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The importance of essential
fatty acids and their ratios
in aquafeeds to enhance
salmonid production,
welfare, and human health

Ian Carr1*, Brett Glencross2 and Ester Santigosa3

1Veramaris V.O.F., Delft, Netherlands, 2Institute of Aquaculture, University of Stirling,
Stirling, United Kingdom, 3DSM Nutritional Products, Basel, Switzerland
Long chain polyunsaturated fatty acids (LC-PUFA), namely those from omega-3

(n-3) and omega-6 (n-6) families, are paramount for both fish and human

nutrition. Some of these biomolecules cannot be synthesized de novo and

must be acquired through the diet, being termed dietary essential fatty acids

(EFA). Fish requirements for EFA have traditionally been met through the

incorporation of fish oil (FO) in the formulation of aquafeeds. However, with

limited supply of FO the aquaculture industry is searching for additional

sustainable sources of LC-PUFA. This has significantly shifted the type of

ingredients used in aquafeed formulation, namely vegetable oils (VO) deficient

in long-chain omega-3, often resulting in imbalanced levels and ratios of fatty

acid classes. Such imbalances can negatively affect fish performance andwelfare,

as well as the levels of health promoting omega-3 LC-PUFA present in fish fillets.

Given the relevance that salmonid aquaculture plays in global fish production

(principally Atlantic salmon, Salmo salar), as well as its growing role as a source of

dietary health promoting omega-3 LC-PUFA for humans, the present review

summarizes the scientific knowledge available to date on the dietary

requirements for LC-PUFA by salmonids and humans. We discuss the

implications of using imbalanced aquafeed formulations upon fish

performance and welfare, as well as the subsequent consequences for human

nutrition, along with current efforts to replace FO by alternative ingredients such

as algal oil (AO) that can safeguard high-quality salmonid products for

human consumption.
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1 Introduction

Aquaculture is among the most promising industries to address

human malnutrition and diet-related diseases (Naylor et al., 2021).

Seafood is an important source of vital nutrients, such as structural

and functional lipids rich in omega-3 (n-3) fatty acids (FA), some of

which are vital for human health (Tocher, 2015; Oliver et al., 2020).

For all species, some of these FA are termed essential fatty acids

(EFA) as they cannot be synthesized de novo and must be acquired

through diet (Calder, 2020; Sharma and Mandal, 2020; Troesch

et al., 2020). Among EFA, LC-PUFA act as regulators of metabolism

and immune function, being key for disease prevention (see reviews

by Tocher (2003); Glencross (2009); Oliver et al. (2020)). More

specifically, omega-3 LC-PUFA participate in metabolic pathways

in the resolving phase of inflammation and return to homeostasis,

whereas omega-6 LC-PUFA participate in metabolic pathways

associated with the formation of pro-inflammatory molecules

(Calder, 2013; Ortega-Gómez et al., 2013; Hundal et al., 2022;

Huyben et al., 2023).

Fish are acknowledged as important sources of dietary EFA for

humans (Tocher, 2015; Oliver et al., 2020). Oily fish, particularly

salmonids, are a versatile and popular seafood and regarded as one

of the best sources of omega-3 PUFA for humans (Nichols et al.,

2014; FAO, 2020). Salmonids, namely Atlantic salmon Salmo salar,

are undeniably one of the pillars of marine fish aquaculture and the

most important aquaculture commodity traded in value since 2013

(FAO, 2022). Salmonids have a limited ability to produce omega-3

long chain PUFA (omega-3 LC-PUFA) from their precursor alpha-

linolenic acid, ALA; 18:3n-3 (Bell et al., 1997; Tocher et al., 2019).

Whilst the levels of these LC-PUFA required to sustain good fish

growth are relatively low (Ruyter et al., 1999; Menoyo et al., 2007),

the dietary requirements to maintain suitable fish health are

somewhat higher (Bou et al., 2017; Lutfi et al., 2022); so too are

the levels needed to maintain fish as good sources of LC-PUFA for

humans (Nichols et al., 2014; Tocher et al., 2019). Consequently,

aquafeeds must incorporate suitable and balanced levels of LC-

PUFA to support fish growth and health, as well as requirements for

deposition in their muscle for human food requirements (Glencross

et al., 2023).

The health benefits of omega-3 LC-PUFA and the need to

diversify the source of ingredients displaying high levels of these

EFA to be incorporated in aquafeeds is widely accepted (Tocher,

2015). Given the global importance of salmonid aquaculture, this

review aims to 1) briefly summarize the scientific knowledge

available on salmonid requirements for dietary EFA; 2) document

the implications that the use of imbalanced aquafeed formulations

can have on human nutrition; and 3) examine the potential

alternative EFA sources to FO that can be considered, targeting

the production of high-quality salmonid products. An emphasis is

given on how optimizing the omega-3 nutritional parameters of

aquafeeds can improve fish performance and welfare, while

safeguarding those qualities that consumers rely on these seafoods

to supply.
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2 LC-PUFA importance for fish

2.1 Metabolism and role of LC-PUFA in fish

In general, freshwater fish species can synthesize LC-PUFA from

precursors, whilst marine fish have a more limited capacity to do so

(Ishikawa et al., 2019; Twining et al., 2021). Salmonids are

diadromous and move from freshwater to marine environments

or vice versa, being able to convert ALA into omega-3 LC-PUFA,

such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic

acid (DHA; 22:6n-3), as well as linoleic acid (LA, 18:2n-6) into

arachidonic acid (ARA; 20:4n-6). Thus, ALA and LA are key

precursors of other EFA (Punia et al., 2019). Unlike most marine

fish to which EPA, DHA, and ARA are considered essential because

their rate of biosynthesis is either non-existent, or low and

insufficient to meet physiological demands (Glencross, 2009;

Castro et al., 2016), salmonids have a relatively higher ability to

produce EPA and DHA from ALA (Bell et al., 1997; Tocher et al.,

2019). Despite some de novo synthesis, the levels of omega-3 and

omega-6 LC-PUFA resulting from these pathways are not high

enough to meet the nutritional requirements offish when challenged

(Agaba et al., 2005; Leaver et al., 2008; Castro et al., 2012; Sprague

et al., 2019); and to meet the nutritional needs of human consumers

(Sanden et al., 2011; Nichols et al., 2014; Tocher et al., 2019).

In fish, LC-PUFA play key roles in cell membranes and cellular

synthesis, ionic regulation and pigmentation (Tocher, 1995; Sargent

et al., 2003; Tocher, 2003; Glencross, 2009; Lutfi et al., 2022). They

are also required for the proper development and function of the

neural system (Innis, 2007; Litz et al., 2017), having an important

role in reproduction (Tocher, 2003; Glencross, 2009) and the

protective intestinal barrier function (Huyben et al., 2020; Løvmo

et al., 2021). LC-PUFA also control metabolic functions (e.g., being

chemical messengers or effectors of secondary messengers),

endocrine pathways (e.g., acting as hormone precursors), and are

key for immune functions (Glencross, 2009; Huyben et al., 2023).
2.2 Dietary requirements of
LC-PUFA for salmonids

Farmed fish must be provided suitable levels of dietary LC-PUFA

to meet their physiological demands, welfare, and produce high-quality

fillets rich in omega-3 LC-PUFA. The dietary requirements of LC-

PUFA for salmonids are summarized in Supplementary Table 1. These

requirements vary among species, environmental conditions, stressors,

and age, and are also influenced by the absolute and relative values of

these fatty acids in the total dietary lipid. For instance, omega-3 LC-

PUFA requirements range from 10 to 25 g/kg of aquafeed depending

on species, fish age and farming conditions (Tocher et al., 2000;

Glencross, 2009; Glencross et al., 2014; Bou et al., 2017; Huyben

et al., 2021; Lutfi et al., 2022).

Requirements for LC-PUFA are typically higher during the

early life stages to sustain the high level of demands required during
frontiersin.org

https://doi.org/10.3389/fanim.2023.1147081
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Carr et al. 10.3389/fanim.2023.1147081
early development of the neural and visual system in the fish

(Tocher, 2010). Notably, EPA and DHA are especially important

for the growth and development of fry, parr, and smolt, with DHA

playing a pivotal role in neural growth and development (Innis,

2007; Litz et al., 2017). When salmonids undergo smoltification and

transition from life in freshwater to seawater, their FA profile

changes as a pre-adaptive response to this new environment.

More specifically, there is a peak in omega-3 LC-PUFA

biosynthesis, with FA profiles displaying higher levels of LC-

PUFA, namely EPA and DHA (Tocher et al., 2000; Bendiksen

et al., 2003). These shifts affect cellular processes involved in

adaptation to seawater, such as ionic regulation and synthesis of

prostaglandins (Spector and Yorek, 1985; Mustafa and

Srivastava, 1989).

Dietary requirements for omega-3 LC-PUFA also change with

farming conditions and the health status of fish. Compared to

controlled laboratory systems, fish held in cage farming

environments experience seasonal shifts in salinity, temperature,

and incidence of pathogens. As an example, while n-3 LC-PUFA

requirements for post-smolt Atlantic salmon (~185-550 g) range

between 5-8% of the total pool of FA in the laboratory (Glencross

et al., 2014; Bou et al., 2017; Huyben et al., 2021), under cage

farming conditions these needs may exceed 10% (Lutfi et al., 2022).

Indeed, lipid metabolism and the composition of cellular

membranes are modified to endure changes in seawater

temperature, with lower temperatures promoting higher levels of

EPA and DHA (Norambuena et al., 2016; Rosenlund et al., 2016).
2.3 Implications of LC-PUFA deficiencies
and imbalanced ratios in fish

Inadequate levels of LC-PUFA in the diet of salmonids can

affect fish performance, particularly feed conversion, negatively

impacting growth and survival (Ruyter, 2000; Berge et al., 2009;

Glencross et al., 2015; Selvam et al., 2021). Some studies also report

an increased sensitivity to stressful conditions (Bell et al., 1991;

Thompson et al., 1996; Huyben et al., 2023) and a decreased

resistance to pathogens (Martinez-Rubio et al., 2012). Stress and

pathogens are common under fish-farming conditions, being

responsible for mass mortalities that cause major economic losses.

Therefore, it is desirable to preventively enhance fish resistance to

these challenging conditions. For instance, by adjusting LC-PUFA

levels in aquafeeds it is possible to reduce the impacts of heart and

skeletal muscle inflammation associated with Atlantic salmon

reovirus infection, one of the most prevalent inflammatory

diseases in salmon farms (Martinez-Rubio et al., 2012). More

recently, high levels of LC-PUFA have also been linked with

higher resistance to chronic stress (Huyben et al., 2023).

Meeting an optimal ratio between LC-PUFA omega-6 and

omega-3 FA is paramount, as it modulates metabolic and

immune functions (Patterson et al., 2012; Huyben et al., 2020). In

Atlantic salmon, this ratio is substantially affected when provided

only with the short-chain PUFA (Sprague et al., 2019). Notably,

when fed a diet devoid of any LC-PUFA but including a 3:1 ratio of

ALA : LA, the salmon parr endogenously synthesize their own
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omega-3 LC-PUFA at a ratio of 27:1 against omega-6 LC-PUFA.

Even with a 1:3 ratio of ALA : LA the fish synthesize omega-3 LC-

PUFA at a ratio of about 3:1. Hundal et al. (2021) suggested that

increasing the dietary n-6/n-3 FA ratio in salmon feeds can affect

the way they respond to stressors in an aquaculture setting, possibly

affecting the fish robustness. Other studies have suggested that EPA

levels ideally should be higher than those of ARA and DHA, due to

its role in the anti-inflammatory response and as an antagonizing

agent of ARA-derived pro-inflammatory mediators (Martinez-

Rubio et al., 2012). Consequently, the EPA : DHA ratio should

also be considered and ideally maintained at 1.5:1, as insufficient

EPA levels negatively affects the anti-inflammatory response

(Martinez-Rubio et al., 2012). However, maintaining this optimal

ratio in commercial farms is a challenge, as the abundance of EPA

in LC-PUFA sources is limited, and therefore few LC-PUFA sources

have such an ideal ratio of EPA : DHA. Furthermore, research on

the effect of an imbalanced omega-3:omega-6 ratio on Atlantic

salmon health and performance are somewhat contradictory; whilst

some studies show no effects, or even negative results, others report

no adverse impact of higher dietary levels of omega-6 LC-PUFA on

fish growth and survival (Grisdale-Helland et al., 2002; Menoyo

et al., 2007; Sissener et al., 2016). These discrepancies, however,

might arise from differences in the trial design or nutritional history

of the animals (e.g. lipid reserves), among other study parameters.

The FA composition offish lipids is predominantly influenced by

diet (Sargent et al., 1999; Glencross et al., 2014; Xu et al., 2020;

Glencross et al., 2023). Changes in thefinal product are well known to

impact its nutritional quality for consumers; it has also been observed

to result in suboptimal pigmentation (Lutfi et al., 2022) and poorer

processing (smoking) qualities, features that lead to processor and

retailer rejection (Johansen and Jobling, 1998; Tocher et al., 2003).
3 LC-PUFA importance for humans

3.1 Dietary requirements for
LC-PUFA by humans

Based on scientific evidence available, multiple organizations

(e.g., the World Health Organization, the European Food Safety

Authority, or the American Heart Association) promote the regular

intake of omega-3 LC-PUFA, with recommended doses of up to

250 – 500 mg/day (EFSA Panel on Dietetic Products Nutrition,

2010). Oily fishes, such as salmon, are considered one of the best

dietary sources of EPA and DHA (Henriques et al., 2014; Nichols

et al., 2014). However, the FA profile of salmon is modulated by the

aquafeeds provided during grow-out. Due to changes in aquafeed

formulations, the content of EPA and DHA present in salmon fillets

halved between 2004 and 2015 (Sprague et al., 2016). This shift has

resulted in the need to increase the number of salmon servings to

meet human dietary requirements. More specifically, international

guidelines recommend consumers to now eat at least 2 servings per

week of these oily fishes to meet requirements for omega-3 LC-

PUFA (EFSA Panel on Dietetic Products, Nutrition, and Allergies

(NDA), 2014; Norwegian Scientific Committee for Food and

Environment (VKM), 2022).
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3.2 Benefits of adequate LC-PUFA
intake in humans

There is growing scientific evidence highlighting the

importance of LC-PUFA for humans (see reviews by Saini and

Keum (2018) and Oliver et al. (2020)). The effects of LC-PUFA on

human health and nutrition have been recognized since the 1970s,

with the first studies evidencing the benefits of omega-3 LC-PUFA

in mortality associated with cardiovascular disease (CVD) (Jump

et al., 2012; Endo and Arita, 2016). Since then, the effectiveness of

omega-3 LC-PUFA against CVD has further been confirmed

(Bucher et al., 2002; Delgado-Lista et al., 2012). Omega-3 LC-

PUFA also seem to play a role against age-related cognitive

impairments, such as dementia or Alzheimer’s disease (Gogus

and Smith, 2010; Dangour et al., 2012). Other conditions that

may be regulated by LC-PUFA include eczema, diabetes, allergy,

asthma, thrombosis, macular degeneration, and some types of

cancer (Gogus and Smith, 2010; Oliver et al., 2020). Benefits have

also been reported when fighting inflammatory diseases, such as

rheumatoid arthritis, Crohn’s disease, and ulcerative colitis (Cabré

et al., 2012; Miles and Calder, 2012). These health promoting

features are attributed to the mechanism of action of these fatty

acids on inflammatory pathways and their regulatory role in the

immune system. More specifically, eicosanoids derived from ARA

(e.g., prostaglandins and leukotrienes) drive inflammatory

responses, whereas eicosanoids derived from EPA produce an

anti-inflammatory response that antagonizes ARA-derived

eicosanoids (Calder, 2007; Calder et al., 2009).

The optimal omega-6:omega-3 ratio for humans is yet to be

fully understood, but it is suggested to range between 2.5-5:1 (Gogus

and Smith, 2010). Current average diet of Western populations

displays a much higher ratio, ranging approximately 10-25:1

(Molendi-Coste et al., 2011; Tocher et al., 2019). This ratio is

distant from that of ancestral populations, which ranged at 1-4:1

(Tocher et al., 2019; Oliver et al., 2020).

Reducing the dietary intake of omega-6 PUFA may be difficult to

achieve in some regions. For example, these are key nutrients in

Mediterranean diets rich in olive oil, which is also rich in omega-9

but relatively poor in omega-3 (Calder et al., 2009). Consequently,

increasing the intake of omega-3 LC-PUFA appears as a more feasible

approach to attain a more balanced proportion between these two FA

families (Tocher, 2015). This can be achieved by increasing the intake of

EPA and DHA through an enhanced consumption of fish and other

seafood with high levels of these fatty acids.

4 Aquafeeds as sources of LC-PUFA
for aquaculture products

4.1 Traditional sources of LC-PUFA
for aquafeeds

Traditionally, LC-PUFA requirements in farmed fish have been

met using FO, as it features a relatively high content of omega-3 LC-

PUFA and a balanced FA profile to support fish performance,

welfare, and secure a high-quality final product for human
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consumption. However, the use of FO in aquafeeds is constrained

because supply cannot keep up with demand (Delgado-Lista et al.,

2012; Tocher, 2015).

Supply limitations of LC-PUFA in aquaculture were first

addressed by using different VO. Whilst these oils can support

fish growth, they display high levels of omega-6 PUFA and are

devoid of omega-3 LC-PUFA (Tocher, 2003; Glencross, 2009). The

dietary replacement of FO by VO also dilutes omega-3 content and

modifies the FA profile and lipid content of fish (Bell et al., 1997;

Bou et al., 2017; Hundal et al., 2022; Glencross et al., 2023). Often

advocated as more sustainable ingredients for aquafeeds than FO,

the production of VO also creates environmental impacts due to

intensive agricultural practices impacting land use, freshwater use

and biodiversity for example, which cannot be overlooked

(Shepherd and Little, 2014).
4.2 Alternative sources of LC-PUFA
for aquafeeds

To fill the gap between demand and supply of omega-3 LC-

PUFA, the aquaculture industry has focused on the potential use of

unexploited fisheries, such as krill, calanoid copepods, and

mesopelagic fish (Tocher, 2015; Tocher et al., 2019). Whilst these

are potentially good omega-3 sources, the harvesting of these

organisms comes with technological challenges, high costs, and

environmental concerns (Herbert-Read et al., 2022). Another

alternative could be through the valorization of by-products

resulting from fish processing industries. Indeed, by-product

resources already comprise close to 50% of all fish oil produced in

2020 and 30% of all fishmeal (Glencross and Bachis, 2021).

The production of genetically modified (GM) oilseed products

has also been advocated as a solution for supplying omega-3 LC-

PUFA. It can be easily scalable by using the infrastructures already

available to produce VO and its use in salmon diets does not

negatively affect fish growth or health (Tocher et al., 2019; Napier

and Betancor, 2022; Ruyter et al., 2022; Davis and Devine, 2023).

GM yeast strains have also been developed for the same purpose,

but these are still unlikely to produce sufficient volumes at

affordable prices to meet current demands (Hatlen et al., 2012;

Tocher et al., 2019),. Moreover, given the overall negative

perception that GM products still have in some countries, the use

of aquafeeds formulated using GM oilseed products remains less

likely to be accepted by some consumers (Desaint and Varbanova,

2013; Lucht, 2015).

Of all alternatives currently being evaluated, algal oil (AO)

derived from heterotrophic organisms - classified as such due the

very close molecular phylogenetic relationship to microalgae and

absence of a clear definition- appears to hold the greatest potential

to fill the gap between demand and supply for affordable omega-3

LC-PUFA (Tocher et al., 2019; Santigosa et al., 2020; Tibbets et al.,

2020; Santigosa et al., 2021). Lipid levels vary among algal species

and growth conditions, but marine microalgae generally present

higher concentrations of LC-PUFA, particularly EPA and DHA (Li-

Beisson et al., 2019). While the development of efficient and cost-

effective large-scale microalgal photoautotrophic cultivation
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systems is yet to be achieved (Oliver et al., 2020), heterotrophic

production by fermentation under controlled conditions is already

well established and can attain higher production yields (Vigani

et al., 2015; Lowrey et al., 2016). Moreover, heterotrophic

production delivers a higher level of lipid (Rıós et al., 2018) at

lower production costs (Muller-Feuga, 2013).

Overall, it is expected that novel sources of omega-3 LC-PUFA

will become available in greater volume and at a cost that enables

their greater use in aquafeed to restore EPA and DHA levels and to

safeguard the performance, health and welfare of farmed fish as well

as delivering high quality seafood products for human consumption

(Turchini et al., 2022).
5 Guidelines for future research

Current commercial aquafeed formulations for salmonids are

generally designed to meet the minimum requirements of EPA and

DHA (Lutfi et al., 2022). However, although these low levels can

support fish growth, there have been numerous incidences where

levels this low have negatively impacted fish health and welfare,

robustness, and nutritional value of the final product. It is therefore

critical to re-evaluate the benefits of increasing EPA and DHA levels

in salmonid diets, restoring nutritional qualities back to those levels

seen before FO became a limiting ingredient. Additionally,

requirements for LC-PUFA need to be further considered under

non-ideal farming conditions, such as higher thermal regimes,

hypoxia and/or infections (Huyben et al., 2021; Huyben et al., 2023).
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Cabré, E., Mañosa, M., and Gassull, M. A. (2012). Omega-3 fatty acids and
inflammatory bowel diseases - a systematic review. Br. J. Nutr. 107 Suppl 2 (S2),
S240–S252. doi: 10.1017/S0007114512001626

Calder, P. C. (2007). Immunomodulation by omega-3 fatty acids. Prostaglandins
leukotrienes essential Fatty Acids 77 (5–6), 327–335. doi: 10.1016/j.plefa.2007.10.015

Calder, C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes:
nutrition or pharmacology? Br. J. Clin. Pharmacol. 75 (3), 645–662. doi: 10.1111/j.1365-
2125.2012.04374.x

Calder, C. (2020). Eicosapentaenoic and docosahexaenoic acid derived specialised
pro-resolving mediators: concentrations in humans and the effects of age, sex, disease
and increased omega-3 fatty acid intake. Biochimie 178, 105–123. doi: 10.1016/
j.biochi.2020.08.015

Calder, P. C., Albers, R., Antoine, J. M., Blum, S., Bourdet-Sicard, R., Ferns, G. A.,
et al. (2009). Inflammatory disease processes and interactions with nutrition. Br. J.
Nutr. 101 Suppl 1, S1–45. doi: 10.1017/S0007114509377867
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fanim.2023.1147081/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fanim.2023.1147081/full#supplementary-material
https://doi.org/10.1016/j.cbpb.2005.08.005
https://doi.org/10.1093/jn/121.8.1163
https://doi.org/10.1007/s11745-997-0066-4
https://doi.org/10.1016/S0044-8486(03)00286-2
https://doi.org/10.1016/j.aquaculture.2009.08.029
https://doi.org/10.1017/jns.2017.28
https://doi.org/10.1016/S0002-9343(01)01114-7
https://doi.org/10.1017/S0007114512001626
https://doi.org/10.1016/j.plefa.2007.10.015
https://doi.org/10.1111/j.1365-2125.2012.04374.x
https://doi.org/10.1111/j.1365-2125.2012.04374.x
https://doi.org/10.1016/j.biochi.2020.08.015
https://doi.org/10.1016/j.biochi.2020.08.015
https://doi.org/10.1017/S0007114509377867
https://doi.org/10.3389/fanim.2023.1147081
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Carr et al. 10.3389/fanim.2023.1147081
Castro, L. F. C., Monroig, O., Leaver, M. J., Wilson, J., Cunha, I., and Tocher., D. R.
(2012). Functional desaturase Fads1 (D5) and Fads2 (D6) orthologues evolved before
the origin of jawed vertebrates. PloS One 7 (2), e31950. doi: 10.1371/
journal.pone.0031950

Castro, L. F. C., Tocher, D. R., and Monroig, O. (2016). Long-chain polyunsaturated
fatty acid biosynthesis in chordates: Insights into the evolution of fads and elovl gene
repertoire. Prog. Lipid Res. 62, 25–40. doi: 10.1016/j.plipres.2016.01.001

Dangour, A. D., Andreeva, V. A., Sydenham, E., and Uauy, R. (2012). Omega 3 fatty
acids and cognitive health in older people. Br. J. Nutr. 107 Suppl 2, S152–S158. doi:
10.1017/S0007114512001547

Davis, B., and Devine, M. D. (2023). Evaluation of long-chain omega-3 canola oil on
atlantic salmon growth, performance, and essential fatty acid tissue accretion across the
life cycle: a review. Aquaculture Int. 107 (Suppl 2), S152–S158. doi: 10.1007/s10499-
023-01099-3

Delgado-Lista, J., Perez-Martinez, P., Lopez-Miranda, J., and Perez-Jimenez, F.
(2012). Long chain omega-3 fatty acids and cardiovascular disease: a systematic
review. Br. J. Nutr. 107 Suppl 2, S201–S213. doi: 10.1017/S0007114512001596

Desaint, N., and Varbanova, M. (2013). The use and value of polling to determine
public opinion on GMOs in europe: limitations and ways forward. GM Crops Food. 4
(3), 183–194. doi: 10.4161/gmcr.26776

EFSA Panel on Dietetic Products Nutrition (2010). Scientific opinion on dietary
reference values for fats, including saturated fatty acids, polyunsaturated fatty acids,
monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 8 (3), 1461. doi:
10.2903/j.efsa.2010.1461

EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2014). Scientific
opinion on health benefits of seafood (fish and shellfish) consumption in relation to
health risks associated with exposure to methylmercury. EFSA J. 12 (7), 3761.

Endo, J., and Arita, M. (2016). Cardioprotective mechanism of omega-3
polyunsaturated fatty acids. J. Cardiol. 67 (1), 22–27. doi: 10.1016/j.jjcc.2015.08.002

FAO (2020). The state of world fisheries and aquaculture 2020: Sustainability in
action (Rome, Italy: Food and Agriculture Organization of the United Nations).
doi: 10.4060/ca9229en

FAO (2022). “The state of world fisheries and aquaculture 2022,” in Towards blue
transformation. (Rome, Italy). doi: 10.4060/cc0461en

Glencross, B. D. (2009). Exploring the nutritional demand for essential fatty acids by
aquaculture species. Rev. aquaculture. 1 (2), 71–124. doi: 10.1111/j.1753-
5131.2009.01006.x

Glencross, B. D., and Bachis, E. (2021). Byproduct-based fishmeals: Adding to the
future of fishmeal production. Aquafeed 13 (4), 21–24.

Glencross, B. D., Carr, I., and Santigosa, E. (2023). Distribution, deposition, and
modelling of lipid and long-chain polyunsaturated fatty acids in atlantic salmon fillets.
Rev. Fisheries Sci. Aquaculture 31 (1), 119–140. doi: 10.1080/23308249.2022.2090831

Glencross, B. D., De Santis, C., Bicskei, B., Taggart, J. B., Bron, J. E., Betancor, M. B.h
(2015). And tocher, dA comparative analysis of the response of the hepatic
transcriptome to dietary docosahexaenoic acid in atlantic salmon (Salmo salar) post-
smolts. BMC Genomics 16 (1), 684. doi: 10.1186/s12864-015-1810-z

Glencross, B. D., Tocher, D. R., Matthew, C., and Gordon Bell, J. (2014). Interactions
between dietary docosahexaenoic acid and other long-chain polyunsaturated fatty acids
on performance and fatty acid retention in post-smolt atlantic salmon (Salmo salar).
Fish Physiol. Biochem. 40 (4), 1213–1227. doi: 10.1007/s10695-014-9917-8

Gogus, U., and Smith, C. (2010). N-3 omega fatty acids: a review of current
knowledge. Int. J. Food Sci. technology. 45 (3), 417–436. doi: 10.1111/j.1365-
2621.2009.02151.x

Grisdale-Helland, B., Ruyter, B., Rosenlund, G., Obach, A., Helland, S. J., Sandberg,
M., et al. (2002). Influence of high contents of dietary soybean oil on growth, feed
utilization, tissue fatty acid composition, heart histology and standard oxygen
consumption of atlantic salmon (Salmo salar) raised at two temperatures.
Aquaculture 207 (3–4), 311–329. doi: 10.1016/S0044-8486(01)00743-8

Hatlen, B., Berge, G. M., Odom, J. M., Mundheim, H., and Ruyter, B. (2012). Growth
performance, feed utilisation and fatty acid deposition in atlantic salmon, salmo salar l.,
fed graded levels of high-lipid/high-EPA yarrowia lipolytica biomass. Aquaculture 364,
39–47. doi: 10.1016/j.aquaculture.2012.07.005

Henriques, J., Dick, J. R., Tocher, D. R., and Bell, J. G. (2014). Nutritional quality of
salmon products available from major retailers in the UK: content and composition of
n-3 long-chain PUFA. Br. J. Nutr. 112 (6), 964–975. doi: 10.1017/S0007114514001603

Herbert-Read, J. E., Thornton, A., Amon, D. J., Birchenough, S. N., Côté, I. M., Dias,
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