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Optimising resource use efficiency in animal- agriculture-production systems

is important for the economic, environmental, and social sustainability of food

systems. Production of foods with increased health enhancing aspects can

add value to the health and wellbeing of the population. However, enrichment

of foods, especially meat with health enhancing fatty acids (HEFA) increases

susceptibility to peroxidation, which adversely influences its shelf life,

nutritional value and eating quality. The meat industry has been challenged

to find sustainable strategies that enhance the fatty acid profile and

antioxidant actions of meat while mitigating oxidative deterioration and

spoilage. Currently, by-products or co-products from agricultural industries

containing a balance of HEFA and antioxidant sources seem to be a

sustainable strategy to overcome this challenge. However, HEFA and

antioxidant enrichment processes are influenced by ruminal lipolysis

and biohydrogenation, HEFA-antioxidant interactions in rumen ecosystems

and muscle biofortification. A deep understanding of the performance of

different agro-by-product-based HEFA and antioxidants and their application

in current animal production systems is critical in developing HEFA-

antioxidant co-supplementation strategies that would benefit modern

consumers who desire nutritious, palatable, safe, healthy, affordable, and

welfare friendly meat and processed meat products. The current review
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presents the latest developments regarding discovery and application of

novel sources of health beneficial agro-by-product-based HEFA and

antioxidants currently used in the production of HEFA-antioxidant enriched

ruminant meats and highlights future research perspectives.
KEYWORDS
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1 Introduction

There are many breeds and genotypes within the ruminant

animal species of sheep, goats and cattle around the world, each of

them is adapted to the different environments they live in and the

diets they consume. Ruminant animals obtain their nutrients from

fresh forage materials of native rangelands or cultivated pastures,

crop residues, cereal grains, preserved forages and agri-food by-

products (Ponnampalam et al., 2022), and nutrition and feeding

strategies play a major role in the wellness, productivity, and survival

of animals. Numerous studies have investigated the effect of feeding

systems and feed composition on the fat content, fatty acid (FA)

composition and antioxidant status of meat in ruminants (Scollan

et al., 2006; Chilliard et al., 2007; Noci et al., 2011; Chauhan et al.,

2014; Berthelot and Gruffat, 2018; Vahmani et al., 2020). Dietary

proteins, lipids and carbohydrates are vital for ruminant growth and

development. Equally, vitamins, minerals and health enhancing fatty

acids (HEFA) are crucial for animal health, well-being and product

quality (Kaur et al., 2014; Ponnampalam et al., 2021a; Guo et al., 2023;

Kearns et al., 2023b). The HEFA include the parent (precursors),

their products (derivatives) as well as their biohydrogenation

intermediates (BHI). These in turn include alpha-linolenic acid

(ALA, C18:3n-3), eicosapentaenoic acid (EPA, C20:5n-3),

docosapentaenoic acid (DPA, C22:5n-3), docosahexaenoic acid

(DHA, C22:6n-3), linoleic acid (LA, C18:2n-6), rumenic acid (RA,

cis(c)9, trans(t)11-18:2), and trans vaccenic acid (TVA, cis(c)9, trans

(t)11-18:1). The economic return of animal production systems is

largely dependent on the yield, quality, nutritional value and storage

stability of the meat produced by the flock or herd.

Red meat, obtained from lamb/mutton, beef, and chevon, is rich

in vital nutrients, including a high amount of highly digestible

proteins, containing all essential amino acids to meet human

requirements, B vitamins (mainly vitamin B12), zinc, iron, and

selenium (Klurfeld, 2018). Red meat is one of the most important

animal source foods in many countries all over the world. However,

epidemiological data from meta-analyses shows that excessive

consumption of red meat and processed meat can have

deleterious effects, including an increased risk of colorectal cancer

and premature death (Schwingshackl et al., 2017; WCRF et al.,

2018), leading to recommendations to limit consumption to 500 g/

week for red meat and 150 g/week for processed meat (Prache et al.,
02
2022a). North America, Europe and Oceania regions consume large

quantities of red and white meat, African regions consume the least

amount, and the Asia and Latin America regions consume

moderate amounts. The per capita consumption per year of beef-

veal, sheep meat (lamb and mutton), poultry meat and pork

worldwide, and within major regions of the world is shown in

Figure 1. As goat meat intake is very small in quantity around the

world and mostly associated with some ethnic groups within

countries, it was not shown. The per capita consumption of red

meat around the world has increased from 10 to 20 kg of meat

between 1961 and 2020 (Ritchie et al., 2019).

The mean consumption of unprocessed and processed red meat

per person across countries varies due to affordability, availability,

and preference. The low-fat content (of particular cuts) relevant to

all meats has great importance due to the links found between meat

FA consumption and prevalence of chronic disease (Bernstein et al.,

2010; Abid et al., 2014). Table 1 below provides some information

on consumption of beef-veal, sheep meat (lamb-mutton), poultry

meat and pork from developed and developing countries around

the world, expressed in retail weight.

Ruminant meat is a good source of HEFA. Linoleic acid and

ALA are parent (precursor) fatty acids, which cannot be synthesised

by the animal and human body and must be obtained from the diet

(Kaur et al., 2014; Ponnampalam, 1999). These two FA are vital for

the synthesis of their longer chain polyunsaturated fatty acid

(PUFA) derivatives and their bioactive intermediates in the

rumen and fortification in animal tissues (Ponnampalam et al.,

2021b). In addition, ruminant meats contain nutrient antioxidants

such as vitamins A, C and E, and the minerals copper, zinc and

selenium (Bourre, 2011; Cabrera and Saadoun, 2014), which

scavenge the free radicals and reactive oxygen species (ROS) in

the cell, thereby mitigating oxidative stress and its consequences in

the body (Zehiroglu and Ozturk Sarikaya, 2019). Both HEFA and

antioxidants play a crucial role in the maintenance and/or

enhancement of animal welfare, meat shelf life and sensory

attributes and health of human beings (Scollan et al., 2006;

Kurutas, 2015; Lauridsen, 2019; Ponnampalam et al., 2021a;

Ponnampalam et al., 2022). Therefore, enriching ruminant meat,

which is consumed by the majority of the world population, with

HEFA and antioxidants could improve the nutritional value (i.e.,

health aspects), quality (i.e., sensory), and storage stability (i.e., shelf
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life) of meat and eventually benefit the health of human beings as

illustrated in Figure 2. This review aims to provide an update on

aspects of various diets and feeding strategies contributing to the

enrichment of HEFA and antioxidants in meat from sheep, goats

and cattle, enabling improvement in the nutritional value, quality

and health aspects of red meat that in turn may enhance health and

well-being of humans upon consumption.
2 Feed-based enrichment of health
enhancing fatty acid concentrations in
red meat from sheep, goats and cattle

Meat from ruminant and monogastric animal species

contributes important sources of nutrients from childhood to old

age in many communities in developed and developing countries

(FAO, 2011; Pereira and Vicente, 2013; FAO, 2017). Red meat from

ruminants can offer balanced nutrient profiles and promote

consumer health in many societies around the world (Pereira and

Vicente, 2013), provided it is not consumed in excess (Prache et al.,

2022a). Nutrient composition of meat is influenced by the type of

diet that the animals consume. For example, feeding grain-based

diets to ruminants increases intramuscular fat (i.e., marbling),

omega(n)-6 FA concentrations and the n-6:n-3 ratio in meat

(Aurousseau et al., 2004; Ponnampalam et al., 2017; Chikwanha

et al., 2018, 2007; Berthelot and Gruffat, 2018; Gruffat et al., 2020;

Clinquart et al., 2022; Davis et al., 2022). The latter effects are

mainly due to variation in diet composition and nutrient availability

of feeds affecting the ruminal biohydrogenation process, digestion

and absorption of nutrients in the gastro-intestinal tract (GIT) of
Frontiers in Animal Science 03
the host animal and subsequent metabolism in the body,

determining the availability of energy and nutrients for the

synthesis of biochemical components in meat.

There are many reasons for the variation in HEFA concentrations

in meat, mainly determined by the ruminal lipolysis and

biohydrogenation process of microbial activity. Lipids/fats in the

diet can be categorised as protected or unprotected, depending on

their susceptibility to microbial degradation and biohydrogenation in

the rumen. Dietary fats can be protected naturally (e.g., feeding whole

oilseeds) or by chemical interventions (fat emulsification or

encapsulation within proteins) to form calcium soaps or amides,

which protect against rumen degradation. Protected fats are

conditioned to limit their degradation in the rumen while

unprotected fats are subjected to ruminal degradation, whereby

PUFA are hydrogenated into SFA and free FAs as a result of

ruminal lipolysis by microbes. Biohydrogenation is not

comprehensive; a portion of unprotected fats may by-pass

degradation in the rumen, thereby becoming available for

absorption and deposition in muscle and other tissues.

Lipids are either consumed or synthesised de novo and it should

be noted that the digestion and absorption of lipids (or fats) in

ruminant and monogastric animals are not similar. This is due to

their feeding nature and structure of digestive systems. Ruminant

animals accustomed to consuming diets containing 1–4% fat, and

lipid supplements fed to ruminants above 5–6% on a dry matter basis

may cause negative effects on rumen microbial activity, affecting feed

intake and animal productivity. With monogastric animals having a

stomach as one organ for temporary storage of diet (fats) in the

absence of rumen microbial activity, they can handle greater amounts

of lipids in their diet and the fat deposition in meat resembles dietary

lipid composition, while this is not the case for ruminants. More
FIGURE 1

The per capita consumption (kg / year) of beef-veal, sheep meat (lamb and mutton), poultry and pork of world and major regions of world. Source:
OECD/FAO (2021), OECD Agriculture statistics (database), http://dx.doi.org/10.1787/agr-outl-dataen.
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TABLE 1 Per capita consumption (kg / year) of beef and veal, pork, poultry meat and sheep meat (lamb-mutton) from developed and developing
countries around the world.

Countries
Per capita consumption of meat

Beef and veal Pork Poultry meat Sheep meat

Argentina 35.55 11.51 40.45 0.96

Australia 23.51 23.93 45.77 6.94

Brazil 21.56 12.64 44.34 0.6

Canada 18.9 15.64 34.91 0.88

Chile 23.14 20.74 34.88 0.39

China 4.73 28.71 13.6 3.27

Colombia 9.67 9.33 31.03 0.02

Egypt 6.19 0.02 12.69 0.53

Ethiopia 2.5 0.01 0.49 1.98

European Union 10.41 33.18 23.91 1.31

India 0.58 0.18 2.38 0.52

Indonesia 2.01 0.68 12.61 0.45

Iran 4.7 0 22.98 3.54

Israel 25.08 0.99 63.84 1.52

Japan 7.29 16.65 17.73 0.16

Kazakhstan 21.8 5.71 22.91 7.95

Korea 12.08 30.35 20.08 0.37

Malaysia 5.1 5.63 44.05 0.89

Mexico 8.81 15.37 32.35 0.72

New Zealand 11.21 17.99 39.68 3.19

Nigeria 1.09 1.09 0.99 1.7

Norway 14.02 22.05 16.87 4.54

Pakistan 7.17 0 7.07 2.97

Paraguay 16.61 7.18 8.51 0.37

Peru 4.13 4.38 48.83 1.01

Philippines 2.33 10.66 14.05 0.27

Russian Federation 9.07 22.68 26.67 1.3

Saudi Arabia 4.2 0.31 37.22 4.53

South Africa 11.35 4.33 33.72 2.56

Switzerland 13.91 21.24 12.72 1.29

Thailand 1.13 9.46 7.24 0.03

Türkiye 7.54 0 17.38 1.19

Ukraine 4.72 13.84 21.19 0.19

United Kingdom 11.56 16.21 27.75 3.92

United States 26.67 23.2 51.33 0.53

Vietnam 5.14 31.42 15.2 0.19
F
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Meat consumption expressed in retail weight. Source: OECD/FAO (2021), OECD Agriculture statistics (database), http://dx.doi.org/10.1787/agr-outl-dataen.
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details on ruminal lipolysis, biohydrogenation and digestion process

of dietary lipids can be found elsewhere (Swanson, 2019;

Ponnampalam et al., 2021b).
2.1 Influence of diets on health enhancing
fatty acids in lamb and mutton

Levels of HEFA in ruminant meat are largely dependent on the

type of dietary fat consumed, the duration of feeding and ruminal

biohydrogenation of PUFA. In this regard, a variety of nutritional

strategies have been employed to increase HEFA deposition in

sheep meat (i.e., lamb and mutton), which have been summarised

in Table 2.

Meat from pasture-fed animals contains higher n-3 PUFA

contents compared to grain-fed animals (Aurousseau et al., 2004;

Nuernberg et al., 2005; Hajji et al., 2016, 2007; Berthelot and

Gruffat, 2018; Gruffat et al., 2020), due to the naturally high levels

of ALA in fresh pasture, a precursor for endogenous production of

EPA, DPA and DHA (Ponnampalam et al., 2021b). It also contains

a lower proportion of C16:0, which is pro-atherogenic (Berthelot

and Gruffat, 2018). Grain supplementation at pasture diminishes

these advantages, especially as the quantity of concentrate

consumed increases (Montossi et al., 2013; Berthelot and Gruffat,

2018). Prolonged finishing periods on grain post-grazing

diminishes n-3 PUFA accumulated in the meat, with lower ALA,

EPA and DHA and their BHI such as CLAs (e.g., RA) and TVA

levels observed in lamb meat (Aurousseau et al., 2007; Scerra et al.,

2011). Conversely, there is a lack of data on the effect of the length

of time an animal is finished on pasture pre-slaughter on the HEFA

concentration in sheep meat. Pasture type can affect the HEFA

composition of meat. Grazing lambs on legumes like lucerne and

red clover (Fraser et al., 2004) or white clover (Lourenço et al., 2007)

increased ALA levels in meat compared to lambs grazing grasses
Frontiers in Animal Science 05
like perennial ryegrass. Similarly, meat from lambs grazing chicory/

arrow leaf clover had higher concentrations of n-3 PUFAs including

ALA, EPA and DHA compared to lambs grazing brassica (De Brito

et al., 2017). Lambs grazing botanically diverse pastures with

phenol-rich plants produce meat richer in PUFA, ALA and LA

than lambs grazing intensively managed pastures, with the

concentration of these FA in the meat being linearly related to

the phenolic concentration of the pasture (Willems et al., 2014).

Plant secondary metabolites (polyphenol oxidase, flavonoids,

tannins, essential oils and saponins) in legume and forb species

can influence microbial biohydrogenation in the rumen, positively

affecting beneficial n-3 PUFA and BHI outflow (Campidonico et al.,

2016; Chikwanha et al., 2018; Frutos et al., 2020). Moreover,

condensed tannins found in certain legumes can improve the

lamb flavour by inhibiting the ruminal synthesis of skatole and

indole, which are faecal-smelling compounds (Scollan et al., 2008;

Girard et al., 2016; Rivaroli et al., 2019). Note here that sheep meat

contains more HEFA than beef, due to lower ruminal

biohydrogenation and a more selective eating behaviour of the

animal (Prache et al., 2022b).

Generally, ruminants grazing fresh pasture consume higher

amounts of n-3 PUFA compared to ruminants fed conserved

forages (Ciftci et al., 2010) or total mixed ration (TMR) diets

(Aurousseau et al., 2004, 2007; Berthelot and Gruffat, 2018;

Gruffat et al., 2020). However, supplementation with n-3 PUFA

rich oilseeds, marine- and plant-sourced oils and by-products have

sometimes yielded more positive results. For example, addition of

flaxseed to lamb diets resulted in increased contents of beneficial n-

3 PUFA (i.e., ALA, EPA and DPA) in lamb and mutton (Noci et al.,

2011; Ponnampalam et al., 2015; Urrutia et al., 2015; Berthelot and

Gruffat, 2018). Diets supplemented with fish/algae oils increased

long-chain n-3 PUFA levels such as EPA and DHA in lamb meat

(Ponnampalam et al., 2016; Parvar et al., 2017), particularly when

fed in an encapsulated form to protect against rumen
FIGURE 2

Schematic diagram showing pathways to enrich meat from ruminants with health enhancing FA and antioxidants delivering improved nutritional
value and health aspects for consumers.
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TABLE 2 Influence of diet on the health enhancing fatty acid composition (% of total fatty acids) of sheep meat.

Diet Fatty acid (%) Reference

TVA RA LA ALA EPA DPA DHA n-3 n-6

Forage

Grass-based permanent pasture 2.92 2.01 0.85 2.97 1.48 0.85 0.74 3.50 4.35 Rodrıǵuez et al. (2020)

Chicory/plantain 2.40 1.98 0.76 3.59 1.91 0.92 0.99 4.12 5.04

Perennial ryegrass pasture 2.92 1.46 – 1.39 – – – 2.40 5.88 Kliem et al. (2018)

Biodiverse pasture 2.40 1.30 – 1.66 – – – 2.70 6.74

Botanically diverse 2.22 0.90 7.06 2.64 2.76 2.69 0.43 – – Lourenço et al. (2007)

Leguminosae-rich pasture 2.41 0.74 5.28 3.99 1.09 1.08 0.29 – –

Intensive ryegrass pasture 2.74 0.90 3.37 2.59 1.33 1.26 0.34 – –

Lucerne pasture 3.10 1.09 4.02 2.72 0.90 0.80 0.25 – – Fraser et al. (2004)

Red clover pasture 3.71 1.33 4.47 2.86 1.03 0.90 0.27 – –

Perennial ryegrass pasture 3.65 1.23 2.91 2.07 0.93 0.82 0.24 – –

Forage vs. Concentrate

Concentrate + hay – 0.21 4.30 0.29 0.28 0.63 0.21 1.41 6.94 Gruffat et al. (2020)

Alfalfa pasture – 0.65 3.94 0.02 1.03 1.20 0.50 4.19 9.06

Alfalfa pasture + sainfoin pellets – 0.49 4.48 0.36 1.29 1.47 0.62 5.17 7.96

Concentrate – 0.42 3.82 0.44 0.18 0.46 0.80 0.99 5.37 Hajji et al. (2016)

Grass pasture – 0.70 7.92 2.27 1.13 1.71 0.27 4.26 11.96

Concentrate 0.42 0.59 12.55 0.51 0.38 – 0.28 1.77 22.24 Scerra et al. (2011)

Grass pasture 1.48 1.38 9.06 3.13 1.25 – 1.12 6.09 18.46

Grass pasture 4.40 1.10 5.80 2.60 1.80 2.40 0.60 7.60 9.90 Aurousseau et al. (2007)

Grass pasture/short period on concentrate 4.70 1.00 5.70 1.70 1.30 1.80 0.50 5.30 9.10

Grass pasture/long period on concentrate 2.00 0.90 5.70 1.20 1.20 1.50 0.50 4.80 9.50

Concentrate 1.60 0.70 6.40 1.30 1.00 1.40 0.50 4.40 10.10

Concentrate 3.80 1.08 6.60 1.20 1.40 1.20 0.50 4.30 10.10 Nuernberg et al. (2005)

Grass pasture 5.70 1.90 5.00 2.40 1.80 1.40 0.80 6.30 7.80

Oil Supplementation

TMR – – 7.26 0.45 0.48 0.29 0.32 1.54 8.94 Parvar et al. (2017)

TMR + 3% fish oil – – 9.22 0.82 1.94 0.9 1.78 5.54 10.91

TMR + 3% canola oil – – 9.53 1.09 0.68 0.44 0.44 2.65 11.04

TMR + 3% soybean oil – – 9.94 0.86 0.28 0.53 0.36 2.03 11.32

TMR + 1.5% fish oil/1.5% canola oil – – 12.03 0.84 1.8 0.81 1.12 4.57 14.07

TMR + 1.5% fish oil/1.5% soybean oil – – 10.52 0.82 0.72 0.8 0.78 3.11 12.16

TMR + 1.5% soybean oil/1.5% canola oil – – 12.41 0.66 0.8 0.72 0.75 2.93 14.85

Concentrate 3.79 0.26 8.79 0.53 0.19 0.42 0.12 1.43 13.38 Urrutia et al. (2015)

Concentrate + linseed 6.65 0.22 9.4 1.84 0.42 0.6 0.15 3.25 14.73

Concentrate + chia seed 5.57 0.25 9.35 1.73 0.36 0.54 0.15 3.14 15.29

Annual ryegrass hay/clover hay – – 2.94 1.35 0.69 0.55 0.30 – – Ponnampalam
et al. (2015)

Annual ryegrass hay/clover hay + flaxseed – – 3.19 2.29 0.70 0.43 0.26 – –

(Continued)
F
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biohydrogenation (Bessa et al., 2015). Supplementation of forage

diets with n-6 rich oils (sunflower/soybean) has been shown to

increase proportions of LA, RA and TVA, as well as other CLA

isomers in lamb meat when compared to supplementation with n-3

PUFA rich oil sources (Chikwanha et al., 2018). Feeding lambs by-

products such as grape/pomegranate pomace, soyabean hull and

camelina meal, which are rich in antioxidants (polyphenols,

flavonoids, anthocyanidins and tannins) led to enriched levels of

ALA and total n-3 PUFA in meat (Gómez-Cortés et al., 2019;

Natalello et al., 2019; Bennato et al., 2023). In summary, feeding

pasture or high forage diets rich in n-3 PUFA leads to higher

contents of health beneficial n-3 PUFA (ALA, EPA and DHA) and

their BHI (RA and VA) in lamb meat. When high forage diets are

fed along with n-6 PUFA rich sources, high concentrations of RA

and VA are observed in meat, as n-6 rich dietary sources are more
Frontiers in Animal Science 07
effective at increasing RA and VA levels compared to n-3 rich

dietary sources (Bessa et al., 2015; Chikwanha et al., 2018). Total

mixed rations and grain-based diets may require the addition of a n-

3 PUFA and forage sources to improve HEFA levels in sheep meat.

Meat from suckling lambs is widely consumed in southern

Europe. In this case, lambs are considered as monogastric, and their

meat FA profile reflects the feed-milk profile. Feeding ewes on good

quality pastures (Joy et al., 2012), particularly biodiverse pastures

containing various legume species (Cabiddu et al., 2005) has been

shown to improve the HEFA content of meat from their lambs. The

inclusion of n-3 PUFA rich oilseeds (Gallardo et al., 2015; Nudda

et al., 2015) or marine oils (Gallardo et al., 2014) in ewe diets has

also been shown to improve the HEFA content of lamb meat, but

the inclusion of grape by-products did not significantly alter the

HEFA content of lamb meat (Correddu et al., 2023).
TABLE 2 Continued

Diet Fatty acid (%) Reference

TVA RA LA ALA EPA DPA DHA n-3 n-6

Oil Supplementation

Annual ryegrass hay/clover hay + algae supplement – – 2.73 1.25 0.85 0.38 2.47 – –

Annual ryegrass hay/clover hay + flaxseed/
algae supplement

– – 2.84 1.61 0.67 0.32 1.93 – –

Concentrate 0.93 0.73 11.88 0.75 0.64 1.46 0.89 3.87 20.5 Nudda et al. (2015)

Concentrate + linseed 2.82 1.55 12.60 1.79 0.90 1.43 0.84 5.12 19.71

Forage/concentrate + 3% palm oil 0.57 0.36 8.41 0.43 0.44 1.02 0.62 – – Gallardo et al. (2014)

Forage/concentrate + 3% olive oil 1.27 0.7 8.32 0.50 0.58 1.23 0.72 – –

Forage/concentrate + 3% fish oil 3.75 1.66 7.82 0.96 2.72 2.21 1.53 – –

Concentrate + rumen protected saturated fat 2.85 0.82 3.45 0.50 0.07 0.20 0.04 0.87 4.31 Noci et al. (2011)

Concentrate + camelina oil 4.61 0.95 2.86 1.27 0.11 0.20 0.05 1.75 3.70

Concentrate + linseed oil 5.28 0.98 3.01 1.74 0.12 0.21 0.03 2.18 3.72

By-products

TMR 1.44 1.07 10.67 0.67 – – – – – Bennato et al. (2023)

TMR + 10% grape pomace 2.32 1.22 11.97 0.61 – – – – –

Concentrate 0.73 0.35 5.37 0.37 0.13 0.26 0.09 0.86 7.29 Natalello et al. (2019)

Concentrate + 20% pomegranate by-product 1.38 0.94 7.09 0.51 0.20 0.36 0.11 1.19 9.67

Concentrate 0.67 0.18 10.48 0.26 0.16 0.40 0.10 – – Gómez-Cortés
et al. (2019)

Concentrate + 50% camelina meal 1.26 0.28 8.99 0.25 0.15 0.38 0.14 – –

Concentrate + camelina meal/husks 3.59 0.79 11.12 0.34 0.13 0.39 0.11 – –

Concentrate 1.88 – 7.36 0.41 0.19 0.57 0.13 – – Asadollahi et al. (2017)

Concentrate + 7% roasted canola seed 2.02 – 9.77 0.64 0.23 0.65 0.19 – –

Concentrate + 36% sugar beet pulp 1.71 – 6.26 0.53 0.20 0.56 0.14 – –

Concentrate + 7% roasted canola seed + 36% sugar
beet pulp

2.03 – 6.5 0.68 0.23 0.67 0.14 – –
TVA, trans-vaccenic acid; RA, rumenic acid; LA, linoleic acid; ALA, linolenic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosaehexanoic acid; n-3, omega-3 fatty
acids; n-6, omega-6 fatty acids.
TMR, total mixed ration.
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2.2 Influence of diets on health enhancing
fatty acids in beef and veal

The FA profile of veal and beef is largely influenced by diet, with

forage finishing being the most practical strategy to increase the

proportions of PUFAs, particularly n-3 PUFA and their BHIs

(mostly RA and TVA), as previously reviewed by numerous

authors (Mapiye et al., 2015; Vahmani et al., 2015; Berthelot and

Gruffat, 2018). Therefore, only recent studies relating to the dietary

manipulation of HEFA in beef have been included in Table 3.

The extent of these changes in beef is mainly dependent on the

PUFA content of forage, in particular ALA, which is the

predominant PUFA in most forage species (Dierking et al., 2010),

and on finishing duration on these forages pre-slaughter (Noci

et al., 2005). Noci et al. (2005) observed a linear increase in the n-3

PUFA content of beef up to 158 days of grazing. In general, fresh

forages and pastures have higher contents of total lipids and total

PUFA compared to conserved forages (i.e., silage and hay). This is

mainly due to oxidative degradation of PUFA during haymaking

and ensiling processes. In terms of species, legumes generally have

higher contents of total FA, total PUFA and n-3 PUFAs, particularly

ALA, compared to most grass species. However, grass offers greater

levels of ALA than most cereal grains, which are the main sources of

n-6 PUFA, mostly LA (Boufaïed et al., 2003). Consequently, beef

from cattle grazing pastures containing white or red clover has

higher proportions of n-3 PUFAs, along with a lower n-6:n-3 ratio

(Lee et al., 2009; Berthelot and Gruffat, 2018; Moloney et al., 2018).

Additionally, grazing steers on multispecies pasture consisting of

different grasses, legumes and forbs resulted in beef with higher

levels of LA, ALA and a higher n-6:n-3 ratio compared to beef from

steers grazing perennial ryegrass (Kearns et al., 2023a). Given fresh

forages and pastures contain higher concentrations of ALA, grazing

is more effective in increasing n-3 PUFA and their respective BHIs

while lowering the n-6:n-3 ratio in beef compared to feeding

conserved forages and high-grain diets.
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Conversely, LA is the predominant FA in grain-based diets which

leads to increased n-6 PUFA contents, particularly LA, and higher n-

6:n-3 ratios in grain-finished feedlot fed beef (Vahmani et al., 2015;

Berthelot and Gruffat, 2018; Klopatek et al., 2022). Despite feedlot

beef having a higher n-6:n-3 ratio (5:1 to 8:1) than forage-finished

beef (1:1 to 3:1), the ratios are still lower than typical chicken and

pork (15:1 to 19:1) (Dugan et al., 2015; Kim et al., 2020). In fact,

consuming either forage or grain-finished beef may help to reduce the

n-6:n-3 ratio in western diets which is currently estimated to be

around 20:1 (DiNicolantonio and O'Keefe, 2021). In addition to

forage-finishing strategies, attempts have been made to increase the

amount of n-3 PUFAs in beef through supplementing diets with n-3

PUFA rich oils or oilseed meals (e.g., canola oil or canola meal).

However, limited n-3 PUFA enrichments can be achieved using this

approach because of extensive biohydrogenation of PUFA in the

rumen (Vahmani et al., 2015) when compared with supplementing

marine-based (algae) or chemically protected n-3 PUFA sources.

Moreover, PUFA supplementation, particularly LA in forage diets

often results in an increased tissue deposition of BHI, particularly

TVA and RA, while supplementation in high-grain diets yields t10-

18:1 and t10,c12-CLA (Vahmani et al., 2020; Alves et al., 2021). Given

recent studies have shown that ruminant-derived trans FAs such as

t10-18:1 (Vahmani et al., 2020) have similar adverse effects to that of

industrial trans FAs (Verneque et al., 2022), it would be of

importance to determine if the health value of beef enriched with

n-3 PUFA is still maintained when different proportions of trans FAs

are present.
2.3 Influence of diets on health enhancing
fatty acids in chevon

Goat meat (i.e., chevon) has less fat than other red meat from

ruminants (James and Berry, 1997), having about 50% less

intramuscular fat (IMF) than beef and lamb with similar protein

contents (Webb et al., 2005). In general, chevon contains higher
TABLE 3 Influence of diet on the health enhancing fatty acid composition (% of total fatty acids) of beef from ruminants.

Diet Fatty acid (%) Reference

TVA RA LA ALA EPA DPA DHA n-3 n-6

Forage

Perennial ryegrass pasture – – 3.64 0.82 0.52 1.02 – 2.77 5.58 Kearns et al. (2023a)

Perennial ryegrass/white clover pasture – – 4.33 1.12 0.65 1.20 – 3.40 6.54

Multispecies pasture – – 5.91 1.56 0.66 1.25 – 3.93 8.47

Rangeland pasture 2.08 0.63 3.97 1.52 0.89 0.95 – 3.52 6.02 Klopatek et al. (2022)

Rangeland pasture/irrigated pasture 2.44 0.58 2.48 1.09 0.41 0.63 – 2.24 3.71

Perennial ryegrass/white clover pasture – 0.46 2.11 1.13 0.58 0.93 – 2.92 3.19 Lee et al. (2021)

Permanent pasture – 0.52 2.01 1.17 0.66 0.98 – 3.11 3.06

Perennial ryegrass pasture – 0.47 3.08 1.61 0.48 0.69 0.05 3.00 3.76 Moloney et al. (2018)

Perennial ryegrass/white clover pasture – 0.58 2.51 1.23 0.48 0.61 0.06 2.52 3.15

(Continued)
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TABLE 3 Continued

Diet Fatty acid (%) Reference

TVA RA LA ALA EPA DPA DHA n-3 n-6

Forage

Grass silage 0.91 0.22 1.87 0.71 0.31 0.55 0.05 1.77 2.97 Lee et al. (2009)

Red clover silage 0.92 0.17 2.64 1.54 0.44 0.74 0.06 2.26 3.01

0 days on perennial ryegrass 1.35 0.50 2.64 1.03 0.22 0.38 0.13 1.59 3.50 Noci et al. (2005)

40 days on perennial ryegrass 1.93 0.50 2.52 1.14 0.28 0.43 0.16 1.90 3.80

90 days on perennial ryegrass 2.27 0.57 2.35 1.02 0.25 0.43 0.17 1.88 3.06

158 days on perennial ryegrass 3.01 0.71 2.49 1.29 0.30 0.54 0.21 2.37 3.46

Forage vs. Concentrate

Silage + barley concentrate – 0.18 4.07 0.61 0.20 0.36 0.02 1.21 5.35 Siphambili et al. (2022)

Silage + maize meal concentrate – 0.21 5.37 0.72 0.33 0.55 0.06 1.69 7.13

Silage + flaked meal concentrate – 0.19 6.64 0.81 0.31 0.58 0.06 1.78 8.48

Whole corn grain – 0.21 5.67 0.22 0.17 0.40 0.09 0.92 8.15 Fruet et al. (2018)

Legume/grass pasture + whole corn gain supplementation – 0.33 3.71 0.90 0.53 0.99 0.24 2.44 6.98

Legume/grass pasture – 0.41 4.22 1.59 0.66 1.21 0.10 3.60 6.79

Concentrate – – 2.25 0.17 0.05 0.03 – 0.27 2.95 Hwang and Joo (2017)

Grass pasture – – 1.93 0.97 0.12 0.08 – 1.22 2.48

Mixed pasture 3.58 0.64 2.59 1.17 0.54 0.85 0.09 2.65 3.46 Duckett et al. (2013)

Alfalfa pasture 3.32 0.61 2.85 1.32 0.60 0.91 0.10 2.92 3.79

Pearl Millet pasture 3.56 0.70 2.27 1.06 0.49 0.76 0.07 2.39 3.08

Concentrate 0.15 0.26 2.62 0.24 0.09 0.21 0.03 0.56 3.18

Oil Supplementation

Silage/concentrate 7.83 1.88 2.78 0.77 0.32 0.37 0.09 2.43 3.41 Moloney et al. (2022)

Silage/concentrate + sunflower/fish oil 8.34 2.14 2.65 0.74 0.34 0.37 0.10 2.43 3.28

Barley based TMR + palmitic acid – 0.42 3.42 0.46 0.10 0.36 0.06 0.98 4.46 Hennessy et al. (2021)

Barley based TMR + n-3 rumen protected supplement – 0.56 4.07 0.53 1.60 0.77 0.55 3.45 4.95

Grass hay + flaxseed – 0.64 3.72 1.09 0.21 0.34 0.02 1.66 4.94 Mapiye et al. (2013)

Grass hay + sunflower seed – 0.76 4.47 0.49 0.10 0.24 0.02 0.85 5.85

Red clover silage + flaxseed – 0.67 3.73 1.38 0.26 0.36 0.03 2.03 4.96

Red clover silage + sunflower seed – 0.79 5.17 0.39 0.10 0.23 0.02 0.74 6.89

TMR 0.77 0.35 1.89 0.34 0.02 0.10 0.02 0.48 – He et al. (2013)

TMR + 15% camelina meal 0.87 0.35 2.14 0.41 0.03 0.11 0.02 0.56 –

TMR + 30% camelina meal 1.41 0.4 2.37 0.45 0.05 0.13 0.02 0.65 –

Concentrate + rumen protected saturated fat 2.85 0.82 3.45 0.50 0.07 0.20 0.04 0.87 4.31 Noci et al. (2011)

Concentrate + camelina oil 4.61 0.95 2.86 1.27 0.11 0.20 0.05 1.75 3.70

Concentrate + linseed oil 5.28 0.98 3.01 1.74 0.12 0.21 0.03 2.18 3.72
F
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TVA, trans-vaccenic acid; RA, rumenic acid; LA, linoleic acid; ALA, linolenic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosaehexanoic acid; n-3, omega-3 fatty
acids; n-6, omega-6 fatty acids.
TMR, total mixed ration.
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ALA, EPA and DPA, but lower undesirable SFA (C14:0, C16:0,

C16:1) and n-6:n-3 ratio compared with lamb and beef. Table 4

compares the fatty acid composition of chevon, lamb and beef

determined from goat kids, lambs and calves, on % of total

fatty acids.

Various factors affect the FA composition of goat meat,

particularly the diet of the animal. Meat from goats grazing

rangeland forages (Liotta et al., 2020) or high-forage diets

supplemented with n-3 PUFA sources contain increased contents

of n-3 PUFA and the BHIs than those raised intensively on high grain

diets (Gagaoua et al., 2023). It has been reported that feeding goats

with a grain diet containing threefold C18:1 compared to an alfalfa

hay diet increased C18:1 in both IMF (i.e., marbling) and

subcutaneous fat. Thus, when East African goats were

supplemented with a grain diet (27% sunflower seed cake + 70%

maize bran), the proportions of C18:1, TVA and LA in the omental

fat increased compared to non-supplemented goats (Gagaoua et al.,

2023). The increase in C18:1 in muscle or adipose tissues in response

to higher grain levels in the diet could be due to the increase in the D9
desaturase enzyme activities necessary for the conversion of C18:0 to

C18:1, which can also be seen in sheep and cattle.
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When goats are fed with oils rich in LA, it can bypass the rumen

or is isomerised to RA, which can be bio-hydrogenated to TVA in

the rumen increasing their deposition in the muscle tissues.

Supplementing goat diets with canola or olive oils (e.g., oils rich

in oleic acid) and sunflower or soybean oils (e.g., oils rich in LA) has

mainly resulted in an increase in C18:1 and RA in the meat,

respectively. On the other hand, supplementation of diets with

oils rich in ALA can lead to an increase in the n-3 FA level in

chevon. Related to this, the incorporation of 3% canola oil, a good

source of ALA with a 2:1 ratio of n-6:n-3, into the goats’ diet has

enhanced ALA in the muscle, liver, and kidney fats (Karami et al.,

2013). Studies report that supplementation of diets with oils can

affect expression levels of genes associated with de novo FA

synthesis in goats. A blend of linseed and palm oils (2:1) has

reduced both rumen biohydrogenation of ALA and muscle

oxidation of ALA in Cashmere goats. Diets supplemented with

the blended oil, compared to linseed alone, have reduced the relative

abundance of Pseudobutyrivibrio, a bacterial species that

hydrogenate dietary ALA in the rumen, increasing n-3 PUFA,

leading to a decrease in the n-6:n-3 FA ratio in goat meat. In this

regard, a variety of nutritional strategies have been employed to
TABLE 4 Comparison of fatty acid composition (% of total fatty acids) and intramuscular fat (IMF, g per 100 g of meat) of muscle longissimus dorsi
from goats (kids), lambs and calves.

Fatty acids Goat kids Lambs Calves SEM P-value

Lauric acid (C12:0) 0.32 0.35 0.17 0.11 0.50

Myristic acid (C14:0) 1.77b 2.62ab 3.22a 0.27 <0.01

Palmitic acid (C16:0) 20.0b 23.5a 26.0a 0.78 <0.01

Unhealthy fatty acids (C14:0+C16:0+C16:1) 24.0b 27.6b 32.4a 1.22 <0.01

Stearic acid (C18:0) 17.7 16.9 16.1 1.22 0.66

Saturated fatty acids (SFA) 41.4b 46.2a 47.4a 1.35 0.02

Myristoleic acid (C14:1 n-9) 0.11b 0.69a 0.05b 0.11 <0.01

Palmiteoleic (C16:1 n-9) 2.30ab 1.51b 3.10a 0.40 0.05

Palmiteoleic (C17:1 n-9) 0.63 0.76 0.91 0.25 0.73

Oleic acid (C18:1 n-9) 39.8a 39.8a 35.1b 1.38 0.01

Linoleic acid (LA; C18:2 n-6) 4.55 5.10 6.53 0.87 0.28

a-Linolenic acid (ALA; C18:3 n-3) 1.81a 0.78b 0.69b 0.16 <0.01

Arachidonic acid (AA; C20:4 n-6) 2.04 1.82 1.63 0.44 0.81

Eicosapentaenoic acid (EPA; C20:5 n-3) 1.37a 0.41b 0.25b 0.18 <0.01

Docosapentaenoic acid (DPA; C22:5 n-3) 1.44a 0.49b 0.56b 0.19 <0.01

Docosahexaenoic acid (DHA; C22:6 n-3) 0.26 0.24 0.10 0.08 0.27

Sum of n-6 fatty acids 7.54 7.15 8.87 1.26 0.60

Sum of n-3 fatty acids 5.12a 1.96b 1.60b 0.49 <0.01

PUFA/SFA ratio 0.33 0.21 0.24 0.04 0.20

n-6/n-3 ratio 1.53c 3.52b 6.04a 0.42 <0.01

Intramuscular fat content (g per 100 g meat) 2.6b 3.9a 2.7b 0.37 <0.01
fro
Source: Kiani et al. (2017); Values are average of 10 observations (n = 10); SEM, Standard error of means; PUFA, polyunsaturated fatty acids.
a,b,c,mean values within a row with different superscript letters are significantly different (P<0.05).
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increase HEFA deposition in goat meat, which have been

summarised in Table 5.
3 Feed-based enrichment of
antioxidants in red meat from sheep,
cattle and goats

It is known that diets rich in antioxidants offer better animal

health (Ponnampalam et al., 2022), including resistance to heat

stress and contribute to a reduction in deteriorative changes in meat

quality post mortem by reducing radical formation within the

cellular system and reducing the amount of oxidative damage in

muscle tissues (Bekhit et al., 2013; Karre et al., 2013; Ponnampalam

et al., 2022). Antioxidants reduce the occurrence of oxidative stress

and infectious diseases in animals and humans (Lauridsen, 2019;

Ponnampalam et al., 2022). Vitamin E (primarily a-tocopherol) is
considered an efficient antioxidant functioning compound in a

hydrophobic environment. It has been proven from animal and

human studies that vitamin E inhibits lipid peroxidation (Gruffat

et al., 2020), and by scavenging lipid peroxyl radicals, it prevents or

delays the propagation of free radical-mediated chain reactions in

the cellular systems. Antioxidants can act synergistically, for

example, a-tocopherol and b-carotene can act as an effective

‘radical-scavenging mechanism’ in biological membranes

(Kurutas, 2015; Salami et al., 2016; Lauridsen et al., 2021). The

inhibition of lipid peroxidation by a combination of the two fat-

soluble antioxidants was shown to be greater than the sum of the

individual inhibitions (Wrona et al., 2003). Figure 3 illustrates the

mechanism of the effect of antioxidants on the quality of meat from

ruminant animals (goat is taken as an example in the diagram). The

antioxidant action of vitamin E and selenium have been proven in

human and animal studies by their fortification in the tissues and

defensive effects to reduce oxidation (Nozière et al., 2006).

Carotenoids are also regarded as efficient O2 and ROS scavengers

operating in cellular lipid bilayers. However, the action of other

plant-based antioxidants, namely polyphenols (phenolic acids,

tannins, flavonoids), has not been proven through their

fortification in animal or human tissues. Flavonoids are thought

to have a lower contribution to the direct antioxidative protection in

animals and humans, due to their relatively poor absorption and

difficulties with storage in animal tissues, even though they are

potent scavengers of hydroxyl and superoxide radicals (Fiedor and

Burda, 2014).
3.1 Influence of diets on antioxidants in
lamb and mutton

Modulating the FA profile of lamb and mutton to increase

beneficial PUFAs increases susceptibility to lipid oxidation, which

can negatively affect meat quality attributes. The presence of natural

or supplemented antioxidants in the diet of ruminants can help to

reduce oxidation and increase shelf-life (Prache et al., 2022b). Meat

from pasture-fed sheep and lambs is characterised by having higher
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muscle antioxidants levels (mainly a-tocopherol) compared to

those fed grains (Zervas and Tsiplakou, 2011; Gruffat et al., 2020),

as fresh pasture is a rich source of antioxidants such as tocopherols,

carotenoids and phenolic compounds (Prache et al., 2022b).

However, variability between breeds in the metabolic fate of

ingested carotenoids has been observed (Macari et al., 2017). The

presence of different plant species within the pasture can also

modulate antioxidant contents in meat, with higher a-tocopherol
concentrations reported in the meat of lambs grazing brassica and

lucerne/phalaris compared to bladder clover (De Brito et al., 2017).

Leguminous species are reported to contain lower levels of a-
tocopherol compared to grasses, which may explain higher lipid

oxidation values in the meat of lambs grazing alfalfa versus

perennial ryegrass (Fraser et al., 2004), however variable results

have been reported (Hampel et al., 2021).

The antioxidant content of lamb meat declines with increased

inclusion of senesced pasture and TMR in the diet (Ponnampalam

et al., 2012, 2017), due to the lower levels of tocopherols,

carotenoids and phenolic compounds available in these feed types

(Moure et al., 2001). Supplementing feedstuffs containing natural

antioxidants to increase concentrations in meat has yielded

variable results (Falowo et al., 2014). Supplementing TMR diets

with pomegranate silage (Kotsampasi et al., 2014), buckwheat silage

(Keles et al., 2018) and increasing levels of Acacia mearnsii

leaf-meal (Uushona et al., 2023) increased the antioxidant

capacity and phenolic content of lamb meat. Inclusion of oat

grain in senesced perennial ryegrass pasture lowered a-tocopherol
concentrations in lamb meat compared to senesced perennial

lucerne pasture. A reduction in a-tocopherol concentrations and

increasing oxidation values have been reported in meat from

lambs fed TMR supplemented with algae (Hopkins et al., 2014;

Ponnampalam et al., 2016) and camelina hay/meal (Ponnampalam

et al., 2021a). Overall, pasture grazing is the most advantageous way

to increase the antioxidant content of sheep and lamb meat.

Supplementation of senesced pasture and TMR diets with

antioxidant rich by-products is important to sufficiently improve

the antioxidant content of meat.
3.2 Influence of diets on antioxidants in
beef and veal

Use of dietary antioxidants is the most common strategy used to

inhibit lipid, protein, and myoglobin oxidation in beef (Estévez,

2021; Petcu et al., 2023) and veal (Skrǐvanová et al., 2007; D’Agata

et al., 2009). It has long been established that forage-based versus

grain-based diets are highly endowed with diverse and potent

antioxidants, which result in beef and veal with superior

antioxidant and oxidative stability profiles (Descalzo and Sancho,

2008; Estévez, 2021). For illustrative purposes, feeding pasture

versus grain diets can increase vitamin E content in beef up to 5.9

mg/g of tissue exceeding the ideal concentration of 3.3-3.8 mg/g

tissue required to extend oxidative shelf life of beef (Liu et al., 1995;

Descalzo and Sancho, 2008). However, the efficacy of these

antioxidants in pasture-fed beef depends on dose and type of the

antioxidant, plant species and maturity, seasonality, physical form,
frontiersin.org

https://doi.org/10.3389/fanim.2024.1329346
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Ponnampalam et al. 10.3389/fanim.2024.1329346
TABLE 5 Influence of diet on the health enhancing fatty acid composition (% of total fatty acids) of meat from goats.

Diet Fatty acids (%) Reference

TVA RA LA ALA EPA DPA DHA n-3 n-6

Forage vs. concentrate

Rangeland pasture – 0.13 – – – – – 0.12 0.18 Ryan et al. (2007)

Rangeland + 50% concentrate – 0.15 – – – – – 0.05 0.21

Rangeland + 70% concentrate – 0.21 – – – – – 0.04 0.28

Rangeland + 90% concentrate – 0.36 – – – – – 0.00 0.02

Oil supplementation

Palm oil diet – – 0.54 1.39 1.12 – 0.86 4.17 8.71 Wang et al. (2020)

Linseed oil diet – – 0.64 1.52 1.22 – 1.04 4.69 9.65

Mixed oil diet – – 0.51 1.71 1.51 – 1.25 5.44 8.91

TMR 1.22 0.55 8.88 0.51 0.37 0.29 0.37 1.47 12.75 Abuelfatah et al. (2016)

TMR + 10% whole linseed 0.96 0.73 4.85 2.32 0.79 0.60 0.63 4.34 7.06

TMR + 20% whole linseed 1.28 0.53 4.85 3.33 1.23 1.08 1.08 6.30 7.34

TMR + canola oil 2.71 0.86 9.81 1.61 1.33 1.96 1.38 6.12 16.1 Karami et al. (2013)

TMR + palm oil 1.23 0.61 9.93 1.12 1.17 1.48 1.23 4.61 15.7

TMR + palm oil – – 3.78 0.42 0.18 – 0.16 0.76 4.41 Najafi et al. (2012)

TMR + soybean oil – – 5.26 0.7 0.19 – 0.19 1.09 5.87

TMR + fish oil – – 3.59 0.47 0.6 – 0.57 1.65 3.93

By-products

TMR 1.75 0.14 4.43 3.99 0.33 0.11 – 4.43 5.84 Semwogerere et al. (2023)

TMR + 5% hemp seed cake 3.12 0.18 4.84 5.38 0.44 0.15 – 5.92 6.78

TMR + 10% hemp seed cake 3.79 0.19 4.9 6.08 0.52 0.19 – 6.79 7.33

TMR 0.44 3.33 0.46 2.50 0.99 0.24 – 3.78 4.85 Kafle et al. (2021)

TMR + 25% peanut skin 0.37 3.48 0.42 2.72 0.96 0.24 – 3.92 4.93

TMR + 50% peanut skin 0.38 3.73 0.49 2.80 0.88 0.24 – 3.92 5.22

TMR + 75% peanut skin 0.36 3.42 0.41 2.33 0.99 0.24 – 3.56 4.89

TMR 1.19 0.51 3.19 0.34 – 0.46 – 0.62 6.19 Martins Flores et al. (2021)

TMR + 50% grape pomace silage 1.51 0.49 4.89 0.37 – 0.30 – 0.62 8.15

TMR + 50% grape pomace silage 2.33 0.68 5.71 0.41 – 0.21 – 0.62 10.63

TMR + 50% grape pomace silage 4.17 1.03 7.03 0.43 – 0.24 – 0.79 13.99

TMR 1.56 – 4.70 0.43 0.2 0.39 0.04 0.47 5.85 Pimentel et al. (2021)

TMR + 16 kg Acacia mearnsii extract 1.84 – 4.72 0.41 0.22 0.46 0.04 0.54 7.49

TMR + 32 kg Acacia mearnsii extract 1.60 – 5.46 0.47 0.16 0.35 0.04 0.47 4.93

TMR + 48 kg Acacia mearnsii extract 1.52 – 7.62 0.72 0.22 0.62 0.05 0.61 9.56

TMR 0.47 – 12.36 0.6 0.39 0.56 0.41 1.95 18.32 Abubakr et al. (2015)

80% decanter cake 0.33 – 9.38 0.63 0.32 0.63 0.32 1.89 14.51

80% palm kernel cake 0.40 – 9.14 0.61 0.32 0.58 0.36 1.89 14.16

TMR + 5% palm oil 0.41 – 9.04 0.69 0.39 0.62 0.36 2.06 14.02

TMR – – 8.01 1.06 0.33 – – 1.39 11.8 Ahmed et al. (2015)

(Continued)
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duration of feeding, amount, and type of pro-oxidants

(Ponnampalam et al., 2022; Kearns et al., 2023b).

Low-quality forages and high-grain diets can be supplemented

with vitamin E to elevate levels in beef (Descalzo and Sancho, 2008;

Petcu et al., 2023) and veal (D’Agata et al., 2009; Franco et al., 2012),

subsequently minimizing oxidative deterioration. It has been

suggested that vitamin E daily supplementation of 500 IU/head

for 126 d or 1300 IU/head for 44 d could meet the ideal vitamin E

levels in muscle required to enhance oxidative stability of beef (Liu

et al., 1995; Suman et al., 2014). Apart from vitamin E,

supplementation of organic selenium appears to somewhat

increase oxidative capacity and stability of beef (Rossi et al., 2015;

Huang et al., 2023) and veal (Skrǐvanová et al., 2007; Shabtay et al.,

2008). In addition, supplementation of high-grain diets with

polyphenolic extracts including flavonoids (Orzuna-Orzuna et al.,

2023), a blend of alkaloids, saponins, and phenolic acids (De

Zawadzki et al., 2017), resveratrol (Cui et al., 2023), ferulic acid

(González-Rıós et al., 2016) and tannic acid (Tabke et al., 2017)

enhances the antioxidant capacity and oxidative stability of beef.

Similarly, supplementation of polyphenolic fruit by-products such

as grape pomace in calves’ (Ianni et al., 2019) and steers’ (Tayengwa
Frontiers in Animal Science 13
et al., 2020) on high-grain diets increased the antioxidant capacity

and oxidative stability of meat. Supplementing a blend of essential

oils (Rivaroli et al., 2016; Ornaghi et al., 2020) and benzoic acid

(Williams et al., 2022) slightly improved lipid stability without

affecting colour shelf-life.

The effect of distiller’s grains on the oxidative capacity and lipid

stability of beef varies from negative (Suman et al., 2014; De Mello

et al., 2018) to neutral (Gill et al., 2008; Depenbusch et al., 2009) and

positive (Bloomberg et al., 2011; Merayo et al., 2022) and, thus,

merits further investigation. Interestingly, a blend of antioxidant

sources tends to either have additive or synergistic effects. For

example, a combination of vitamin E with polyphenolic extracts

(Gobert et al., 2010; Delosière et al., 2020), essential oils (Fusaro

et al., 2021) and distiller’s grains (Bloomberg et al., 2011) was more

efficient in increasing antioxidant capacity and oxidative stability

than the individual constituents, suggesting synergistic effects with

vitamin E. However, high dietary levels of vitamin A suppress tissue

deposition of vitamin E reducing antioxidant capacity and oxidative

stability of beef (Daniel et al., 2009; Marti et al., 2011). Research

should continue to explore synergistic effects of novel nutrient and

non-nutrient antioxidants.
TABLE 5 Continued

Diet Fatty acids (%) Reference

TVA RA LA ALA EPA DPA DHA n-3 n-6

By-products

TMR + 0.5% green tea by-product – – 14.2 1.06 0.16 – – 1.22 17.1

TMR + 1% green tea by-product – – 13.1 1.03 0.29 – – 1.32 17.5

TMR + 2% green tea by-product – – 16.4 1.51 0.15 – – 1.66 21.1
TVA, trans-vaccenic acid; RA, rumenic acid; LA, linoleic acid; ALA, linolenic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosaehexanoic acid; n-3, omega-3 fatty
acids; n-6, omega-6 fatty acids.
TMR, total mixed ration.
FIGURE 3

Mechanism of the effect of antioxidants (vitamins and carotenoids) and bioactives enriched feed on the animal health and meat quality of sheep,
cattle and goats (goat is taken as an example).
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3.3 Influence of diets on antioxidants
in chevon

Pasture-finished goats differ in colour attributes of meat (L*, a,

b, chroma and hue angle values) than goats finished on grain diets

(Lee et al., 2008), the same for meat from sheep and cattle. Adding

natural antioxidants (Vitamin E, Vitamin C, etc.) and polyphenols,

as a nutritional strategy influences the colour stability of goat meat

(Karami et al., 2011). For example, pomegranate seed pulp, a cheap

source of polyphenols, has improved colour stability in chevon

(Emami et al., 2015). Similarly, a dietary green tea by-product (20 g/

kg dry matter) has improved the redness and yellowness values of

goat meat (Ahmed et al., 2015).

It is noteworthy that supplementing the diet with a high content

of n-3 PUFA might increase lipid oxidation and may raise concerns

about the impairment of sensory attributes of chevon, similar to

that observed with beef and lamb. The inclusion of high doses of n-3

PUFA has produced meat with unusual odours, unpleasant

flavours, and a lower overall appreciation of kid meat (Moreno-

Indias et al., 2012). A positive association between lipid oxidation

and the content of n-3 PUFA in chevon has been reported

(Abuelfatah et al., 2016). Intriguingly, liver and muscle (meat)

fats from canola oil-fed kids contained fewer lipid oxidative

substances compared to those from palm oil-supplemented kids

(Karami et al., 2013). The latter study showed that canola oil

effectively reduced lipid oxidation both in the blood and muscle

tissue of goats. Furthermore, the concern about lipid oxidation of

high-PUFA diets could be overcome by dietary supplementation of

antioxidant polyphenols, a conclusion that is relevant to all

ruminant species.

It has been reported that supplementation of diets containing

polyphenols positively improved the FA profile and reduced lipid

oxidation in chevon (Cimmino et al., 2018). Similarly, dietary green

tea by-products (Ahmed et al., 2015) and extracts from olive mill

water waste (Cimmino et al., 2018) reduced lipid oxidation in

chevon. Overall, it seems that diets containing phenolic

components are positive agents in reducing lipid oxidation in

goat meat. These actions may be through synchronised effects

with lipids such as unsaturated fatty acids and vitamins (such as

vitamin E) at the GIT enterocyte level. However, the dietary

biofortification of phytonutrients into tissues such as skeletal

muscles is low due to lower rates of digestion and absorption; this

is believed to be due to their action as antinutritional factors

(causing toxicity to microbes) or binding agents with other

nutrients (e.g., protein) leading to complex formation at the GIT

level, resulting in reduced microbial degradation.
4 Future directions and gaps

The importance of HEFA and antioxidants is becoming

increasingly important, particularly in relation to animal health,

as well as the quality and nutritional value of meat, and ultimately

human health and wellbeing. Also, there is an increasing trend

towards the consumption of red meat compared with other white

meats around the world, as global population and affluency increase
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mainly from Asian and African regions. The social awareness of

consumers relating to the quality of meat consumed, the nutrient

content of meat that they select, and the health aspects of foods

chosen is also expected to change in the coming years as world

population become aware of healthy living (Ponnampalam and

Holman, 2022). Therefore, addressing the enrichment of red meat

with HEFA and antioxidants i.e., improving the nutritional value of

meat, has gained much attention. The use of bioactive-rich

(vitamins, HEFA, phenolic compounds, tannins, flavonoids) plant

by-products for improving the nutritional quality attributes and

shelf-life of the meat is under active investigation (Salami et al.,

2019), but research is needed to evaluate their effects on other meat

quality attributes and animal performance. A point of caution is

meat safety, insofar as certain pathogenic agents in plants can be

transferred to the meat (Prache et al., 2022a). Although several

studies have investigated the effects of feed on the quality and

nutritional values of meat, there is a lack of information on the

absorption and bioavailability of particular feed-based antioxidants

and FA, and their effect in animal- and human-tissues upon

deposition. Some authors also point to the gap between food-

scale studies and epidemiological studies (Prache et al., 2022a).

There is a lack of data linking the FA profile of meat and its

antioxidant content (and more generally the way it is produced), to

the level of consumption and chronic diseases in humans. This

requires a collective effort between research communities working

in animal science, meat processing, consumer attitudes, human

nutrition and epidemiology (Prache et al., 2022a).

Comparative studies on the consumption of red meat from

ruminants versus white meat and their combinations as well as

comparing with other sources of animal and plant proteins can

provide valuable insights and knowledge into their potential effects

on human health. However, this research aspect is lacking and not

well proven by human intervention studies, relating it to long term

consumption of red meat enriched with HEFA and antioxidants on

blood lipid parameters, human health and wellbeing. This may be

due to inadequate funding allocated by government bodies around

the globe as it requires large funding and intense resources, as well

as due to the ethical considerations, regulatory requirements, and

recruitment challenges in enrolling adequate numbers of

participants (observations) to validate data. Future studies should

focus on not only investigating the absorption, bioaccessibility, and

bioavailability of different antioxidants and FA through use of in

vitro digestion models and in vivo animal studies, but also include

human intervention studies undertaken with sound experimental

designs covering appropriate replicates and number of

observations, comparing the effects of red meat, white meat and

other plant and animal protein sources (alone and/or in

combination) in human health. Furthermore, animal and human

cell lines should be treated (fortified) with plant-based antioxidants,

for example phenolic acids or flavonoids, to study their real effects

in animal and human tissues as they show antinutritional activities

that may lead to lower digestion, absorption and biofortification.

Such studies may provide an understanding of the impact of

phytonutrients acting as a sole or additive components along with

HEFA and other antioxidants (vitamin E, selenium) that are

available in the meat to exert a beneficial effect on humans. This,
frontiersin.org

https://doi.org/10.3389/fanim.2024.1329346
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Ponnampalam et al. 10.3389/fanim.2024.1329346
in turn, is key to gaining a deep insight into the mechanism of

action of improving human health via enriching red meat with feed-

based FA and antioxidants.
5 Conclusions

Regardless of ruminant species, high-quality pasture remains

superior in producing meat enriched with HEFA, particularly n-3

PUFA and antioxidants, with some countries already utilising ‘grass-

fed’ logos (see Salami et al., 2019; Davis et al., 2022). Low-quality

forages and high grain diets require dietary supplementation with n-3

PUFA and antioxidants to raise their contents in meat and extend its

shelf life. The importance of some dietary vitamins and minerals in

the antioxidant actions and preservative aspects of PUFA in meat has

been documented. A combination of nutrient antioxidants, mostly

vitamin E and non-nutrient antioxidants, chiefly flavonoids, and

carotenoids are speculated to synergistically stabilise high PUFA

contents in ruminant meat. Nevertheless, the latter statement needs

validation through well-designed in vivo studies undertaken in

animal and human populations (with adequate replicates and

numbers of observations) along with the quantification of

flavonoids or carotenoids in circulatory systems and tissues such as

skeletal muscles, and consequently their effects on human health. To

this end, research should continue to explore effects of co-feeding of

PUFA sources with different mixtures of novel nutrient and non-

nutrient antioxidants on animal and human health as well as the

underlying mechanisms.
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Rodrıǵuez, R., Alomar, D., and Morales, R. (2020). Milk and meat fatty acids from
sheep fed a plantain-chicory mixture or a grass-based permanent sward. Anim.
(Cambridge England) 14, 1102–1109. doi: 10.1017/S1751731119002611

Rossi, C. S., Compiani, R., Baldi, G., Bernardi, C. E. M., Muraro, M., Marden, J. P.,
et al. (2015). The effect of different selenium sources during the finishing phase on beef
quality. J. Anim. Feed Sci. 24, 93–99. doi: 10.22358/jafs/65633/2015

Ryan, S. M., Unruh, J. A., Corrigan, M. E., Drouillard, J. S., and Seyfert, M. (2007).
Effects of concentrate level on carcass traits of Boer crossbred goats. Small Ruminant
Res. 73, 67–76. doi: 10.1016/j.smallrumres.2006.11.004

Salami, S. A., Guinguina, A., Agboola, J. O., Omede, A. A., Agbonlahor, E. M., and
Tayyab, U. (2016). Review: In vivo and postmortem effects of feed antioxidants in
livestock: A review of the implications on authorization of antioxidant feed additives.
Anim. (Cambridge England) 10, 1375–1390. doi: 10.1017/S1751731115002967

Salami, S. A., Luciano, G., O'Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P.,
et al. (2019). Sustainability of feeding plant by-products: A review of the implications
for ruminant meat production. Anim. Feed Sci. Technol. 251, 37–55. doi: 10.1016/
j.anifeedsci.2019.02.006

Scerra, M., Luciano, G., Caparra, P., Foti, F., Cilione, C., Giorgi, A., et al. (2011).
Influence of stall finishing duration of Italian Merino lambs raised on pasture on
intramuscular fatty acid composition. Meat Sci. 89, 238–242. doi: 10.1016/
j.meatsci.2011.04.012

Schwingshackl, L., Schwedhelm, C., Hoffmann, G., Lampousi, A., Knüppel, S., Iqbal,
K., et al. (2017). Food groups and risk of all-cause mortality: A systematic review and
meta-analysis of prospective studies. The American. J. Clin. Nutr. 105, 1462–1473.
doi: 10.3945/ajcn.117.153148

Scollan, N. D., Dannenberger, D., Schreurs, N. M., Lane, G. A., Tavendale, M. H.,
Barry, T. N., et al. (2008). Pastoral flavour in meat products from ruminants fed fresh
forages and its amelioration by forage condensed tannins. Anim. Feed Sci. Technol. 146,
193–221. doi: 10.1016/j.anifeedsci.2008.03.002

Scollan, N., Hocquette, J.-F. O., Nuernberg, K., Dannenberger, D., Richardson, I., and
Moloney, A. (2006). Innovations in beef production systems that enhance the
nutritional and health value of beef lipids and their relationship with meat quality.
Meat Sci. 74, 17–33. doi: 10.1016/j.meatsci.2006.05.002

Semwogerere, F., Chikwanha, O. C., Katiyatiya, C. L. F., Marufu, M. C., and Mapiye,
C. (2023). Health value and keeping quality of chevon from goats fed finisher diets
containing hemp (Cannabis sativa L.) seed cake. Meat Sci. 198, 109114–109114.
doi: 10.1016/j.meatsci.2023.109114
frontiersin.org

https://doi.org/10.3390/foods11244061
https://doi.org/10.1515/ijafr-2018-0009
https://doi.org/10.1016/j.meatsci.2013.04.048
https://doi.org/10.1016/j.meatsci.2011.08.004
https://doi.org/10.1016/S0308-8146(00)00223-5
https://doi.org/10.1016/j.meatsci.2012.07.012
https://doi.org/10.1021/acs.jafc.9b00307
https://doi.org/10.1021/acs.jafc.9b00307
https://doi.org/10.2527/2005.8351167x
https://doi.org/10.1017/S1751731110001485
https://doi.org/10.1016/j.anifeedsci.2006.06.018
https://doi.org/10.1017/S175173111400305X
https://doi.org/10.1002/ejlt.200501141
https://doi.org/10.1787/agr-outl-dataen
https://doi.org/10.1016/j.meatsci.2020.108059
https://doi.org/10.3389/fvets.2023.1134925
https://doi.org/10.1016/j.smallrumres.2017.03.004
https://doi.org/10.1016/j.smallrumres.2017.03.004
https://doi.org/10.1016/j.meatsci.2012.09.018
https://doi.org/10.3390/foods12061334
https://doi.org/10.1016/j.anifeedsci.2020.114733
https://doi.org/10.1016/j.meatsci.2015.09.007
https://doi.org/10.1071/AN11054
https://doi.org/10.1071/AN11054
https://doi.org/10.3390/antiox10020166
https://doi.org/10.3390/ani12233279
https://doi.org/10.3390/ani12233279
https://doi.org/10.1007/s11745-015-4070-4
https://doi.org/10.1016/j.meatsci.2017.02.008
https://doi.org/10.3390/foods10061358
https://doi.org/10.1016/j.animal.2021.100376
https://doi.org/10.1016/j.animal.2021.100330
https://doi.org/10.1016/j.animal.2021.100330
https://ourworldindata.org/meat-production
https://doi.org/10.1016/j.meatsci.2016.06.017
https://doi.org/10.1017/S1751731118003543
https://doi.org/10.1017/S1751731118003543
https://doi.org/10.1017/S1751731119002611
https://doi.org/10.22358/jafs/65633/2015
https://doi.org/10.1016/j.smallrumres.2006.11.004
https://doi.org/10.1017/S1751731115002967
https://doi.org/10.1016/j.anifeedsci.2019.02.006
https://doi.org/10.1016/j.anifeedsci.2019.02.006
https://doi.org/10.1016/j.meatsci.2011.04.012
https://doi.org/10.1016/j.meatsci.2011.04.012
https://doi.org/10.3945/ajcn.117.153148
https://doi.org/10.1016/j.anifeedsci.2008.03.002
https://doi.org/10.1016/j.meatsci.2006.05.002
https://doi.org/10.1016/j.meatsci.2023.109114
https://doi.org/10.3389/fanim.2024.1329346
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Ponnampalam et al. 10.3389/fanim.2024.1329346
Shabtay, A., Eitam, H., Tadmor, Y., Orlov, A., Meir, A., Weinberg, P., et al. (2008).
Nutritive and antioxidative potential of fresh and stored pomegranate industrial
byproduct as a novel beef cattle feed. J. Agric. Food Chem. 56, 10063–10070.
doi: 10.1021/jf8016095

Siphambili, S., Moloney, A. P., O'riordan, E. G., Mcgee, M., Harrison, S. M., and
Monahan, F. J. (2022). Partial substitution of barley with maize meal or flaked meal in
bovine diets: Effects on fatty acid and a-tocopherol concentration and the oxidative
stability of beef under simulated retail display. Anim. Production Sci. 62, 182–190.
doi: 10.1071/AN20627
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