
could impact future reproductive success by altering the
composition of endometrial secretions and the uterine
environment via nutrient transporters.

The uterine microbiome of ruminants has been recently
determined to be an important contributor to the uterine
environment. The reproductive tract was originally thought to
be essentially sterile, with the presence of bacteria indicating
infection. The emergence of next-generation sequencing has
provided the opportunity to recognize the reproductive tract
as harboring its own distinct microbiome (Swartz et al., 2014;
Laguardia-Nascimento et al., 2015; Clemmons et al., 2017).
The composition of the uterine bacterial communities prior to
breeding has been associated with differences in breeding
outcomes (Ault et al., 2019a; Ault et al., 2019b). For
maintenance of healthy bacterial communities in the uterus,
the environment must be favorable for microorganisms to
perform their metabolic processes, which can benefit
reproductive success. However, there has been limited
research on the factors that can impact the composition of
the uterine bacterial community, potentially compromising
the establishment and maintenance of pregnancy. Previous
studies have suggested that excess protein and non-protein
nitrogen in the diet can result in increased circulating urea
and ammonia that can reach the uterus and decrease pH
(Elrod and Butler, 1993; Dawuda et al., 2002; Ocon and
Hansen, 2003). The observed impacts of diet on the uterine
environment in cattle suggests that nutrition may influence
the bacterial communities in the uterus. Additionally,
differences in uterine bacterial communities have been
detected between different phases of the estrous cycle and
throughout estrus synchronization protocols (Quereda et al.,
2020; Ault et al., 2019a; Ault et al., 2019b). Thus, the
physiological changes that occur through the attainment of
puberty and changes in hormone response in heifers may
affect the uterine bacterial communities present. Through
heifer development, the impact of nutrition on the uterine
environment may provide the opportunity to influence
uterine bacterial communities toward optimal reproductive
health and efficiency.

The objective of the current study was to evaluate the effects of
different levels of protein supplement on ruminal and uterine
bacterial communities following weaning (pre-pubertal) through
the first breeding (pubertal) of beef heifers. We hypothesized that
1) protein supplementation will affect developing heifer’s ruminal
and uterine bacterial communities during development, and 2)
bacterial communities will differ between prepubertal and
pubertal heifers.
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MATERIALS AND METHODS

All animal experimental procedures for the current study were
approved by the Institutional Animal Care and Use Committee
at the University of Tennessee, Knoxville.

Experimental Design
Commercial Angus heifers (n = 60) housed at the Middle
Tennessee Research and Education Center were enrolled in
the study 23 days (d) following weaning. Figure 1 depicts the
fol lowing study timeline with sampling and estrus
synchronization days. On d 0, heifers were evaluated for
baseline measurements including body weight (BW), body
condition scores (BCS), and blood samples via the jugular vein
for determination of pubertal status. Heifers were blocked by
BW and assigned to a treatment group (n = 20 heifers per
treatment): control supplement (CON; 1.59 kg corn per day),
20% crude protein (CP) supplement (P20; 1.59 kg per day:
75% dried distillers’ grains 25% corn), or 40% CP supplement
(P40; 1.59 kg per day: 75% soybean meal 25% dried distillers’
grains). Heifers were maintained in 1.21-hectare pens with
five heifers per pen resulting in four pens per treatment group.
Supplements were provided four times each week for 140 d,
beginning in early October through late March. Body weight,
BCS, and blood samples were collected once every 2 weeks to
monitor development and pubertal onset. Blood samples were
centrifuged at 5,000 × g and 4°C for 20 min to collect serum.
Serum samples were stored at -80°C until further analysis.
Circulating progesterone (P4) samples were quantified in
serum using the Double Antibody RIA Kit (MP Biomedicals,
Irvine, CA) validated previously by Pohler et al. (2016). The
progesterone concentration of ≥1 ng/ml in two consecutive
samplings that corresponded with a normal estrous cycle
indicated a functional corpus luteum, representing puberty
(Polat et al., 2009). The heifer was considered pubertal at the
time of the second sample of ≥1 ng/ml P4. Serum P4
concentrations at puberty, age at puberty, BW, and BCS for
Frontiers in Animal Science | www.frontiersin.org 3
all heifers throughout development, with supplement and
total diet feed analyses, were reported in Brandt (2020).
Cytokine concentrations of the uterine flush leading up to
breeding for all heifers were reported in Ault-Seay
et al. (2021).

Only prepubertal heifers (n = 39) were selected to continue
through the remainder of the study based on serum P4
concentrations from the four blood collections between d 0
through 42 (Figure 1), resulting in 14 heifers from the CON
and P40 treatment groups and 11 heifers from the P20 treatment
group. Uterine flushes and rumen fluid were collected every
other month on d 56, 112, and 163, relative to the start of protein
supplementation, to evaluate the bacterial communities present.
For uterine flushes, a Foley catheter was inserted through the
vagina and cervix into the uterus to deliver 20 ml of sterile saline,
manipulated throughout the uterus by rectal massage, then
collected by syringe (Clemmons et al., 2017). Rumen fluid (~50
ml) was collected by oroesophageal tubing into the rumen
attached to a hand pump with resulting fluid collected into a
flask (Guan et al., 2008). Foley catheters and oroesophageal
tubing were disinfected and washed between each heifer to
eliminate contamination. Uterine flush and rumen fluid were
immediately placed on ice for transport then stored at -80°C
until bacterial community analysis.

Prior to the final uterine flush and rumen fluid collections on
d 163, heifers were subjected to estrus synchronization utilizing
an industry standard 7-Day Co-Synch + CIDR protocol
beginning on d 140. Controlled intravaginal drug release
devices (CIDR; 1.38 g P4; Zoetis Animal Health, Florham Park,
NJ) were inserted, and gonadotropin-releasing hormone (100 µg;
Cystorelin, Boehringer Ingelheim, Duluth, GA) was
administered i.m. on d 140. An injection of prostaglandin F2a
(500 µg; cloprostenol sodium; Synchsure, Boehringer Ingelheim,
Duluth, GA) was administered i.m. at CIDR removal on d 147.
Approximately 52 h after CIDR removal, heifers were
administered GnRH, followed by artificial insemination on
d 149.
FIGURE 1 | Timeline of experiment beginning at weaning of all heifers until 2 weeks after breeding. Red tubes indicate blood samples every 14 days. Blue tubes
represent uterine flush and rumen fluid collection every 56 days. BW, body weight; CON, control 10% crude protein supplement; P20, 20% crude protein
supplement; P40, 40% crude protein supplement; TAI, timed artificial insemination.
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Bacterial DNA Extraction, Library
Preparation, and Sequencing
Uterine flush bacterial DNA extraction was performed
according to methods from Clemmons et al. (2017) and
recommendations for low-biomass samples (Weinroth et al.,
2022). Samples were thawed to room temperature (22°C), and
5-ml aliquots were placed in 15-ml conical tubes for
centrifugation at 5,000 × g and 4°C for 10 min. The
supernatant was removed, and the resulting pellet was
resuspended in enzymatic lysis buffer (4% (w/v) sodium
dodecyl sulfate (SDS), 500 mM NaCl, and 50 mM EDTA) for
incubation at 37°C. Bacterial DNA was extracted using the
DNEasy Blood and Tissue kit (Qiagen, Hilden, Germany)
according to manufacturer protocol. Extracted DNA
concentrations were determined using a spectrophotometer
(DeNovix, Wilmington, DE, USA) then stored at -20°C.

Bacterial DNA was extracted from rumen fluid using a
modified method validated by Yu and Morrison (2004).
Samples were thawed to room temperature (22°C), and
approximately 0.2 g of rumen fluid was transferred to a ZR
BashingBead Lysis Tube (Zymo Research Corp., Santa Ana, CA,
USA) with lysis buffer for chemical lysis. Samples were placed in
the TissueLyser II system (Qiagen, Hilden, Germany) for
mechanical lysis at 21 Hz for 3 min. Cell debris was removed
using 10 M ammonium acetate, then nucleic acids were
precipitated using isopropanol. Proteinase K and RNase were
used to remove all proteins and RNA. Lastly, DNA samples were
purified by centrifugation in QIAmp columns from the QIAamp
DNA Stool Mini Kit (Qiagen, Hilden, Germany). Resulting DNA
concentrations were quantified via using a spectrophotometer
(DeNovix, Wilmington, Delaware) then stored at -20°C.

Library preparation and sequencing were performed at the
US Meat Animal Research Center (Clay Center, NE, USA).
Bacterial DNA was amplified using polymerase chain reaction
(PCR) with AccuPrime Taq high-fidelity DNA polymerase (Life
Technologies, Carlsbad, CA, USA) for library preparation.
Primers 27F (5′-Adapter/Index/AGAGTTTGATCCTGGC
TCAG) and 519R (5′-Adapter/Index/GTATTACCGCGGCT
GCTG) with TruSeq indices were used to target the V1–V3
hypervariable region of the bacterial 16S rRNA gene (Myer et al.,
2015). The resulting rumen and uterine bacterial DNA libraries
were sequenced using the 2 × 300, v3 600-cycle kit on the
Illumina MiSeq platform (Illumina, Inc., San Diego, CA, USA).

Sequence Processing and Statistical
Analyses
Sequence quality fi ltering, trimming, and taxonomic
assignment were performed in R 4.1 using the dada2
pipeline (Callahan et al., 2016). Forward sequences were
filtered with standard dada2 parameters and a truncation
length of 270. Resulting sequences were used to construct an
amplicon sequence variant (ASV) table. Chimeric sequences
were identified and removed, then taxa were assigned using
the SILVA database version 138 (Quast et al., 2013). Metadata
were imported and merged with the taxa table for alpha and
beta diversity analyses using the phyloseq package (McMurdie
Frontiers in Animal Science | www.frontiersin.org 4
and Holmes, 2013) in R 4.1. Unassigned reads were classified
to their last known taxonomic classification, and sequences
assigned as Eukaryota or Cyanobacteria were removed for all
downstream analyses. Alpha diversity indices were calculated
for observed species by observed ASVs, and richness and
evenness using the Shannon Diversity Index. Beta diversity
analyses utilized the principle coordinate analysis (PCoA)
method with Bray Curtis distances. Visualizations were
generated with ggplot2 including ellipses representing a 95%
confidence interval for each cluster. Relative abundance plots
were generated for taxa using ggplot2 for the top 10 phyla and
genera with a relative abundance ≥1%. Genera with a relative
abundance <1% were combined to one group for visualization.

For beta diversity, the vegan package (Oksanen et al., 2017)
with the adonis function in R 4.1 was used to perform a
PERMANOVA with 999 permutations to determine the
significance of each PCoA. Statistical analyses to determine
differences in alpha diversity indices and bacterial taxa
abundances were performed in SAS 9.4 (SAS Institute, Cary,
NC, USA). Normality of observed ASVs and bacterial taxa raw
abundance values were evaluated by the univariate procedure.
Data were determined to be non-normal with a Shapiro–Wilk
value of W < 0.80. Non-normal data were normalized by log
transformation to achieve a normal distribution and Shapiro–
Wilk value of W > 0.85. A completely randomized block design
with repeated measures was utilized with the GLIMMIX
procedure including fixed effects of day of sampling, protein
supplementation treatment, and pubertal status, and interactions
of day × protein and protein × pubertal status. Random effects
included the block of BW, interaction of BW × protein, and
heifer within the interaction, with repeated measures of day. For
bacterial taxa abundance data, means are reported as the mean
raw abundance value × 100 to indicate percent relative
abundance out of 100%. Significance was determined by P ≤
0.05 and trends by 0.05 ≤ P ≤ 0.10 for all analyses.
RESULTS

Cluster analysis of 16S rRNA amplicon sequences by PCoA
among all samples indicated distinct separation in beta diversity
of microbial communities between the uterus and rumen (R2 =
0.13, P = 0.001, Figure 2). Rumen samples clustered tightly
indicating a high degree of similarity of bacterial community
composition among all rumen samples. Uterine samples
clustered loosely indicating higher dissimilarity of microbial
communities among uterine samples (Figure 2). A total of 39
phyla and 1,633 genera were detected among all uterine and
ruminal samples. Supplementary Figure 1 illustrates the overall
relative abundance of the top 10 phyla detected among all
samples between the uterus and rumen. Firmicutes and
Bacteroidota were the most abundant phyla in the uterus and
rumen, respectively, independent of protein supplementation
treatment, pubertal status, or day of sampling. Supplementary
Figure 2 depicts genera with a relative abundance ≥1% in the
uterus and rumen, with all genera present in <1% grouped.
July 2022 | Volume 3 | Article 903909
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Twenty-three genera in the uterus and 25 genera in the rumen
were detected with relative abundances ≥1%. The total average
relative abundance of genera with <1% abundance was 30.27% in
the uterus, and 20.01% in the rumen. Prevotella was the most
abundant genus in both uterine and ruminal samples across
all groups.

Protein Supplementation Level
The level of protein supplementation did not affect alpha
diversity metrics, observed ASVs, or Shannon’s Diversity
Index, in the uterus or rumen (Table 1). Similarly, no clear
clustering pattern by protein supplementation level was observed
by the beta diversity PCoA in uterine (R2 = 0.02, P = 0.06,
Figure 3A) or ruminal (R2 = 0.02, P < 0.01, Figure 3B) samples,
despite calculated significance in the rumen. However, multiple
phylum and genus relative abundances were affected in both the
uterus and rumen by protein supplementation level.
Frontiers in Animal Science | www.frontiersin.org 5
In the uterus, Firmicutes was the most abundant phyla and
was affected by protein treatment, with P20 having the greatest
and P40 having the least abundance (P = 0.05, Table 2).
Fibrobacterota and Proteobacteria abundances were affected by
protein supplementation (P ≤ 0.01) and tended to affect the
abundance of Chloroflexi (P = 0.09; Table 2). In the rumen,
Bacteroidota abundance increased with increasing crude protein
as P40 heifers had the greatest abundance, and control heifers
with the least (P = 0.02; Table 2). Actinobacteriota abundance in
the rumen was also affected by protein supplementation, with
P20 heifers having the greatest abundance (P = 0.02; Table 2).
Additionally, Firmicutes, Proteobacteria, and Spirochaetota
abundances tended to be affected by protein supplementation
(P < 0.10; Table 2).

Relative abundances of genera Alistipes, Bacteroides,
Fibrobacter, Prevotella, UCG-005, and unclassified genera from
Family Bacteroidales BS11 and Family Lachnospiraceae were
FIGURE 2 | Beta diversity by principal coordinate analysis with Bray Curtis distances between all uterine and rumen samples (R2 = 0.13, P = 0.001). Significance
was determined by PERMANOVA with 999 permutations. Ellipses represent 95% confidence interval.
TABLE 1 | Impact of protein supplement, pubertal status, and day of supplementation on alpha diversity metrics observed ASVs and Shannon’s Diversity Index in the
uterus and rumen1,2.

Fixed effect Uterus Rumen

Observed ASVs Shannon’s Observed ASVs Shannon’s

Protein supplement CON 6584 ± 373 7.28 ± 0.24 2682 ± 95 7.13 ± 0.04
P20 5921 ± 394 7.16 ± 0.26 2684 ± 100 7.09 ± 0.05
P40 6263 ± 353 7.00 ± 0.23 2690 ± 89 7.12 ± 0.04
P value 0.48 0.69 0.99 0.81

Pubertal status Pre-pubertal 5499 ± 341 b 6.75 ± 0.23 2709 ± 86 7.13 ± 0.04
Pubertal 7013 ± 449 a 7.54 ± 0.30 2662 ± 111 7.10 ± 0.05
P value 0.03 0.08 0.78 0.65

Day of supplementation 56 4738 ± 490 b 7.10 ± 0.34 2161 ± 117 b 6.88 ± 0.05 b

112 7178 ± 381 a 7.03 ± 0.26 3367 ± 92 a 7.30 ± 0.04 a

163 6852 ± 455 a 7.31 ± 0.31 2529 ± 108 b 7.17 ± 0.05 a

P value 0.002 0.81 < 0.0001 <0.0001
July 2022 | Volume 3 | A
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affected by protein supplementation in the uterus (P < 0.05;
Table 2). The most abundant uterine genus, Prevotella, had the
greatest abundance in the P40 supplement group, with lesser,
similar abundances in the CON and P20 groups (P = 0.02;
Table 2). Similarly in the rumen, Prevotella was the most
abundant genus and increased in abundance with increasing
crude protein level of the supplement (P = 0.05; Table 2). The
protein supplementation level also affected relative abundances
of the unclassified genera from Family Lachnospiraceae and
Frontiers in Animal Science | www.frontiersin.org 6
Family UCG-010 (P ≤ 0.01) in the rumen and tended to affect
UCG-004 (P = 0.10; Table 2).

Pubertal Status
In the uterus, observed ASVs and Shannon’s Diversity Index
were affected by pubertal status. Pubertal heifers had a greater
number of observed ASVs (P = 0.03) and tended to have a higher
Shannon Diversity Index value (P = 0.08), than prepubertal
heifers (Table 1). Clustering was observed in the PCoA by
A B

FIGURE 3 | Beta diversity by principal coordinate analysis with Bray Curtis distances for protein supplementation treatment in the uterus (A; R2 = 0.02, P = 0.06)
and rumen (B; R2 = 0.02, P = 0.008). Significance was determined by PERMANOVA with 999 permutations. Ellipses represent 95% confidence interval. CON,
control, 10% crude protein supplement; P20, 20% crude protein supplement; P40, 40% crude protein supplement.
TABLE 2 | Bacterial phyla and genera with relative abundance ≥1% in the uterus and rumen impacted by protein supplementation treatment.

Environment Taxonomy Protein supplementation treatment1 P

Phyla CON P20 P40

Uterine Chloroflexi 0.12 ± 0.01 0.122 ± 0.01 0.09 ± 0.01 0.09
Fibrobacterota 1.40 ± 0.13 b 1.44 ± 0.14 b 1.92 ± 0.12 a 0.008
Firmicutes 48.92 ± 2.88 ab 52.72 ± 2.88 a 45.35 ± 2.61 b 0.05
Proteobacteria 3.20 ± 0.59 ab 2.53 ± 0.62 b 4.99 ± 0.56 a 0.01

Genera CON P20 P40 P
Alistipes 1.36 ± 0.23 a 1.27 ± 0.25 a 0.74 ± 0.22 b 0.04
Bacteroides 1.51 ± 0.22 a 1.31 ± 0.23 a 0.70 ± 0.21 b 0.006
Family Bacteroidales BS11 gut group 1.04 ± 0.10 ab 0.88 ± 0.11 b 1.21 ± 0.10 a 0.03
Family Lachnospiraceae 5.12 ± 0.38 a 4.19 ± 0.40 a 3.22 ± 0.36 b <0.001
Fibrobacter 1.39 ± 0.13 b 1.43 ± 0.14 b 1.91 ± 0.19 a 0.008
Prevotella 12.08 ± 1.22 b 11.06 ± 1.30 b 15.09 ± 1.18 a 0.02
UCG-005 4.89 ± 0.61 a 4.45 ± 0.64 a 2.29 ± 0.58 b 0.006

Rumen Phyla CON P20 P40 P
Actinobacteriota 0.07 ± 0.01 b 0.10 ± 0.01 a 0.07 ± 0.01 b 0.02
Bacteroidota 64.26 ± 0.77 b 65.60 ± 0.82 ab 67.39 ± 0.74 a 0.02
Firmicutes 28.11 ± 0.77 27.32 ± 0.82 25.65 ± 0.74 0.07
Proteobacteria 1.89 ± 0.14 1.46 ± 0.15 1.52 ± 0.14 0.06
Spirochaetota 0.52 ± 0.03 0.44 ± 0.03 0.41 ± 0.03 0.07

Genera CON P20 P40 P
Family Lachnospiraceae 2.43 ± 0.08 a 2.01 ± 0.08 b 1.99 ± 0.08 b <0.001
Family UCG-010 0.97 ± 0.04 b 1.15 ± 0.04 a 1.00 ± 0.04 b 0.01
Prevotella 28.03 ± 1.18 b 29.38 ± 1.26 ab 31.95 ± 1.14 a 0.05
UCG-004 1.36 ± 0.13 1.29 ± 0.14 0.95 ± 0.13 0.1
July 2022 | Volume 3 | Article
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pubertal status in uterine samples (R2 = 0.03, P = 0.001),
depicting high variation in prepubertal heifers and tighter
clustering of pubertal heifers (Figure 4A). However, pubertal
status did not impact rumen alpha diversity metrics or beta
diversity PCoA clustering (R2 = 0.02, P > 0.05; Figure 4B).

Pubertal status affected the abundance of the most abundant
uterine bacterial phyla, Firmicutes, with prepubertal heifers having
the greatest abundance compared to pubertal heifers (P = 0.04
Table 3). The abundance of Firmicutes was less in pubertal heifers,
although multiple phyla were greater or tended to be greater in
pubertal heifers including Bacteroidota (P = 0.06), Elusimicrobiota
(P = 0.05), Proteobacteria (P = 0.04), and Verrucomicrobiota (P =
0.07; Table 3). In the rumen, pubertal status did not affect the
abundance of Bacteroidota, but did affect Actinobacteria,
Firmicutes, and Proteobacteria (P < 0.05; Table 3). Similar to the
uterus, Firmicutes was also decreased in the rumen, while
Frontiers in Animal Science | www.frontiersin.org 7
Proteobacteria was increased in pubertal heifers compared to
prepubertal heifers (Table 3).

The relative abundance of unclassified genera from Family F082
(P = 0.04) was affected in the uterus by pubertal status and tended to
affect Prevotellaceae-UCG001, Ureaplasma, and unclassified genera
from Family Bacteroidales BS11 and Family Prevotellaceae (P <
0.10; Table 3). All of these genera had a greater relative abundance
in pubertal heifers, except Ureaplasma (Table 3). Puberty affected
the ruminal relative abundance of NK4A214 and Succiniclasticum,
which were greater in prepubertal heifers and unclassified genera
from Order Rhodospirillales which was greater in pubertal heifers
(P < 0.05; Table 3).

Day of Supplementation
Observed ASVs in the uterus were affected by day of
supplementation. The least number of observed ASVs was
A B

FIGURE 4 | Beta diversity by principal coordinate analysis with Bray Curtis distances for pubertal status in the uterus (A; R2 = 0.03, P = 0.001) and rumen (B; R2 =
0.02, P = 0.01). Significance was determined by PERMANOVA with 999 permutations. Ellipses represent 95% confidence interval.
TABLE 3 | Bacterial phyla and genera with relative abundance ≥1% in the uterus and rumen impacted by pubertal status.

Environment Taxonomy Pubertal status1 P

Phyla Prepubertal Pubertal

Uterus Bacteroidota 37.19 ± 2.19 43.13 ± 2.66 0.06
Elusimicrobiota 0.10 ± 0.01 b 0.14 ± 0.01 a 0.05
Firmicutes 53.85 ± 2.53 a 44.15 ± 3.21 b 0.04
Proteobacteria 2.51 ± 0.54 b 4.64 ± 0.72 a 0.04
Verrucomicrobiota 0.77 ± 0.06 0.98 ± 0.07 0.07

Genera Prepubertal Pubertal P
Family Bacteroidales BS11 gut group 0.90 ± 0.10 1.18 ± 0.11 0.07
Family F082 4.45 ± 0.39 b 5.90 ± 0.49 a 0.04
Family Prevotellaceae 1.35 ± 0.12 1.75 ± 0.15 0.08
Prevotellaceae UCG-001 1.48 ± 0.13 1.85 ± 0.16 0.09
Ureaplasma 13.78 ± 3.19 4.46 ± 4.25 0.07

Rumen Phyla Prepubertal Pubertal P
Actinobacteriota 0.09 ± 0.01 a 0.07 ± 0.01 b 0.03
Firmicutes 28.90 ± 0.73 a 25.15 ± 0.97 b 0.01
Proteobacteria 1.33 ± 0.13 b 1.91 ± 0.17 a 0.02

Genera Prepubertal Pubertal P
NK4A214 group 1.04 ± 0.06 a 0.83 ± 0.07 b 0.03
Order Rhodospirillales 0.98 ± 0.10 b 1.53 ± 0.13 a 0.006
Succiniclasticum 1.04 ± 0.07 a 0.76 ± 0.08 b 0.007
July 2022 | Volume 3 | Article 9
1 Relative abundances presented as mean (%) ± SEM.
ab means within row different at indicated P.
03909

https://www.frontiersin.org/journals/animal-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/animal-science#articles


Ault-Seay et al. Heifer Uterine and Ruminal Bacteria
detected on d 56 then significantly increased to the greatest
observed ASVs by d 112 and remained similar on d 163 (P <
0.001; Table 1). The Shannon Diversity Index followed a similar
trend but was not significant (Table 1). Ruminal observed ASVs
and Shannon’s Diversity were affected by day, with the greatest
number detected on d 112 and less observed ASVs on d 56 and d
163 (P < 0.0001; Table 1).

Beta diversity analysis by PCoA indicated uterine samples
clustered by day with overlap (R2 = 0.10, P = 0.001, Figure 5A).
Samples on d 56 had the greatest variation overlapping with d
112 and 163 uterine samples. However, d 112 and 163 samples
clustered tightly and depicted the greatest separation between
days, with slight overlap (Figure 5A). Rumen samples had
similar PCoA clustering by day as the uterus by day with
overlap (R2 = 0.08, P = 0.001, Figure 5B). The greatest
separation was observed between d 56 and 112 indicating the
greatest difference in overall community composition.

In the uterus, day of supplementation tended to affect the
abundance of Firmicutes (P = 0.09, Table 4). Multiple additional
phyla also shifted over time including Actinobacteriota, Chloroflexi,
and Patescibacteria (P < 0.05; Table 4), with a tendency for
Fibrobacterota (P = 0.07). All top 10 phyla detected in the rumen
were affected by the day of sampling (P ≤ 0.05; Table 4), except
Fibrobacterota. The most abundant phyla in the rumen,
Bacteroidota, had the greatest abundance on d 56, with lesser,
similar abundances on d 112 and 163 (P < 0.0001; Table 4). The
majority of genera in the rumen and uterus had shifts in their
abundance over time; therefore, Table 5 indicates the top 5 most
abundant genera that shifted over time in each environment, with
all other affected genera listed in Supplementary Table 1. There
were 23 genera detected in the uterus with a relative abundance
≥1%, of which 16 shifted over time (P ≤ 0.10). All rumen genera
detected with relative abundance ≥1% shifted over time (P ≤ 0.10),
except for unclassified genera from Family Prevotellaceae.

Interactions of Protein Supplementation,
Day of Supplementation, and
Pubertal Status
The triple interaction of protein supplementation level, day of
supplementation, and pubertal status, and the interaction of
Frontiers in Animal Science | www.frontiersin.org 8
day of supplementation × pubertal status, was not able to be
analyzed in the current study due to all heifers being
prepubertal at the first sampling on d 56. Alpha diversity
metrics in the uterus and rumen had no significant interaction
of protein supplementation level × day of supplementation, or
for any of the top 10 uterine bacterial phyla relative
abundances. For uterine genera, however, a protein
supplementation × day interaction was observed for UCG-
005 (P = 0.04) and unclassified genera from Family
Lachnospiraceae (P < 0.01). In the rumen, a supplement ×
day interaction was detected for phyla Bacteroidota (P = 0.01),
Firmicutes (P = 0.02), and Spirochaetota (P = 0.04), and
tendencies for Actinobacteria (P = 0.10) and Chloroflexi (P
= 0.09). Ruminal genera Prevotella, UCG-004, and unclassified
genera from Family Lachnospiraceae (P ≤ 0.05) were affected
by the interaction. Neither alpha diversity metrics nor relative
abundance of genera showed significant effects for the
interaction of protein supplementation level × pubertal
status in the rumen or uterus. The only significant
interaction detected was the phyla Actinobacteria in the
rumen (P = 0.03).
DISCUSSION

Ruminal and uterine bacterial communities have been
established as playing important roles in feed efficiency and
breeding outcome success, respectively (Myer et al., 2015; Ault
et al., 2019a). Therefore, bacterial communities of these
environments may be affected during heifer development
and potentially influence the long-term productivity of the
heifer. Physiological changes associated with attainment of
puberty, and nutritional supplementation commonly applied
to support heifer growth and development, may influence the
composition and effects of these microbial communities. The
first objective of the current study was to evaluate the impact
of differing levels of supplemented crude protein throughout
heifer development on ruminal and uterine bacterial
communities. Ruminal bacterial communities are well
known to shift with changes in dietary feedstuffs or nutrient
A B

FIGURE 5 | Beta diversity by principal coordinate analysis with Bray Curtis distances for day of supplementation in the uterus (A; R2 = 0.10, P = 0.001) and rumen
(B; R2 = 0.08, P = 0.001). Significance was determined by PERMANOVA with 999 permutations. Ellipses represent 95% confidence interval.
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composition (McCann et al., 2014; Clemmons et al., 2019a;
Gruninger et al., 2019). As expected, we observed that ruminal
bacterial communities were affected as a result of differences
in protein supplementation treatment consistent with
previous studies (Table 2). Prevotella, the most abundant
genus detected in the rumen, and its respective phylum
Bacteroidota were observed to have greater abundances as
supplement crude protein level increased. Prevotella spp. are
commonly the dominant genus in the rumen, although
abundances may differ by the type of diet such as a greater
concentrate compared to fiber diet (Stevenson and Weimer,
2007; Pitta et al., 2014). Additionally, abundance of Prevotella
has been greater in heifers than mature cows (Liu et al., 2017)
and different between cattle of differing feed efficiencies
(Carberry et al., 2012; Myer et al., 2015). Prevotella spp. are
functionally diverse but are well established as major
proteolytic bacterial species in the rumen and capable of
proteolysis via a variety of mechanisms (Wallace, 1996;
Griswold et al., 1999). Multiple studies have observed a
greater abundance of Prevotella spp. in diets with greater
Frontiers in Animal Science | www.frontiersin.org 9
crude protein content (Belanche et al., 2012; Pitta et al.,
2014), as observed in the current study. Due to the high
proteolytic activity of Prevotella, increases in its abundance
potentially impact nitrogen utilization and amino acids
reaching the lower gastrointestinal tract for absorption and
use by the host (Bach et al., 2005). However, additional data
from the current study did not observe changes in uterine pH
based on protein supplementation treatment, and only two
amino acid concentrations in the uterine luminal fluid were
impacted (Brandt, 2020).

Potential impacts of nutrition on uterine bacterial
communities in bovine have not been previously studied. The
current study applied a common base diet across all heifer
groups with only crude protein level of the supplement
modified. With the protein supplement, overall diet crude
proteins were 11%, 15%, and 19% among groups. Regardless,
the relative abundance of multiple bacterial phyla and genera
was affected in the uterus by the level of crude protein
supplement (Table 2). Firmicutes was the most abundant
bacterial phylum detected in the uterus, but Prevotella was
TABLE 4 | Bacterial phyla in the uterus and rumen impacted by day of supplementation.

Environment Phyla Day of supplementation1 P

56 112 163

Uterus Actinobacteriota 3.27 ± 0.35 a 2.37 ± 0.28 b 1.38 ± 0.33 c 0.004
Chloroflexi 0.12 ± 0.01 ab 0.13 ± 0.01 a 0.09 ± 0.01 b 0.04
Fibrobacterota 1.43 ± 0.18 1.85 ± 0.14 1.49 ± 0.17 0.07
Firmicutes 47.07 ± 3.61 45.81 ± 2.82 54.11 ± 0.03 0.09
Patescibacteria 1.04 ± 0.13 b 1.74 ± 0.10 a 1.23 ± 0.12 b <0.0001

Rumen Actinobacteriota 0.05 ± 0.01 b 0.10 ± 0.01 a 0.10 ± 0.01 a <0.0001
Bacteroidota 72.51 ± 1.18 a 61.22 ± 0.88 b 63.52 ± 1.10 b <0.0001
Chloroflexi 0.06 ± 0.01 b 0.08 ± 0.01 a 0.09 ± 0.01 a 0.01
Elusimicrobiota 0.10 ± 0.01 b 0.15 ± 0.01 a 0.09 ± 0.01 b 0.0004
Firmicutes 21.09 ± 1.15 b 30.07 ± 0.86 a 29.92 ± 1.07 a <0.0001
Patescibacteria 0.57 ± 0.11 c 1.92 ± 0.09 a 1.26 ± 0.10 b <0.0001
Proteobacteria 1.95 ± 0.19 a 2.10 ± 0.15 a 0.81 ± 0.17 b <0.0001
Spirochaetota 0.46 ± 0.03 ab 0.50 ± 0.03 a 0.41 ± 0.03 b 0.05
Verrucomicrobiota 0.98 ± 0.10 1.17 ± 0.08 0.94 ± 0.10 0.06
July 2022 | Volume 3 | Article
1Relative abundances presented as Mean (%) ± SEM.
ab means within row different at indicated P.
TABLE 5 | Top 5 most abundant bacterial genera in the uterus and rumen impacted by day of supplementation.

Environment Genera Day of supplementation1 P

56 112 163

Uterus Family F082 4.89 ± 0.55 b 6.44 ± 0.43 a 4.18 ± 0.52 b 0.001
Family Lachnospiraceae 3.78 ± 0.56 b 2.48 ± 0.42 c 6.27 ± 0.52 <0.0001
Family UCG010 2.97 ± 0.61 a 1.68 ± 0.46 b 4.35 ± 0.56 a 0.0009
UCG-005 4.25 ± 0.83 a 0.83 ± 0.64 b 6.55 ± 0.78 <0.0001
Ureaplasma 6.48 ± 4.81 14.00 ± 3.63 6.88 ± 4.45 0.07

Rumen Christensenellaceae R7 group 3.30 ± 0.24 b 4.26 ± 0.19 a 4.19 ± 0.23 a 0.004
Family Bacteroidales RF16 group 6.31 ± 0.72 a 5.25 ± 0.55 a 2.58 ± 0.67 b 0.004
Family F082 5.91 ± 0.57 ab 6.85 ± 0.47 a 5.40 ± 0.54 b 0.04
Prevotella 36.45 ± 1.75 a 22.63 ± 1.33 c 30.27 ± 1.65 b <0.0001
Rikenellaceae RC9 gut group 6.84 ± 0.50 b 10.55 ± 0.38 a 8.38 ± 0.46 b <0.0001
1 Relative abundances presented as mean (%) ± SEM.
ab means within row different at indicated P.
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the most abundant genus and increased in abundance with
increasing supplemented crude protein, similar to ruminal
Prevotella. The relative abundance of Prevotella spp. in the
uterus of healthy cows has been previously observed to range
between <2% and 12% on average (Clemmons et al., 2017; Ault
et al., 2019a). Interestingly, increased Prevotella spp. in the
uterus is typically associated with uterine disease in postpartum
cows (Sheldon et al., 2009; Galvão et al., 2019) and was one of
eight bacteria that differed in abundance between successful
(<1% abundance) and failed (>1% abundance) pregnancies in
apparently healthy postpartum cows (Ault et al., 2019a),
indicating potential to influence breeding success. However,
limited research exists on the uterine microbiome of heifers
between weaning and breeding. The presence of Prevotella, and
other uterine disease-associated bacteria, have been found on
endometrial biopsies from the uterus of virgin, pubertal heifers
(Moore et al., 2017). The current study also found common
uterine pathogen Ureaplasma to also be highly abundant in the
uterus of heifers, but relative abundance was not affected by
protein supplementation level and did not shift over time.
Other bacteria not associated as uterine pathogens were also
affected by protein supplementation, such as Alistipes and
Bacteroides, with the greatest abundance detected in control
and P40 groups. The abundance of these bacteria was detected
in >1% relative abundance in uterine samples but not rumen
samples. Alistipes and Bacteroides have been previously
as soc ia t ed wi th grea te r abundances in the lower
gastrointestinal tract and feces of ruminants (Holman and
Gzyl, 2019). Vaginal bacterial communities commonly share
genera with gastrointestinal and fecal bacteria, which can enter
into the uterus (Clemmons et al., 2017), or possibly enter the
uterine environment through blood (Jeon et al., 2017). Alistipes
and Bacteroides have been recognized as core vaginal bacteria
(Rodrigues et al., 2015), and proposed as potential predictors of
reproductive success based on abundance in fecal samples
(McClure, 2018). Further research is needed to understand
the role of potentially pathogenic bacteria from gastrointestinal
sources, and their effects on the uterine environment and
endometrial tissue. Despite the minimal differences in overall
diet crude protein, differences in uterine bacterial communities
by protein supplementation treatments were detected. Greater
differences in diet such as different forage to concentrate ratios,
energy supply, or other overall nutrient levels may have a larger
impact on additional bacteria in the uterus. Therefore, the
ability of protein supplementation to affect the abundances of
bacteria in the uterus may allow for manipulation of the
microbiome toward an optimal uterine environment.

The attainment of puberty is a significant milestone in heifer
development. The activity of endometrial tissues and the uterine
environment changes with the onset of puberty including tissue
gene expression, hormonal signal response, and uterine
histotrophic secretions (Cánovas et al., 2014; Fortes et al.,
2018). Therefore, an additional objective of the current study
was to evaluate the impact of pubertal status on bacterial
communities, beginning with prepubertal heifers and ending 2
weeks following the first breeding. Alpha diversity metrics
Frontiers in Animal Science | www.frontiersin.org 10
indicated differences in the bacterial community of the uterus
during pubertal attainment, as observed ASVs increased over
time and were greater in pubertal than prepubertal heifers
(Table 1). In a study of the vaginal microbiome between cows
and heifers, cows had a greater number of observed bacterial
species than heifers (Laguardia-Nascimento et al., 2015).
Pubertal heifers also had increased similarity of their overall
uterine microbiome than prepubertal heifers according to beta
diversity analyses of the current study (Figure 4A). When
evaluating specific bacterial taxa in the uterus of our study, five
phyla, including the two most abundant of Firmicutes and
Bacteroidota, were affected by pubertal status (Table 3).
Firmicutes was greater in prepubertal than pubertal heifers, but
the remaining four were observed to have greater relative
abundances in pubertal heifers compared to prepubertal
heifers. Similar results were observed previously in cows during
estrus synchronization leading up to breeding (Ault et al., 2019a)
where Firmicutes was highly abundant (61%–74% abundance)
and dominated the uterine bacterial communities at the
beginning of estrous synchronization during low P4
concentrations. Firmicutes then decreased to 36% on average,
with other phyla significantly increasing, 2 days before breeding
during higher P4 concentrations (Ault et al., 2019a). Luteal
function and resulting P4 concentrations are the defining
parameter of pubertal animals, indicative of their ability to
successfully ovulate and establish and maintain a pregnancy
(Kinder et al., 1995; Atkins et al., 2013; Fortes et al., 2018).
Progesterone influences uterine function through changes in
endometrial gene expression related to activities such as
immune response, nutrient exchange to the lumen, and other
processes related to the establishment of pregnancy (Forde et al.,
2010; Forde et al., 2014; Fortes et al., 2018). Companion data
from the current study reported by Brandt (2020) found that 18
amino acids, regardless of protein supplementation treatment,
reached their highest concentration in the uterus at d 163
indicating changes to the uterine environment through
development to puberty attainment. These changes occurring
with pubertal onset from P4 stimulation to the uterine
environment and endometrial tissue may influence the
bacterial communities of the uterus, leading to a more similar
overall uterine microbiome of pubertal animals.

Furthermore, there was no difference in observed ASVs and
fewer bacterial phyla and genera were affected by pubertal status
in the rumen in contrast to the uterus (Tables 1, 3). Steroid
hormone receptors associated with reproduction, such as
estrogen and androgen receptors, have been reportedly
expressed in the rumen, but P4 nuclear receptor expression has
not been detected (Pfaffl et al., 2003). Therefore, minimal direct
impact on the bacterial communities is expected in the rumen
due to the changes specifically associated with puberty and
increased P4 secretion. Temporal shifts in bacterial diversity
and relative abundances of taxa, however, were observed in the
current study of both the rumen and uterus (Tables 4, 5). Alpha
diversity analyses indicated changes in the number of ASVs, and
beta diversity indicated a slight shift in the rumen overall rumen
bacterial community composition over time (Table 1). Ruminal
July 2022 | Volume 3 | Article 903909
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bacterial communities have been shown to undergo shifts
according to a change in diet (McCann et al., 2014; Clemmons
et al., 2019a; Gruninger et al., 2019). However, previous research
has indicated stability of the rumen microbiome by 9 weeks
following a diet change (Clemmons et al., 2019b). Sampling of
the rumen bacterial communities in the current study did not
occur until 56 days following the beginning of supplementation.
Therefore, the rumen microbiome had likely reached any diet-
induced equilibrium, following the addition of supplements to
the heifer’s diet, prior to sampling. The development of the
rumen microbiome from birth to adulthood is not an immediate
process, with the number of species shown to increase from birth
up to 2 years of age (Guo et al., 2020), along with shifts in
bacterial taxa composition (Jami et al., 2013). The first few days
of life and weaning are likely the two most influential periods on
rumen microbiome development (Guo et al., 2020; Amin and
Seifert, 2021). Therefore, the rumen microbiome of heifers in the
current study was likely continuing to develop following weaning
into its mature state.

In conclusion, weaning through breeding during heifer
development is a crucial period to evaluate the uterine and
ruminal bacterial communities and factors that may influence
their composition, such as nutrition and puberty attainment.
Despite relatively minor changes in overall diet crude protein,
the current study was able to detect differences in the uterine
and rumen bacterial communities with varying levels of
protein supplementation. Pubertal status had a greater
impact on uterine bacterial communities than in the rumen.
The effects observed over time and by pubertal status on
bacterial communities of the heifer uterus potentially
indicates progression of a maturing uterine microbiome
through development. Future studies are needed to
understand how nutrition and the overall diet may be used
to manipulate uterine bacterial communities, and how the
changing uterine microbiome through development may
impact the uterine environment. Together, such studies
would contribute to a greater understanding of the
developing uterine bacterial communities and how they
might be modified to improve future reproductive success
and lifetime reproductive efficiency.
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