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data for automated prediction of
ketosis risk, and the effect of
potential interventions
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Vienna, Austria, 4Outcomes Research, Zoetis Center of Excellence, Zoetis, Dublin, Ireland
Causal search techniques enable inference from observational data, such as that

produced in Precision Livestock Farming. The Peter-Clark algorithm was used to

produce four causal models, for the risk of ketosis in individual cows. The data set

covered 1542 Holstein-Friesian cows on a commercial dairy farm in Slovakia,

over a period of 18months and had 483 variables, split into four samples for four-

way cross validation. The cow data was sorted into quartiles by predicted

postpartum blood ketone value. The observed incidences of ketosis by quartile

were 3.14%, 6.35%, 6.77%, 15.1%. To test the effect of intervention on the

reduction of ketosis cases on the farm, we predicted the expected effect of

20% lower dry matter in the total mixed ration over the 6 months pre-partum.

Predicted reductions in incidence of ketosis for the highest risk (4th) quartile

were -4.96%, -7.4%, -11.21%, and -11.07% of animals in the herd, respectively for

the four models. The different predictions were due to the different causal

structures estimated from the four data samples by the Peter-Clark causal

model search algorithm. To accurately predict the effect of intervention for

automatic optimization of herd performance it is necessary to determine the

correct causal structure of the model. Collinearity of inputs due to e.g. grouping

by pens, reduced the conditional independence of their effects, and therefore

the ability of the Peter-Clark algorithm to determine the correct causal structure.

To reduce the collinearity of variables, we recommend causal search on datasets

from multiple farms or multiple years.
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1 Introduction

Precision Livestock Farming (PLF) is the management of

livestock farming by means of automatic, real-time monitoring

and control of livestock production, reproduction, health, welfare

and environmental impacts (Berckmans, 2017). The purpose of PLF

is to guide farm management actions, to minimize input costs and

disease while optimizing production and potential profit (Polson

and Alonso, 2022). This requires models that predict not simply the

expected rates of disease and production as a passive observer, but

predict the expected outcome of alternative interventions by farm

management (Norton et al., 2019).

Subclinical ketosis (SCK) (≥1.2 mmol of b-hydroxybutyrate
(BHBA)/L of serum) is a common metabolic disease in early

lactation of dairy cows (Suthar et al., 2013), that increases the risk

of secondary diseases and directly reduces milk yield (Duffield et al.,

2009), (Vanholder et al., 2015), and reduces fertility (Walsh et al.,

2007). Algorithms to predict the risk of SCK from farm

management and continuous sensor data are an active area of

research with widely varying results, for example Sturm et al. (2020)

report sensitivity 67.0% and specificity 73.6% for their best model

using a time series classifier of their own design, while Schodl et al.

(2022) using a decision tree algorithm report sensitivity 14.3% and

specificity 94.0% for their best model, and several null results for

models with sensitivity 0%. Slob et al. (2021) provide a systematic

review of machine learning in dairy farm management, and Lei and

Simões (2021) review ketosis diagnosis and monitoring in

dairy cows.

Models which predict the outcome of actions are causal models.

They differ from models that forecast from purely observational

data, because they must correctly resolve different causal relations

that may produce similar statistical relations, e.g. a cockerel crowing

predicts the sunrise, but waking the cockerel in the night will not

cause the sun to rise. This requires some additional information,

either a reliable assumption about the direction of at least one causal

relation, or at least one variable that can be experimentally

manipulated (Pearl, 2009). The process of discovering correct

causal models from observational or mixed observational and

interventional data, is “causal structure search”. Given particular

constraints, there are mathematically proven algorithms for valid

and efficient causal structure search from observational data.

Causal modeling, prediction and search methods, including

graphical model search methods extensively described in Spirtes

et al. (2001); Peters et al. (2017); Pearl (2009) and Glymour et al.

(2019) have not been applied so far in the context of ketosis

detection. However, casual modeling methods were applied in

livestock agriculture and precision arable farming interventions.

The conceptual framework for inferring causal effects from

observational data was introduced into livestock research by Bello

et al. (2018). Chitakasempornkul et al (2019; 2020) applied

structural equation models (SEMs) and an inductive causation

algorithm in the analysis of reproductive performance traits in

gilts and sows. SEMs were used for Genome-Wide Association

Studies of the genomic architecture of milk proteins in dairy cattle

by Pegolo et al. (2021). Causal structure search algorithms were
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reviewed by Rosa and Valente (2013) for the goal of inferring causal

effects from observational data in livestock. The Causal Forest

technique was demonstrated on synthetic data for estimating site-

specific economically optimal nitrogen rates in an arable farming

scenario by Kakimoto et al. (2022). Grounding abstract causal

structure search, on physical perception from video and other

PLF data, for automated monitoring and intervention in PLF, was

proposed by Hockings et al. (2022).

The objectives of this study were to determine the feasibility of

using causal structure search on archive data to generate a

predictive model for SCK, and to generate predictions of the

expected effect of potential management interventions to reduce

the incidence of SCK. Because of ethical concerns of research on live

animals the study is intended to test causal structure search

techniques on archive data prior to designing a study with live

farm animals.
2 Materials and methods

2.1 Animals and housing

The archive data set came from a commercial dairy farm in

Slovakia, collected in 2016-2017 (Sturm et al., 2020). Animal

sampling and data collection were approved by the institutional

ethics committee of the University of Veterinary Medicine Vienna,

Austria (ETK-09/02/2016) as well as the Slovakian Regional

Veterinary Food Administration. Animals were housed in

ventilated freestall barns with group pens or cubicles, with rubber

mats bedded with dried slurry separator material. The composition

of the basal diet, mainly based on corn silage, alfalfa silage, wet

distillers grains with solubles, corn gluten meal, corn‐cob mix,

rapeseed extraction meal and beet pulp silage, was adjusted

during the study period based on regular analyses of the total

mixed ration (TMR), (Süss et al., 2019). TMR was offered twice per

day and adjusted daily to achieve refusals of 5–10%. After removing

corrupted entries, the dataset covered 1542 Holstein-Friesian cows

over a period of 18 months.
2.2 Dataset

Postpartum blood ketone measurement for all cows was taken

at day six post-partum (day five of lactation) using commercially

available handheld devices (FreeStyle Precision Xtra, Abbott GmbH

and Co. KG, Wiesbaden, Germany) previously evaluated for use on

farms (Iwersen et al., 2013). Some cows had additional blood ketone

tests at variable dates postpartum. Where multiple measurements

were taken, the highest blood ketone result was used. Cows with

blood ketones greater than 1.2mmol/l were diagnosed as ketotic. In

this study no distinction was made between subclinical versus

clinical ketosis. Body condition score (BCS) was visually

estimated according to Edmonson et al. (1989). Cow activity was

monitored post-partum and in the last month pre-partum using

ear-tag accelerometers, (SMARTBOW, Zoetis LLC, Parsippany, NJ,
frontiersin.org
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USA). Activity was classified by the manufacturer on three aspects

(i) lying/not lying, (ii) ruminating/not ruminating, (iii) inactive/

active/highly active (Sturm et al., 2020). Ambient temperature and

humidity in the cow barn were automatically logged hourly

(Tinytag 2 Plus, Gemini Data Loggers Ltd., Chichester, West

Sussex, UK). Temperature-humidity index (THI)

THI = (1:8 ∗T + 32) − ((0:55 − 0:0055 ∗RH) ∗ (1:8 ∗T − 26))

where T = air temperature (°C) and RH = relative humidity (%),

(Kendall and Webster, 2009), was calculated and the daily max and

min values of THI and humidity were found. Records of milk yield at

twice daily milkings, and monthly lab testing for milk composition and

somatic cell count (SCC) (DHIA, Dairy Herd Improvement

Association Bavaria, Munich, Germany), for each cow were extracted

from the records. Feeding records included the quantity of each

ingredient used to compose the total mixed ration, for each group of

cows at each feeding, as well as the %dry matter and the average dry

matter feed per cow for the pen. Additionally 50 stored frozen feed

samples from the study were analyzed in 2022 by the University Clinic

for Ruminants, VetMedUni, using NIR spectroscopy, using X-NIR™

Portable NIR Analyzer (Dinamica Generale S.p.A., Poggio Rusco,

Italy). Other health and farm management records exported from

DairyComp 305 (Valley Agricultural Software, Tulare, USA), (from

routine commercial operation) included the (i) reproductive events

(dry, fresh, open, bred, pregnant), (ii) diseases detected by farm staff

(lameness, mastitis, metritis, paresis, cystitis, endometritis, milk fever,

pneumonia), (iii) treatments given, and (iv) when the cow was moved

to a different pen number, depending on her production stage or health

status (e.g. in case of mastitis). In total the dataset was composed of 483

variables, which were later used for causal model search.

2.2.1 Data aggregation
For each partus, data up to six months pre-partum was extracted,

together with the post-partum blood ketone measurements, making

one case. Cows were identified by a combination of national animal

IDs, and non-unique barn animal IDs combined with birth dates. A

series of Python scripts were written to parse the data into Pandas

dataframes, collate data by national Cow ID, and clean the data

formats. The scripts, and both the raw data and the collated, cleaned

data, are archived by VetMedUni, and accessible by request to the

Clinical Unit for Herd Health Management in Ruminants and the PLF

Hub. The aggregated database had 483 variables. Over half the variables

were the various crops used as ingredients for the total mixed ration.

The production cycles of the cows were identified by their calving dates

and days-in-milk/days-pre-partum. Each variable for each cow was

summed for each month pre/post-partum.

With the cases sorted by national cow registration number, the

data-set was split two ways (i) 1st & 2nd half, samples A & B, and (ii)

odd and even cases, samples C & D, to create two pairs of datasets.

Sixty seven cases were dropped because blood ketone measurements

were not recorded for them. This gave final case counts of 771

sample A, 762 in sample B, 769 in sample C, and 764 in sample D.

These were used for 4-way internal cross validation of the results.

Models trained on sample A were tested on sample B and vice versa,

and likewise between samples C and D.
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2.3 Preliminary investigation

2.3.1 Temporal distribution of ketosis and calving
The distribution by calendar date, and by days postpartum were

plotted for ketosis tests and cases and number of cows calving

(Figures 1A–D). All detected ketosis cases occurred in the two

weeks following partus (Figure 1B). There was significant

seasonality (p>0.05, on t-test) (Figure 1D) and a long term

declining trend due to cows leaving the study group (Figure 1C).

For this reason, calving season (date of calving in absolute number

of days before or after 1st of July) was added to the study data.

2.3.2 Selection of significant variables
The number of variables was reduced from 483 to 112, by

selecting only those that showed significant (p>0.05, on t-test) linear

correlation with postpartum blood ketone concentration. This

eliminated most of the individual feed ingredients. Absolute date

of partus was replaced by days from 1st July, (Calving season

summer/winter) to represent the seasonality of ketosis.
2.4 Causal structure search and prediction
of expected effects

The Peter-Clark (PC) causal structure search algorithm (Ch

5.4.2, Spirtes et al., 2001), implemented in the Tigramite software

package (Runge, 2018; Runge et al., 2019; Runge, 2022), was used

with the linear partial-correlation conditional independence test. A

time lag (Tau) of zero was used because the temporal structure was

given by the prior knowledge graph. The PC ‘alpha’ parameter for

the maximum p-value of links to be retained, was set to 0.2. The PC

algorithm’s parameter for “maximum dimensions of conditional

independence” was set to 1. These very permissive settings were

required to ensure a meaningful result with this dataset, (see the

discussion of collinearity in section 4).

2.4.1 Prior knowledge
A total of 112 variables were used, (Table 1). A directed graph of

plausible causal edges was given to restrict the scale of the causal

structure search. Summary graphs are shown in Figure 2. The full

text of the graph is in the supplementary material. Prior knowledge

used included (i) temporal order, and (ii) variables acted directly on

peak postpartum blood ketones, via their influence on body

condition score, or via cow activity in the last month prepartum.

This provided a graph as the start point for PC search, with 536

edges between 113 variables, as opposed to 112*113 = 12,656 edges

for a fully connected graph.

2.4.2 Prediction of the ketosis risk from
observational data

Linear regression models were fitted to the causal graphs

produced by the PC algorithm. A logistic regression was then

fitted on the training data, to the normalized predicted blood

ketones vs cases with measured blood ketones over the subclinical

ketosis threshold (1.2mmol/l). The linear models were then used to
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predict the expected blood ketones of each cow in the test data

(implicitly the mean of the probability distribution of blood ketones

for each cow). The logistic regression curves were then used to

convert the expected blood ketones to predicted risk of ketosis for

each cow (Figure 2). The cows were then grouped by quartiles of

expected blood ketones, and the expected number of ketosis cases

per quartile was computed and compared to the observed number

of cases, (Table 2).

2.4.3 Prediction of the expected effect
of interventions

The predictive model and logistic curve were then used to

predict the expected reduction in incidence of ketosis for a 20%

reduction in the proportion of dry matter in the TMR, relative to

that fed in the archive data, over the 6 months prepartum, (Table 3).

This input was chosen, because it affected links present in all four

models. It is not necessarily a practical choice on a real farm.

Note, when predicting the effect of an intervention on a target

variable (e.g. the rate of ketosis in the herd), it is essential to first

predict the intermediate variables on the causal path(s) between the

intervention and the target effect, (BCS and Activity, in our causal

graph). Otherwise, if the intermediate variables are kept the same,
Frontiers in Animal Science 04
this blocks the causal paths via those variables. This implies asking

e.g. “What would the risk of ketosis be, for an animal whose Activity

was directly controlled to maintain the value from the original data,

despite changing the TMR ingredients?”.
3 Results

3.1 Causal graphs

PCcausal structure searchproduced directed acyclic graphs for each

sample (A,B,C,D) of training data, having 41, 50, 45, and 47 causal edges

respectively, eliminating >90% of the 536 edges given in the prior

knowledge. The PC algorithm retains or rejects edges in the graph (i.e.

causal links between variables) on the basis of their minimum

conditional independence. The retained edges acting on measured

blood ketones are given in Table 2 below, with their p-values and

Pearson R-values from the partial-linear-correlation conditional

independence test. (See Supplementary Material for the full text of the

edges of the graph.) The only causal edges which are common to all four

models are from “season” (semester-6) and “highActive” (cowactivity in

last month prepartum) to “kcheck” (postpartum blood ketones).
A

B

D

C

FIGURE 1

(A) The distribution blood ketone tests per day after partus. (B) The distribution of ketosis cases (blood ketones >1.2mmol/l) after partus. (C) The
declining number of cows in the study, demonstrated by the number of postpartum ‘KCHECK’ blood ketone measurements each day from the start
of the study. Note many cows were tested more than once. (D) The seasonal distribution of ketosis cases, in days from the start of the study. These
plots are for group D, i.e. even numbered cases from the dataset.
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3.2 Prediction of risk of ketosis

The distribution of predicted vs measured blood ketones (both

normalized), over the four-way cross-validation, showed mean
Frontiers in Animal Science 05
Pearson’s R(769) = 0.304, P-value = 2.08e-16, significant at

p<0.01 (Table 3; Figure 3). The cow data was sorted into quartiles

by predicted postpartum blood ketone value. The observed

incidences of ketosis, by quartile of predicted value, are 3.14%,

6.25%, 6.7%, 15.1%, with a whole herd incidence of ketosis of 7.82%.

The correlation of predicted to observed incidence of ketosis per-

quartile, over the four-way cross-validation, showed Pearson’s R

(14) = 0.936, P-value =9.48e-08, significant at p<0.01.
3.3 Multi-collinearity of input variables in
the dataset

Of the 96 variables in the prior knowledge graph all have

moderate or high collinearity. 38 have moderate collinearity with

Variance Inflation Factor (VIF) in the range 1.0 to 5.0, while the

remaining 58 have high collinearity with VIF > 5.0. (See table in the

Supplementary Material.)
3.4 Prediction of the expected effect
of interventions

Table 4 shows the predicted effect on incidence of ketosis, for a

20% reduction in the proportion of dry matter in the TMR, relative

to that fed in the archive data, over the 6 months prepartum. The

predicted reductions in incidence of ketosis for the fourth quartile

(highest risk group) were -4.96%, -7.4%, -11.21%, and -11.07% of

animals in the herd, respectively for the four models.
4 Discussion

4.1 Causal graphs

The variability of ‘which links were selected’, reflects

multicollinearity (Section 3.3 and table in Supplementary Material),

of the variables. This is expected, due to cows being grouped in pens

and fed TMR according to their production stage. Consequently there

is insufficient independence of the inputs to produce independence of

their effects on blood ketones, or intermediate variables such as BCS

and cow activity. This causes low confidence with regards to the

existence of individual causal links (Table 2), and requires permissive

settings of the parameters of the PC algorithm, to avoid wrongly

excluding all the links. Additional concerns include (i) that the PC

algorithm is not robust to unmeasured confounding variables

(Glymour et al., 2019), (ii) it is likely that the true causal relations

are non-linear, which may not be correctly detected by the linear-

partial-correlation conditional independence test.
4.2 Linear regression model on the
causal graph

The low confidence in the causal links is distinct from the

partial gradient of the linear regression model fitted to the causal
TABLE 1 Variables used in causal structure search and causal
predictive model.

Variables selected Months pre-partum used

Milk variables

Milk yield at milking 1 & 2 of each
day (kg)

6,5,4,3,2,1 sum for each month

Monthly milk test (DHIA)

‘MILK’, Total milk for the month (kg) 5,4,3,2,1

‘PCTF’, Milk fat % 2,1

‘PCTP’, Milk protein % 6,5,4,3,2

‘FCM’, Fat corrected milk in l/cow.day 5,4,3,2,1

‘LGSCC’, Milk log(somatic cell count) 6,5,4,3,2,1

‘MUN’, Milk urea nitrogen 6,4,3

‘RELV’, Relative production level
(compared to the average cow in the
herd)

1

305-day mature milk equivalent
production for previous lactation.

1

Activity variables

highActive/active/inactive 1 sum for each over the month

stand/lie 1 sum for each over the month

Climate variables

‘THI_max’, ‘THI_min’,
‘humvalue_max’, ‘humvalue_min’,

6,5,4,3,2,1 mean over the month, of
the daily maximum or minimum
value.

Calving season summer/winter calving date in absolute number of
days from 1st of July

Feed variables

dry matter per animal per month 6,5,4,3,2,1

total mixed ration % dry matter 6,5,4,3,2,1

‘FeedPerCow’ 1

‘cow mineral’ 1

propionic acid supplement 5,4,2

‘Total weight of feed per pen’ 5,2,1

‘WDGS’, wet distillers grains with
solubles

2,1

‘premix high plav’, premix of
concentrates for the high lactation

2,1

Health variables

‘PARESIS’, 6,5,4,3,2,1

Body condition score 6,5,4,3,2

‘kcheck’ highest reading post partum
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FIGURE 2

Summary prior knowledge graphs. These represent the initial set of causal edges from which causal structure search eliminated those not supported
given the conditional independencies in the data. Right: Structure of causal relations between groups of variables. Left: Temporal order, (i) ‘Inputs’ of
each month, act on ‘Body Condition Score’ of the next month, and (ii) all variables act directly on post-partum blood ketones. Cow Activity,
measured by accelerometer, is only available for the month preceding partus.
TABLE 2 Minimum conditional independence of links to measured blood ketones.

Sample A
(month prepartum)

p-val
R-val

Sample B (month
prepartum)

p-val
R-val

Sample C (month
prepartum)

p-val
R-val

Sample D
(month prepartum)

p-val
R-val

propionic acid supplement (2) 0.00013
0.1382

season of year at calving 0.00094
0.119

season of year at calving 0.0012
0.1168

propionic acid
supplement (2)

4.54E-
05
0.1466

season of year at calving 0.00052
0.1255

Milk % total protein (5) 0.0071
0.097

cow activity: highActive (1) 0.010
-0.0933

season of year at calving 0.0027
0.108

highActive (1) 0.0041
-0.1038

Second milking total (2) 0.023
-0.0819

total mixed ration % dry
matter (3)

0.035
0.0763

second milking total (2) 0.0084
-0.095

premix of concentrates for the
high lactation
(1)

0.023
0.0826

305-day mature milk
equivalent (1)

0.024
-0.0814

Fat corrected milk (4) 0.062
-0.0676

cow activity: highActive
(1)

0.0094
-0.0937

total mixed ration % dry matter
(1)

0.050
0.0711

First milking total (4) 0.026
-0.0801

cow activity: inactive (1) 0.069
0.0658

tinytag_hum value_max
(5)

0.011
-0.0923

Fat corrected milk (3) 0.053
-0.0703

Relative production level
(1)

0.027
-0.0795

THI_max (5) 0.094
-0.0606

first milking total (4) 0.022
-0.0828

Fat corrected milk (4) 0.065
-0.067

highActive (1) 0.033
-0.0769

tinytag_hum value_max (3) 0.12
-0.0565

total mixed ration % dry
matter (4)

0.027
0.0799

tinytag_hum value_max (3) 0.076
-0.0643

Milk % total protein (6) 0.062
0.0672

total milk (3) 0.14
-0.0537

total mixed ration % dry
matter (1)

0.034
0.0763

dry matter per animal per
month
(6)

0.088
0.0619

total mixed ration % dry
matter (2)

0.14
0.0539

total mixed ration % dry
matter (2)

0.14
0.0531

cow activity: stand (1) 0.053
-0.0699

cow activity: inactive (1) 0.098
0.0601

total milk (2) 0.14
-0.0538

dry matter per animal per
month (6)

0.15
0.0519

milk log somatic cell
count (4)

0.057
0.0687

(Continued)
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graph. The former concerns whether the link exists, the latter

concerns what the effect of the link is, if it is present. In the

normalized linear regression model, (see table in Supplementary

Material) all except two of the coefficients of the links to blood

ketones, are inside the range 0.17 to -0.15. The exception is one pair

of variables (“305ME” and “RELV” in the last month prepartum)

present only in the sample ‘B’ model, that appear to cancel each

other out, being collinear with opposite coefficients, -2.80 and 2.73.

The weakness of the regression coefficients reflects (i) the

probabilistic nature of the risk of ketosis, with a minority of cows

developing ketosis, for all combinations of inputs, and (ii) that

ketosis is a deregulation disease with blood ketones rising

exponentially in those cows that fail in ketone regulation. If non-

linear effects are present as expected, then linear regression on the

causal graph will fail to correctly represent them.
4.3 Prediction of ketosis risk

The difference in outcome for the quartiles of the predictive

model is sufficient to be useful, e.g. indicating which animals require

monitoring or preemptive intervention. It is the purpose of causal

models to be able to predict which interventions would be effective.

The high level of uncertainty remaining indicates that there are
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likely other factors not captured in this six month pre-partum data-

set. It would be desirable to include the available short-term

behavioral and environmental data for the days leading up to and

following partus, as used in Sturm et al. (2020). Calf weight, dam

weight and colostrum volume are additional factors reported in the

literature (Vanholder et al., 2015). Expanding the causal graph to

consider the protein, carbohydrate, roughage and propionate

content of the ration, would allow inference of the composition of

each ingredient, and prediction of TMR nutrients on all days, from

those days where measurements are available. Including estimates

of total protein and energy balance in the causal graph, would allow

the deficit state to be predicted, which is understood to be the

primary physiological cause of raised blood ketone concentration

(Vanholder et al., 2015). This is possible with modern ration mixers

that include instruments such as NIR spectrometers, which can

measure these feed characteristics in real time.
4.4 Predicting optimal actions to
reduce incidence of ketosis and
optimize production.

The different predictions (Table 3) were due to the different causal

structures estimated from the four data samples by the PC causal
TABLE 2 Continued

Sample A
(month prepartum)

p-val
R-val

Sample B (month
prepartum)

p-val
R-val

Sample C (month
prepartum)

p-val
R-val

Sample D
(month prepartum)

p-val
R-val

total milk (2) 0.12
-0.0567

Milk urea nitrogen
(6)

0.16
0.0507

Fat corrected milk (3) 0.16
-0.0514

tinytag_hum value_max
(3)

0.064
-0.0668

second milking total (2) 0.13
-0.055

total milk (1) 0.18
-0.0488

dry matter per animal per
month(1)

0.18
0.0481

total milk (2) 0.11
-0.0575

total milk (1) 0.14
-0.0541

total feed (1) 0.18
0.0483

Fat corrected milk (1) 0.14
-0.0537

milk log somatic cell count (5) 0.15
0.0526

tinytag_hum value_max (3) 0.19
-0.0475

total milk (3) 0.14
-0.0537

cow activity: stand (1) 0.16
-0.051

total mixed ration % dry
matter (4)

0.198
0.0464

tinytag_hum value_max
(4)

0.19
-0.0472

total mixed ration % dry matter
% (4)

0.18
0.0482
fronti
TABLE 3 Ketosis cases per quartile, predicted and observed.

Sample A Sample B Sample C Sample D

Quartile predicted observed predicted observed predicted observed predicted observed

1st 8.35 5 8.59 5 8.37 9 8.45 10

2nd 14.47 13 13.63 20 14.35 15 13.97 19

3rd 21.14 28 20.65 22 21.04 16 20.93 24

4th 36.03 45 36.56 31 36.47 41 36.29 36

total 80.00 91 79.44 78 80.23 81 79.63 89
The number of cows with measured blood ketones >1.2mmol/L are written in bold text.
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model search algorithm. This indicates that the true causal structure

and causal functions have not been reliably identified. This might be

improved by (i) choosing a causal structure search algorithm that is

robust to unmeasured confounders, (ii) correctly models the

nonlinearities expected in the data, (iii) including additional data on

known factors such as peripartum behavior, calf weight and colostrum

production. However these are likely to be of limited benefit if the

collinearity of the data is not broken. This requires that there be

sufficient independence in the inputs, especially feed and environment,

that their individual effects on the system can be distinguished. This

might be achieved by having (i) many years of data, (ii) data from

many different farms, (iii) by varying the inputs for individual cows or

small groups of cows. This last option is becoming a possibility given

machinery for (i) individual cow feeding, such as dairy robots that

include concentrate feeding after milking, (ii) small group feeding with

mobile mixer wagons. These would make it possible for farm

management software to automatically incorporate evaluations of

feed ingredients into the routine management of precision dairy

farms. Continuous evaluation and optimisation of other
Frontiers in Animal Science 08
interventions such as cooling and ventilating to prevent heat stress,

could likewise be integrated into farm automation.
4.5 Transferability of causal models to
other farms

This study used data from a single farm. To create a model that

is transferable to unknown farms would require data from at least

several farms, including data on how the environment differed

between the farms. When the data about the farm environment

completely captures the variation between farms, then the effect of

knowing the identity of the farm would decline to zero.
4.6 Further work

It is expected that there are unmeasured factors that may act as

confounders. For these reasons it would be important to repeat the
FIGURE 3

Results. Scatter plot of cases: (x-axis) normalized predicted pre-partum blood ketones, (y-axis) peak pre-partum ketones. (Point colour) density of
cases. Curve (red) Logistic regression predicting risk of SCK, (green) ketosis threshold (>= 1.2mmol/l), (quartiles, gold) predicted mean % risk of SCK
by quartile of predicted values, (quartiles, blue) observed mean % risk of SCK by quartile of predicted values.
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analysis with a search algorithm such as Fast Causal Inference (FCI)

(Ch 6.7, Spirtes et al., 2001), that is robust to unmeasured

confounders, and to select a conditional independence test that

can detect simple non-linear relations such as second or third order

polynomials, and multinomials allowing interaction between

inputs. It is important to avoid unrestricted nonlinearity, because

such testing requires exponentially more processing and data. It is

also desirable to include higher frequency data (daily or hourly

environment and cow activity) for the days immediately before and

after parturition.

Testing of outcomes of predicted optimal management actions

on archive data could be done by matched pairs. When an optimal

search and modeling procedure has been found, extending the

analysis to multiple farms will allow potentially commercially useful

models to be developed. Once a credible model has been developed

from archive data, then small scale on-farm testing could begin to
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prospectively verify the efficacy of the predicted optimal

management actions.
5 Conclusions

Causal models fitted from observational data, can generate

predictions of the expected effect of interventions. These predictions

would be applicable in PLF to predict the optimal management of

herds and individual cows to minimize the incidence of disease while

optimizing production. Collinearity of inputs arises when all animals at

the same stage of production are housed together and fed the same

ration, this limits the possibility of distinguishing the effects of different

inputs. The use of prior information about which causal links are

plausible and which free parameters are required, is essential to restrict

the causal structure search to a tractable scale, and limit the quantity of

data required. The choices of (i) causal structure search algorithm, (ii)

conditional independence test, and (iii) regression model, should

match the expected characteristics of the problem with regards to (i)

possible unmeasured confounders, (ii) nonlinear response to inputs,

(iii) interactions between the inputs. Steps required to produce causal

models usable in PLF would include (i) address the issues of collinearity

and analysis above, such that cross-validation arrives at causal models

that closelymatch each other, (ii) validate themodels by experimentally

verifying a sample of their predictions.
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