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Routine monitoring of broiler chickens provides insights in the welfare status of

a flock, helps to guarantee minimum defined levels of animal welfare and

assists farmers in taking remedial measures at an early stage. Computer vision

techniques offer exciting potential for routine and automated assessment of

broiler welfare, providing an objective and biosecure alternative to the current

more subjective and time-consuming methods. However, the current state-

of-the-art computer vision solutions for assessing broiler welfare are not

sufficient to allow the transition to fully automated monitoring in a

commercial environment. Therefore, the aim of this study was to investigate

the potential of computer vision algorithms for detection and resource use

monitoring of broilers housed in both experimental and commercial settings,

while also assessing the potential for scalability and resource-efficient

implementation of such solutions. This study used a combination of

detection and resource use monitoring methods, where broilers were first

detected using Mask R-CNN and were then assigned to a specific resource

zone using zone-based classifiers. Three detection models were proposed

using different annotation datasets: model A with annotated broilers from a

research facility, model B with annotated broilers from a commercial farm, and

model A+B where annotations from both environments were combined. The

algorithms developed for individual broiler detection performed well for both

the research facility (model A, F1 score > 0.99) and commercial farm (model

A+B, F1 score > 0.83) test data with an intersection over union of 0.75. The

subsequent monitoring of resource use at the commercial farm using model

A+B for broiler detection, also performed very well for the feeders, bale and

perch (F1 score > 0.93), but not for the drinkers (F1 score = 0.28), which was

likely caused by our evaluation method. Thus, the algorithms used in this study

are a first step to measure resource use automatically in commercial

application and allow detection of a large number of individual animals in a

non-invasive manner. From location data of every frame, resource use can be
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calculated. Ultimately, the broiler detection and resource use monitoringmight

further be used to assess broiler welfare.
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Introduction

Broilers may experience major welfare problems, which are

caused by genetic selection, management and housing

conditions adapted for efficient growth (Bessei, 2006; EFSA,

2010). Routine monitoring of broilers provides insights into the

actual welfare status of a flock, helps to guarantee minimum

defined levels of animal welfare and assists farmers in taking

remedial measures at an early stage (EFSA, 2012). Current

methods of identifying broiler welfare are often based on

human observation, for example, the Welfare Quality®

protocol (Welfare Quality®, 2009) and the AWIN transect

method (Marchewka et al., 2013). The Welfare Quality®

protocol provides precise information on the prevalence of

welfare issues, but stakeholders have criticized it for being too

time-consuming (de Jong et al., 2016). The transect method is

less time consuming, but it lacks information on the specific

prevalence of gait scores and does not include broiler behaviour

(Ben Sassi et al., 2016). Moreover, for both protocols, assessors

need to be trained, and outcomes may still be subjective, depend

on the quality of the assessor, and biosecurity may be at risk (Ben

Sassi et al., 2016). Therefore, these current welfare assessment

protocols are not widely applied in practice.

The development of computer vision techniques for

automated welfare assessment offers exciting potential for

improvement and routine assessment of broiler chicken welfare

(Ben Sassi et al., 2016; Li et al., 2020b). Continuous, automated

monitoring of commercial broiler flocks provides an objective

alternative to the current more subjective and time-consuming

methods. With modern broiler houses often including thousands

of chickens, the use of cameras and computer vision is a

promising method to monitor commercial farms remotely and

continuously. In addition, computer vision techniques provide a

non-invasive and biosecure method for assessing broiler welfare.

However, the current state-of-the-art computer vision solutions

for assessing broiler welfare are not readily used in a commercial

environment, likely due to the complexity of such an environment

with many individuals moving simultaneously, often in difficult

lighting conditions, setting extremely high requirements for

hardware and software components.

Previous studies have used computer vision to identify

broiler welfare and health. Most have focused on assessing
02
activity and distribution either in an experimental (Bloemen

et al., 1997; Calvet et al., 2009; Kristensen and Cornou, 2011;

Youssef et al., 2015; Pereira et al., 2020) or commercial setting

(Kashiha et al., 2013; Fernandez et al., 2018). Others focused on

assessing gait score, contact dermatitis or health status, mainly in

relation to activity and distribution, in an experimental (Aydin

et al., 2010; Aydin et al., 2013; Aydin et al., 2015; Aydin, 2017a;

Aydin, 2017b; Nääs et al., 2018) or commercial setting (Dawkins

et al., 2009; Dawkins and Layton, 2012; Colles et al., 2016;

Dawkins et al., 2017; Silvera et al., 2017; Van Hertem et al., 2018;

Dawkins et al., 2021). Some have even used computer vision

techniques to assess behaviour in an experimental setting

(Pereira et al., 2013; Zhuang and Zhang, 2019; Li et al.,

2021b). However, monitoring resource use (i.e., use of feeders,

drinkers, enrichments, etc.) has received limited attention. In

commercial broiler flocks, specific resource use can be used to

evaluate flock health and welfare. Welfare criteria that can be

assessed through resource use are the absence of prolonged

hunger or thirst (i.e., feeding and drinking), and the expression

of appropriate behaviour (i.e., species-specific natural

behaviours, such as perching or making use of bale) (Welfare

Quality®, 2009). These behaviours are an essential part of

welfare and have been previously related to broiler health

(Weeks et al., 2000; Abeyesinghe et al., 2021), making them

relevant for broiler welfare assessment. Monitoring resource use

of broilers can further be used to improve housing design,

allocate resources more optimally and provide warnings of

equipment malfunctioning (Kashiha et al., 2013). Recent

studies have used computer vision techniques to detect the

number of chickens drinking and feeding with high accuracy

in an experimental setting (Guo et al., 2020; Li et al., 2020a).

However, the challenge remains to validate these methods in

larger groups of broilers and at higher stocking densities, which

are common in a commercial setting. Fernandez et al. (2018) did

monitor drinking and feeding behaviour in a broiler flock by

selecting specific zones and using a model with correlations

between activity and occupation. However, they did not

specifically identify the number of broilers actually making use

of the resources.

There is also a sub-set of studies exploring different

segmentation techniques to monitor area usage and

environmental effects through activity and distribution indices
frontiersin.org
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(Fang et al., 2020; Pereira et al., 2020; Del Valle et al., 2021).

These studies used segmentation techniques requiring the

removal of different resources of interest (e.g., feeders,

drinkers) during the pre-processing stage (Li et al., 2020a; Del

Valle et al., 2021), or applying several additional filtering

techniques, thus potentially increasing the computational

times and limiting image processing at high stocking density

scenes. The instance segmentation approach (e.g., based on

Mask R-CNN) is potentially more suitable in a commercial

setting since it can handle the varying number of individuals in

the scene as well as additional objects of interest, and performs

well when trained on smaller custom datasets (e.g. which is the

case for most studies within the animal science domain). The

aim of this study was to investigate the potential of computer

vision algorithms for detection and resource use monitoring of

broilers housed in both experimental and commercial settings

while also assessing the potential for scalability and resource-

efficient implementation of such solutions.
Materials and methods

Ethical approval

The experiment procedures were checked with the national

legislation on animal experiments by the Animal Welfare Body.

Because the procedures were non-invasive, this study was not

considered to be an animal experiment under the Law on

Animal Experiments, as confirmed by the local Animal

Welfare Body (25th of February 2020, Wageningen, The

Netherlands). Housing and management complied with the

Dutch law on animal wellbeing.
Animals and housing

Research facility
Day-old broiler chickens (Ross 308) from a commercial

hatchery were housed in two groups of 24 chickens with an

exact 50%/50% male/female distribution in 6.0m2 pens (length:

3m x width: 2m). Wood shavings were provided as litter

material. To stimulate a wide range of natural behaviours,

pens further included a lucerne bale, a dustbathing area filled

with peat (length: 1m x width: 1m), a perch (length: 1.5m, height:

5cm), and grains were distributed daily. Management was
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according to commercial practice with ad libitum access to

feed (a standard 3-phase commercial diet) and water. Standard

temperature, relative humidity, lighting and vaccination

schedules were applied. Two subsequent cycles of 38 days were

run at the research facilities of Wageningen University and

Research, after which broilers were slaughtered.

Commercial farm
Approximately 28,000 day-old broilers (Ross 308, as-

hatched) from a commercial hatchery were housed in a

concrete-floored commercial broiler house of 1530m2 (length:

85m x width: 18m) located in the Netherlands. Two cycles of 43

days were run at the commercial poultry farm. Crushed straw

pellets were provided as litter material. Management was

according to commercial practice with ad libitum access to

feed (a standard 3-phase commercial diet) and water. Standard

temperature, relative humidity, lighting and vaccination

schedules were applied. For an overview of the different

environments, see Table 1.
Data collection and preparation

A 2D (Near InfraRed) camera (acA2040-25gmNIR –

CMV400, Basler AG, Germany) was mounted above each pen/

area, providing a top-down view, and recorded 8 hrs per day

during the experiment (camera height: 3m for the research

facility and 3.4m for the commercial farm). At the research

facility, one camera was installed to cover one whole pen with

two pan feeders and three nipple drinkers with cups. At the

commercial farm, one camera was installed covering one area

(approximately 30.3 m2 and including on average 408 broilers)

with a perch, wood shavings bale, feeder and drinker lines, with

approximately six pan feeders and 50 nipple drinkers with cups

visible. The video frames had a resolution of 2048 x 2048 pixels

and were recorded at a framerate of 8 Frames Per Second (FPS).

In total, 336 hrs of recordings were collected from the research

facility and 576 hrs of recordings from the commercial farm.

Cameras were connected to a desktop PC and videos were stored

on hard disk.

Frames were annotated using Computer Vision Annotation

Tool (CVAT) distributed under an open MIT license (Computer

Vission Annotation Tool (CVAT)). One annotation class

(broiler) was used, and all broilers present in each pre-selected

frame were annotated by manually drawing their contour.
TABLE 1 Information of different cycles at the research facility and commercial farm.

# Broilers per pen/area # Pens/areas Pen size/area size Area per broiler # Broilers/m2 # Cycles

Research facility 24 2 6.0m2 0.25m2 4.0 2

Commercial farm ± 408 2 30.3m2 ± 0.07m2 ± 13.5 2
fron
±, approximately.
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Different segmentation models were evaluated to assure the best

broiler detection results possible under varying circumstances:

using frames from the research facility (model A), using frames

from the commercial farm (model B), and a combination of

these two (model A+B).

The dataset for model A contained annotations of randomly

selected frames from broilers between 14 and 37 days of age

housed in the research facility. The images chosen for annotation

were representative of all days of age (day 14-37) and uniformly

selected from all recorded hours. Model A dataset consisted of

259 manually annotated frames (containing 5574 annotated

broilers in total).

The dataset for model B consisted of 15 randomly selected

frames (containing 6686 annotated broilers in total) from

broilers between 14 and 17 days of age housed in the

commercial farm and pre-selected uniformly from all recorded

hours. Only images of young broiler chicks were included as we

experienced issues with correct segmentation of young chicks

compared to older chicks for the research facility. Only 15

images were manually annotated due to a very high broiler

stocking density in each frame, requiring substantial time for

creating the reference images.

Model A+B consisted of broiler annotations from the

research facility and the commercial farm, with 274 annotated

frames in total (259 used for model A + 15 used for model B).

For all three segmentation models, frames were split into

70% training data, 20% validation data and 10% test data.
Object detection

Due to this study’s explorative and comparative nature,

different segmentation models were used to investigate the

performance and potential caveats of computer vision-based

resource usage monitoring in different settings and at different

stocking densities. There are several ways to address the challenge

of automated resource use monitoring in broilers – with and

without individual identification. Both approaches might provide

data necessary for quantitative assessment of resource usage, but

might differ in requirements needed for the initial algorithm

implementation as well as potential repeatability and flexibility

across different scenarios. Annotated images from the research

facility were used to train a segmentation algorithm (U-Net) based

on a convolutional neural network architecture and which

operates on a pixel level, assigning the specific class value to

each pixel in an image (e.g., broiler, feeder etc.). The segmentation

result was then used in a postprocessing step to split up groups of

broilers to identify a single broiler in the image. U-Net is one of

the most popular image segmentation techniques used for

semantic segmentation (Ronneberger et al., 2015). For the

commercial farm images, stocking density was higher than at

the research facility and the initial U-Net-based segmentation

approach did not perform well. Therefore, annotated images from
Frontiers in Animal Science 04
the commercial farm were used to train a different segmentation

algorithm (Mask R-CNN). Mask R-CNN is a deep neural network

aimed to solve instance segmentation problems in machine

learning or computer vision (He et al., 2020) and is an

extension of another object detection algorithm (Faster R-CNN)

with an extra mask head. The main difference between semantic

and instance segmentation techniques is that the latter not only

differentiates between foreground/class pixels and background

pixels, but also allows within-class differentiation. Such within-

class differentiation allows the localization of individual broilers

and improves the object separation in highly occluded scenes (e.g.,

high stocking density). Mask R-CNN adds a branch/layer to its

architecture that deals with the prediction of segmentation masks

in a pixel-to-pixel manner. This results in fewer trainable

parameters, which reduces the computational and inference

times while also greatly improving accuracy. In a scenario where

the algorithm needs to handle different broiler ages in different

production environments, this extra (RoI Allign) layer of Mask R-

CNN allows higher segmentation accuracy under strict

localization metrics (IoU > 0.50).
U-Net segmentation model implementation
The U-Net model was implemented in python programming

language, using Keras and Tensorflow Deep Learning libraries

for GPU (Yakubovskiy, 2019). The U-Net model with

MobileNetV2 backbone, pre-trained on ImageNet weights was

fine-tuned to utilize the images from our custom dataset and re-

trained with randomly initialized decoder in order not to

damage the weights of properly trained encoder. The model

was trained with the batch size of two for 40 epochs with

horizontal and vertical flipping applied to images as an

additional augmentation step. The results of the U-Net

segmentation model training can be seen in Figure 1A.
Mask R-CNN segmentation
model implementation

The Mask R-CNN model was implemented in python

programming language, using PyTorch Deep Learning library

for GPU (Chen et al., 2019) hosted by OpenMMLab, which is an

open-source object detection toolbox with models optimized for

transfer learning. The cascade Mask R-CNN model with

ResNeXt (X-101-32x4d-FPN) backbone, pre-trained on COCO

dataset was fine-tuned to utilize the images from our custom

dataset and re-trained with adjustments made to number of

classes in the mask head (only two classes used – broiler/

background, compared to COCO dataset containing 80

different object classes).

The input images for Mask R-CNN were tiled into 2x2 tiles,

with 60 overlapping tiles in total, to assure optimized hardware

usage during algorithm training as well as to prevent overfitting.

Each tile had a fixed resolution of 1075 x 1075 pixels. The

overlapping window with a width and height of 102 pixels was
frontiersin.org
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larger than the pixel mask representing an individual broiler. For

each tile, all the broilers were individually segmented, and those

localized in the overlapping margin were therefore segmented

twice. These broiler masks were then post-processed to merge

the instances of the same broiler to have only one broiler region

instead of two in an output image.

The model was trained for 15 epochs and the final model

performance was evaluated at AP IoU 0.75. The AP IoU 0.75 is

so called strict challenge model performance metric, commonly

used in object detection challenges to further investigate the

generalization capabilities of the final model. The evaluation

results can be seen in Figure 1B.

The following GPU was used for the training of both

segmentation models: Nvidia GeForceGTX 1070 with 8GB

of VRAM.
Resource use monitoring

In order to monitor the usage of different resources (i.e.,

drinkers, feeders, perch, bale), these resource zones were

manually defined as regions of interest (ROI) in the original

image (i.e., pixels that belong to a resource zone were manually

marked and assigned a specific resource label). The use of a

resource was defined by the number of broilers present/detected

in that specific resource zone at a frame-to-frame basis allowing

time-based quantification. All broilers in each input image were

segmented by Mask R-CNN algorithms and then assigned to a

specific zone. To assign segmented broilers to specific resources,

zone-based classifiers were developed. These classifiers were

rule-based to allow greater variability in potential monitoring

scenarios as well as to assure that different complexity in user-

defined resource zone related behaviours could be achieved. For

example, for bale use, only broilers whose centre of gravity

(central point in individual mask representing broiler as a
Frontiers in Animal Science 05
unique segmentation object) was localized inside the defined

bale ROI were considered as those using a bale. In contrast,

broilers with an intersection area of at least 100 pixels between

their individual masks and masks of the feeder or drinker were

assigned to those resource zones.

In the commercial farm images, broilers could be below the

perch but still intersect with the perch zone. Therefore, all broilers

intersecting with the perch needed to be classified into ‘perching’

or ‘not perching’ (Figure 2). For the perching broilers, the

difference between the region of the broiler and the perch was

calculated. This led to two sub-regions for each broiler. If these

two regions had an area ratio of ≥ 0.3, a broiler was counted as a

candidate for perching. In the next step, the broiler’s surface area

was used to extract two surface features (grey value of pixels, as

broiler and perch differ in colour) which were used to train a linear

classifier to distinguish between perching and not perching. In

total, 268 instances of broilers ‘not perching’ and 220 instances of

broilers ‘perching’ were used for the training.
A B

FIGURE 1

(A) Results of the U-Net segmentation model training with accuracy, intersection over union (IoU) score, and loss in black or in grey for
validation. (B) The evaluation results of the Mask R-CNN model using IoU of 0.75.
A B

FIGURE 2

Example of (A) not perching broiler and (B) perching broiler.
frontiersin.org

https://doi.org/10.3389/fanim.2022.945534
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


van der Eijk et al. 10.3389/fanim.2022.945534
In addition, some resource zones were not stationary in the

commercial farm, i.e., feeders, drinkers and perches are often

suspended from the roof and can therefore move in and out of the

image. To overcome this issue, an alternative approach was

developed where the initial detection and segmentation of the

feeders were performed and followed by the broiler-to-specific-

resource zone assignment using the newly detected feeder zone

ROI (Figure 3). In other words, the Intersection over Union (IoU)

of the ROI of the detected feeder and the ROI of the broiler was

calculated. For this, a segmentation network based on U-Net

architecture was trained.
Model evaluation

Object detection
As the U-Net segmentation approach did not perform well

on the commercial farm data, only the Mask R-CNN

segmentation approach was evaluated for those images. To

evaluate the quality of segmentation produced by U-Net and

Mask R-CNN segmentation models, the IoU metric, also known

as the Jaccard index (Jaccard, 1912) was used. IoU is calculated

as the area of the intersection divided by the area of the union of

a predicted contour (Cp) and a ground-truth contour (Cgt):

IoU   Cgt,  Cpð Þ = Cgt ∩ Cp
Cgt  ∪  Cp

The IoU metric ranges between values 0 and 1, where 0 is no

overlap and 1 is perfect overlap. Another criterion determining

whether detection is a True Positive (TP) or a False Positive (FP)

is a confidence score which is the probability that a Bp contains

an object or how certain the model is about it. So, for the

detection to be considered a TP the following three conditions

should be satisfied: the confidence score is greater than the

detection threshold, the predicted class matches the class of

ground truth, and finally, the IoU value is greater than a defined
Frontiers in Animal Science 06
threshold (e.g., 0.50). Two different values for the IoU threshold

were used for the segmentation model evaluation 0.50 and 0.75.

In order to evaluate the overall segmentation model

performance, the F1 score metric was used:

F1   score = 2  �  
precision  �   recall
precision + recall

precision =
TP

TP + FP

recall =
TP

TP + FN ∗

*FN = False Negative

Resource use monitoring
For evaluation of resource usage, all broilers within a specific

resource zone were manually marked by experienced observers.

Observers marked broilers using the CVAT tool by adding a

centre point (cyan solid circle) to each individual broiler, which

was then compared with the centre point created by the

segmentation/detection algorithm (red open circle) (Figure 4).

The actual resource usage was treated as a binary classification

problem (i.e., within the resource zone, outside the resource zone),

and the comparison between the ground truth and segmentation

model prediction was used to calculate the number of TP, FP,

True Negative (TN) and False Negative (FN) cases. The F1 score

metric was used to evaluate the overall resource use performance.
Results

Object detection

The segmentation performance for all three segmentation

models is shown in Table 2, using an IoU threshold of 0.50 or
FIGURE 3

(A) Defined static feeder region of interest (ROI) indicated by green, dark blue and light blue circles, (B) moved feeders where some chicks are
not assigned to the static feeder ROI (indicated with arrows), (C, D) automatically detected (dynamic) feeders with ROI.
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0.75. With an IoU threshold set to 0.50, the F1 score was

above 0.90 in both environments. Model A+B reached an F1
score above 0.95. With the IoU threshold set to 0.75,

differences in detection consistency become clearer. For the
Frontiers in Animal Science 07
research facility images, the F1 score was higher when using

Mask R-CNN compared to U-Net and for model A compared

to model A+B (Mask R-CNN only). For the commercial farm

images, the F1 score was higher for model A+B compared to

model B.

For both IoU of 0.50 and 0.75, we see that the number of FP

and FN dropped drastically when model A+B was used for

commercial farm images compared to when model B was used.

In contrast, for both IoU, we see that the number of FP and FN

dropped drastically when model A was used for research facility

images compared to model A+B, where this decrease was greater

at IoU 0.75 than at IoU 0.50 and greater for FP than FN. Model

A was used for resource use assessment in the research facility,

while model A+B was used in the commercial farm as these

performed best in the respective environments for both

IoU thresholds.

Figure 5 shows an example frame to compare segmentation

results of the exact same frame of the research facility using U-

Net and Mask R-CNN. The U-Net approach performs worse

when broilers are clustered closely together, whereas the Mask

R-CNN has no issues with separating individual broilers within a

cluster. Similarly, Figure 6 shows two identical frames to

compare segmentation results of the commercial farm using

either model B or model A+B with the Mask R-CNN approach.

Model B performed worse compared to model A+B, as more

broilers are individually recognized in the frame using model

A+B.
FIGURE 4

Example of evaluation method for bale use. Manually annotated
broilers are marked with a solid cyan dot, detected broilers using
the bale are marked with an open red circle. Some broilers were
not detected and assigned to the bale zone, and some were
assigned to the zone which were on the zone edge and were
not manually annotated (indicated with arrows).
TABLE 2 Segmentation quality at intersection over union (IoU) of 0.50 and 0.75 for all three detection models (A, B, A+B) with the used approach
specified (U-Net or Mask R-CNN) and test set.

Model Test set TP* FP* FN* Precision Recall F1 score

IoU 0.50

A

U-Net Research 557 12 11 0.979 0.981 0.980

Mask R-CNN Research 567 1 1 0.998 0.998 0.998

B

Mask R-CNN Commercial 779 49 89 0.941 0.897 0.919

A+B

Mask R-CNN Research 591 8 1 0.987 0.998 0.992

Mask R-CNN Commercial 590 14 39 0.977 0.938 0.957

IoU 0.75

A

U-Net Research 543 26 25 0.954 0.956 0.955

Mask R-CNN Research 563 5 5 0.991 0.991 0.991

B

Mask R-CNN Commercial 412 414 456 0.499 0.475 0.486

A+B

Mask R-CNN Research 570 29 22 0.952 0.963 0.957

Mask R-CNN Commercial 517 86 112 0.857 0.822 0.839
fron
*TP, true positives; FP, false positives; FN, false negatives.
Images from the test set were disjunct from images for the training set.
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Resource use monitoring

Figure 7 shows example frames where resource use (i.e.,

feeders, drinkers, perch, bale) is indicated for both the research
Frontiers in Animal Science 08
facility and commercial farm. Figure 8 displays the number of

broilers per hour using specific resources at a young age for the

research facility and commercial farm. The resource use

performance for the commercial farm images are shown in

Table 3, with detections produced using the combined

segmentation model. The F1 score was above 0.93 for all

zones, except for the drinker zone, where the score was 0.28.
Discussion

The aim of this study was to investigate the potential of

computer vision algorithms for detection and resource use

monitoring of broilers housed in both experimental and

commercial settings while also assessing the potential for

scalability and resource-efficient implementation of such

solutions. This study showed the potential of state-of-the-art
FIGURE 5

Comparison of segmentation results for the research facility
using (A) U-Net or (B) Mask R-CNN approach. The purple
segmentation in (A) shows a cluster of three broilers that were
wrongly annotated as a single broiler.
FIGURE 6

Comparison of segmentation results for the commercial farm using (A) model B or (B) model A+B with the Mask R-CNN approach. Circles
indicate where broilers were not segmented by model B but were segmented by model A+B.
FIGURE 7

Examples of resource use in the (A) research facility and (B) commercial farm, the zones are visualized in white, the assigned broilers in colour.
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computer vision algorithms for individual broiler detection and

resource use monitoring.

The algorithms developed in the current study for individual

broiler detection performed well for both the experimental

facility (model A, F1 score > 0.99) and commercial farm

(model A+B, F1 score > 0.83) (Table 2). Previous studies have

mainly used individual chicken detection in small groups. For

example, in small chicken flocks, detection accuracy of 92.2%

was reached using YOLOv3 (Yao et al., 2020), and in an

experimental setting with 8-12 chickens, detection accuracies

of 90.1% and 92.2% were reached using Mask R-CNN and U-

Net, respectively (Li et al., 2021c). In a study on broilers, the

correlation between the actual and predicted number of broilers

in a pen (group size of 19) was 0.996 (Guo et al., 2020). Similarly,

an F1 score of 0.92 was reached for images from a commercial

broiler house, although here it should be noted that probabilities

of 50% or higher were already considered as detections (Novas

and Usberti, 2017). Furthermore, a mean average precision

(mAP) above 93% was found with IoU of 0.50, and above 64%

with IoU of 0.80 (group size not provided) (Zhuang and Zhang,

2019). Automated object detection in poultry production is

challenging because of the high stocking density, which might

lead to occlusion and overlapping between broilers, as well as
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low light intensity which can lead to more complex, noisier

images (Okinda et al., 2020). It should be noted that we focused

on a specific area within the commercial farm, which resulted in

an average stocking density of 13.5 broilers/m2 (0.07m2/broiler)

for that specific area (as counted by the algorithm for the image

frames from 2 weeks of age). This was lower than the actual

stocking density in the whole commercial farm, being 18.3

broilers/m2 (0.05m2/broiler), and the difference might be

explained by the fact that we only included images when

broilers were still relatively small (around 2 weeks old). In this

study, we showed that in a commercial setting an F1 score above

0.95 could be reached with IoU of 0.50, and above 0.83 with IoU

of 0.75 (Table 2). Thus, our detection algorithm performed well

in a commercial setting with room for improvement.

The algorithms developed to monitor resource use

performed well for the use of feeders, bale and perch in the

commercial farm (F1 score > 0.93) but not for the drinkers (F1
score = 0.28) (Table 3). Similar to broiler detection, previous

studies have mainly focused on classification and resource use

monitoring in small groups. For example, the correlation

between the actual and predicted number of broilers at the

feeders and drinkers was above 0.94 (group size 19) (Guo et al.,

2020), and for single caged hens accuracy of eating and drinking
A B

FIGURE 8

Mean ± standard errors for number of broilers per hour (only light phase is included) using specific resource zones (bale, drinkers, feeders,
perch), for the (A) research facility at 16 days of age and (B) commercial farm at 14 days of age.
TABLE 3 Resource use monitoring quality for the commercial farm based on Mask R-CNN segmentation model.

Zone TP* TN* FP* FN* Precision Recall F1 score

Commercial farm

Bale 2855 58945 11 271 0.996 0.913 0.953

Perch 210 42943 14 12 0.938 0.946 0.942

Feeders 3161 39554 206 258 0.939 0.925 0.932

Drinkers 505 58971 2601 5 0.163 0.990 0.279
fron
*TP, true positives; TN, true negatives; FP, false positives; FN, false negatives.
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was above 94% (total of eight cages) (Xiao et al., 2019). In slightly

larger groups, accuracy was above 88% for detecting the number

of broilers feeding and drinking (group size 60) (Li et al., 2020a).

The first attempt of monitoring feeding and drinking in a

commercial flock used activity and occupation indices, where

performance was above 62% when including the first half of the

cycle but above 37% when including the complete cycle

(Fernandez et al., 2018). In our study, the algorithm had a

worse performance for the use of drinkers, which is likely caused

by our evaluation method. For the evaluation set, an observer

only marked chickens that were actually drinking, while the

algorithm detected all chickens in the drinker zone even though

some chickens might just be resting underneath the drinkers. To

improve performance and accuracy, posture estimation could be

integrated into the proposed algorithm for a more accurate

estimation of drinking broilers. However, it can be questioned

whether such accuracy would actually be needed in a

commercial setting. Still, for the other resources (feeders, bale

and perch), our model performed well with an F1 score > 0.93

(Table 3). This demonstrates the potential of our model to

monitor resource use at a high stocking density, with the

potential to combine such data with data on feed and

water intake.

Despite certain progress and recent advances in computer

vision applications for detection and resource use monitoring in

poultry (Guo et al., 2020; Li et al., 2021a; Li et al., 2021b;

Neethirajan, 2022), there are still no studies approaching the

problem of large-scale monitoring or providing solutions that

could perform well across varying housing conditions where

different types of resources or different stocking densities

negatively impact the detection and tracking performance. As

Li and colleagues state (Li et al., 2021a; Li et al., 2021b), their

solutions based on Faster R-CNN architecture and greyscale

image pre-processing do not handle the occlusion well and

show lower precision in crowded scenes. According to (Zhao

et al., 2019), the majority of object detection solutions are built

around classical (e.g. Otsu greyscale thresholding) handcrafted

features and pre-processing techniques and rely on shallow CNN

architectures. Deep learning and high-level semantic features are

required to overcome complex scenery problems and handle the

varying size of objects to be detected (broilers of different ages).

Another potential issue hindering the development of

computer vision-based tools for flock monitoring is the size and

quality of datasets used for algorithm training. Guo et al. (2020)

used a pre-selected set of images for training, excluding the

examples where the scenery was overcrowded with broilers or

where occlusion occurred. By limiting the variability of examples

representing different scenarios and ages, the requirements for a

larger number of uniform annotated images increase while

performance might stagnate. Li and colleagues (Li et al., 2021a;

Li et al., 2021b) based their findings on informative region

selection, where bounding boxes represented the broilers and

relations between bounding box coordinates and ROIs were used
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to estimate zone use. Such an approach might become

computationally heavy when the number of objects to be

detected increases. In the animal science domain, where large

pre-annotated datasets are non-existent, supervised pre-training/

transfer learning is often used to deal with scarce data samples. So

when ordinary CNNs (e.g. Faster R-CNN, Yolov3) are used for

object detection and/or segmentation, it often becomes a two-step

process which still struggles with overlapping instances and

precise object allocation (as Li and colleagues stated). There is a

history of using semantic and instance segmentation architectures

(U-Net, Mask R-CNN) in medical imaging, where there is usually

a very limited number of images available for training and

validation. According to Bardis et al. (2020), high levels of

segmentation accuracy could be achieved with small datasets.

One of the major factors impacting the performance of

segmentation algorithms is not the dataset size itself but rather

the variation in the annotated data. This is supported by findings

presented by Althnian et al. (2021), concluding that the

representation of the real-world problems during the dataset

annotation and curation has direct effects on the final algorithm

performance. As our results show, high F1 scores are possible with

relatively small adjustments to the training data in a scenario

where an algorithm for object segmentation is applied in different

environments. The combined dataset described in our study,

which includes images of broilers segmented at different ages, in

different environments, at different heights and, even more

important, at different stocking densities, could be used as an

example of the resource-efficient approach for vision applications.

Another difference between our methodology and current state-

of-the-art solutions is that we tested different scenarios, which

included higher IoU/confidence thresholds (0.50 and 0.75). As

Table 2 shows, there might not be a big difference between F1
scores when comparing U-Net and Mask R-CNN architectures

under the experimental conditions. However, when stocking

density, occlusion, and size of ROIs increase, architectural

differences between shallow CNNs and their more advanced

variants (as well as variability in annotations) come into play.

Where there might not be a significant difference between

algorithms operating at IoU 0.50, numbers of FP and FN might

be lower at IoU 0.75 and higher when using Mask R-CNN.

Still, further research and development of algorithms are

needed, as different ages were included for the detection method

of the research facility but not for the commercial farm (ranging

between 14-17 days of age). It should be noted that segmentation

is most difficult at a young age, as chicks are quite small and

therefore more difficult to detect compared to older broilers. On

the other hand, broilers might also be more difficult to detect at

an older age as inter-bird space will decrease with age as they

occupy a larger area, which is more challenging for the

algorithm. For example, the prediction of live broiler weights

had a higher error % at older ages than younger ages (Mollah

et al., 2010). Most studies to date have focused only on a specific

age period, with broilers being older than 17 days of age (Xiao
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et al., 2019; Guo et al., 2020; Li et al., 2020a), except for one study

that used continuous recordings but did not compare

performance at different ages (Fernandez et al., 2018). Thus,

further research is needed to assess the performance of detection

algorithms at different ages and if necessary, to improve their

performance. Monitoring algorithms could further be improved

by including automatic detection of resources, such as for bales,

drinkers and perch lines. This automatic detection was already

developed for feeders in the current monitoring algorithm used.

Since drinkers and perch lines often move because they are

hanging from the ceiling in commercial farms, it is important

that these resources are accurately identified by the algorithm.

Similarly, bales can also differ in size, as they are being used by

broilers and disintegrate over time. Including automatic

detection of resources would increase the accuracy and quality

of the resource use monitoring algorithm.

Automated detection and monitoring of poultry can

potentially provide farmers with valuable information that they

can use to make decisions on how tomanage their flocks for better

health and welfare. For example, farmers can monitor if there is a

high occupation of broilers around enrichments, they can decide

to provide more enrichments. With such a data-driven decision

support, farmers are still in control but are given an extension of

their own expertise in the form of the continuously operating

algorithm when they cannot be present (Wurtz et al., 2019).

However, to date, most computer vision algorithms have been

developed in small-scale, controlled experimental settings. To

improve broiler health and welfare, these algorithms should

function in commercial practice and bring an added value to

the farmer. Here, we assessed the potential for scalability and

resource-efficient implementation of our computer vision

algorithms, but for real integration of the computer vision

approach into practice, more aspects should be considered. One

of the potential solutions which could allow a higher degree of

digitalization of broiler chicken production is a step-wise research

and design process. Such a step-wise approach could be built

around modular, highly specific, independent solutions for

detection, tracking, and resource use monitoring, combined in

different ways depending on constraints of the environment.

Another important aspect is maintenance and ease of

component exchange, since the cameras in poultry houses

require regular cleaning, at least to remove dust and insects

from lenses to ensure unimpaired vision.

To make our system more viable, we are looking into

integrating several systems. The goal is to automatically detect

and monitor resource use of broilers and combine this with

automatic flock activity, distribution and gait assessment. In the

future, as computer vision technology and cameras get cheaper,

and as systems are indeed integrated to offer multiple benefits in

one package, these benefits likely outweigh their cost. One could

even think about completely integrating all systems in a poultry

house, where computer vision algorithms are integrated with

existing climate control, feed, water and light systems. However,
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to make sure such technologies will actually be used in

commercial practice, it is important to engage the end-users of

these technologies in order to develop user-friendly and

informative decision support systems supplied to the devices

that they find convenient to use (smartphone, tablet or PC) (Van

Hertem et al., 2017; Wurtz et al., 2019).
Conclusions

The aim of this study was to investigate the potential of state-

of-the-art computer vision algorithms using Mask R-CNN for

broiler detection and resource use monitoring in broilers. Results

showed that individual broilers could be detected and monitored

for their resource use in a commercial environment with high

stocking density. The algorithms used in this study are a first

step to measure resource use automatically in commercial

application and might further be used to assess broiler chicken

welfare. Overall, this algorithm allows detection of a larger

number of individual animals in a non-invasive manner. From

location data of every frame, resource use can be calculated.
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