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Hepatic mRNA expression of
innate and adaptive immune
genes in beef steers with
divergent residual body
weight gain
Deborah Ologunagba1, Modoluwamu Idowu1,
Godstime Taiwo1, Taylor Sidney1, Emily Treon1,
Francisca Eichie1, Frederick Bebe1,2 and Ibukun M. Ogunade1*

1Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States,
2College of Agriculture, Health and Natural Resources, Kentucky State University, Frankfort, KY, United States
Immune function plays a pivotal role in dictating the overall health and productivity

of cattle. In a proficient immune system, the liver assumes an integral function in

detoxification and metabolic processes and contributes substantially to overall

production and immunity. In this study, we evaluated the hepaticmRNA expression

of genes involved in innate and adaptive immunity in crossbred beef steers with

positive or negative residual body weight gain (RADG). Positive-RADG beef steers

(n = 8; RADG = 0.73 kg/d) and negative-RADG beef steers (n = 8; RADG = -0.69

kg/d) were identified from a group of 108 growing crossbred beef steers (average

BW = 556 ± 38 kg) after a 56-d performance testing period. At the end of the 56-d

period, liver tissue samples were collected from the beef steers for RNA extraction

and cDNA synthesis. The mRNA expression of 84 genes involved in innate and

adaptive immunity were analyzed using pathway-focused PCR-based arrays. The

mRNA expression of genes with false discovery rate-adjusted P-values (FDR)

≤ 0.05 and absolute fold change (FC) ≥ 1.2 were determined to be differentially

expressed. Out of the 84 genes analyzed, four genes (IL-2, MYD88, CD-80, NFkB-

1) were differentially expressed and were all upregulated in positive compared with

negative-RADG beef steers. IL-2 is a cytokine that plays a critical role in the

immune response by activating and proliferating T-cells, which are important for

fighting infections. MYD88 is an adaptor protein that is essential for signaling by

toll-like receptors, which are involved in pathogen recognition. CD80 is a protein

that is expressed on the surface of antigen-presenting cells and plays a critical role

in the initiation of an immune response. The activation of NF-kB leads to the

production of cytokines and chemokines that help to recruit immune cells to the

site of infection. The upregulation of the aforementioned genes in positive-RADG

beef steers suggests that they had a better ability than negative-RADG beef steers

to quickly recognize pathogens and initiate appropriate responses to effectively

fight off infectionswithout causing inflammatory reactions, potentially contributing

to their better feed efficiency.
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Introduction

In beef production, the cost of feeding is a crucial factor that

significantly impacts the overall cost of production. Studies have

demonstrated that feed cost accounts for 60 to 70% of the total

expenses in animal production (Becker, 2008; Greenwood, 2021).

Given this, improving feed efficiency holds the potential to mitigate

costs and enhance the economic viability of farms. Moreover,

improved feed efficiency can lead to reduced environmental

impacts by reducing nutrient wastes and mitigating greenhouse gas

emissions (Llonch et al., 2017). There is a growing need to understand

the biological mechanisms associated with feed efficiency in beef

production systems, considering the complex sustainability factors

such as the overall impact of feed cost and environmental footprints.

Residual feed intake (RFI) and residual body weight gain (RADG)

have been explored for several years as measures of feed efficiency in

beef cattle (Crews, 2005; Berry and Crowley, 2012). Residual body

weight gain is the difference between the actual daily gain and

predicted gain based on body weight and dry matter intake of beef

cattle (Northcutt and Bowerman, 2010). Positive RADG values

signify more desirable feed efficient animals, while negative RADG

values indicate inefficient animals (Crowley et al., 2011).

Several studies have sought to understand how selection for

divergent RFI or RADG affects important traits such as metabolism,

fertility, rumen microbiome, and carcass characteristics

(Cantalapiedra-Hijar et al., 2018; Taiwo et al., 2022; Idowu et al.,

2023). In our recent study, Taiwo et al. (2023) investigated expression

of immunity-associated genes in the liver and whole blood of crossbred

beef cattle with divergent RFI. The results revealed differences in the

expression of genes associated with several pathways including pattern

recognition receptor activity and immune cell differentiation; however,

little is known about how selection based on RADG affects immune

gene expression in beef cattle.

The liver functions as a frontline immune organ strategically

positioned to detect and clear pathogens entering the body through

the gut, underscoring its significant role in the immune response (Loor

et al., 2005; Yan et al., 2014). Notably, variations in the expression of

immune-related genes in this organ can profoundly affect metabolic

function, nutrient availability, and feed efficiency in animals (Vigors

et al., 2019; Cheng et al., 2021). Thus, in this study, we hypothesized

that the expression of some immunity genes would vary in beef steers

with divergent positive or negative RADG. Our objective was to

determine the differences in mRNA expression of certain innate and

adaptive immune genes in the liver of beef steers with divergent

negative or positive RADG phenotypes.
Materials and methods

Animals, feeding, and experimental design

The research procedures described in this study received approval

from the Institutional Animal Care and Use Committees of West

Virginia (protocol number 2204052569). A total of 108 growing

crossbred (Angus × Hereford) beef steers (average body weight (BW)

= 556 ± 38 kg; 529 ± 22 d of age), were fed a high-forage total mixed
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ration (TMR) consisting primarily of corn silage, ground hay, and a

ration-balancing supplement (Table 1) for a total of 56 days after a 15-d

adaptation period to the feeding facilities and diet. The steers were

housed in five dry lot pens (20-22 steers per pen). Two GrowSafe 8000

intake nodes (GrowSafe Systems Ltd., Airdrie, Alberta, Canada) were

installed in each pen to monitor individual feed intake. Daily BW

measurements were obtained using In-Pen Weighing Positions (IPW,

Vytelle LLC). At the end of the 56-d period, the beginning BW,mid-test

metabolic BW, and average daily gain (ADG) were calculated by

regressing the daily BW for each animal using a simple linear

regression. The ADG of each steer was regressed against their daily

dry matter intake (DMI) and mid-test metabolic BW (MMTW = mid-

test BW0.75), and the RADG was calculated as the residual or the

difference between the predicted value of the regression and the actual

measured value using the following regression equation: Y = b0 + b1X1

+ b2X2 + e, where Y represents the ADG (kg/d), b0 is the regression
intercept, b1 and b2 are the partial regression coefficients, X1 is the

MMTW (kg), X2 is the observed DMI (kg/d) (Koch et al., 1963; Berry

and Crowley, 2012). Upon completion of the feeding trial, the beef

steers were ranked based on their RADG coefficients and the most

efficient (positive-RADG = +0.76 kg/d, n = 8) and least efficient

(negative-RADG= -0.65 kg/d, n = 8) were identified for further analysis.
Liver biopsy, RNA extraction and
gene expression

Liver tissues were obtained from the 8 positive-RADG and 8

negative-RADG beef steers using a needle biopsy under local

anesthesia. An incision was made in the skin and liver tissue was

harvested from the 10th intercostal space through a 14-gauge biopsy

needle (Tru-Core-II Automatic Biopsy Instrument: Angiotech,

Lausanne, Switzerland). Approximately 1 g of liver tissue sample

was obtained from each of the 16 steers by puncture and was

immediately transferred into RNA-Protect tubes (cat. No: 76104;

Qiagen) and stored at −80°C for further analysis. A sub-sample of the

liver tissue (5 mg each) was used for total RNA extraction using

RNeasy Micro kit (cat. no. 74004; Qiagen) following the

manufacturer’s instructions. Samples with >100 ng/µL total RNA

were used. RNA concentration was measured using a NanoDrop

2000 spectrophotometer with an A260:A280 ratio from 1.8 to 2.0

(Thermo Fisher Scientific, Waltham, MA, USA). All samples had

RNA integrity numbers > 8.0 analyzed using Agilent 2100

Bioanalyzer (Agilent Technologies). Complementary DNA (cDNA)

synthesis was then carried out using the extracted, purified RNA. To

obtain transcript abundance, cDNA was synthesized via reverse

transcription (RT) using the RT2
first strand kit (cat. no. 330401;

Qiagen). RT2 Profiler cow innate and adaptive immune responses

Polymerase chain reaction (PCR) Array (PABT-052ZA; Qiagen) was

used for mRNA expression analysis of 84 genes related to innate and

adaptive immunity. Each array was a 96-well plate containing 84

adaptive and innate immune-related genes together with five

housekeeping genes (b-actin, hypoxanthine phosphoribosyl

transferase 1, glyceraldehyde-3-phosphate dehydrogenase, tyrosine

3-monooxygenase, and TATA box-binding protein), three RT, three

positive PCR controls, and one genomic DNA control
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(Supplementary Table S2). Real-time PCR was performed using the

Quant Studio 5 real-time PCR system (Applied Biosystems, Foster

City, CA). The PCR cycle conditions were as follows: 40 denaturation

cycles of 95°C for 10 min, 95°C for 15 s, and 60°C for 1 min.
Data and statistical analysis

Variables such as initial and final BW, ADG, DM intake, and

RADG values were analyzed using the GLIMMIX procedure of SAS

version 9.4 (SAS Institute Inc., Cary, NC), with RADG status included

as a fixed effect. Significant effects were declared at P ≤ 0.05. Values of

initial body weight were included as a covariate for the final body

weight. We used the Gene Globe data analysis center (https://

geneglobe.qiagen.com) to analyze the mRNA expression data. The

comparative cycle threshold (Ct) method was used for the relative

quantification of the gene expression (Pfaffl, 2001). To determine the

differences in mRNA expression between the positive- and negative-

RADG beef steers, the delta-delta Ct (2−DDCt) method was employed.

The raw data were normalized using the geometric mean of the five

housekeeping genes (Pfaffl, 2001). The stability of the housekeeping

genes was confirmed using DCt and NormFinder (Andersen et al.,

2004). The PCR arrays employed in this study have an average

amplification efficiency of 99%, with a 95% confidence interval

ranging from 90 to 110%, enabling accurate simultaneous analysis of

multiple genes using the 2−DDCt method. Differentially expressed genes

were identified using absolute fold change (FC) ≥ 1.2 and false

discovery rate-adjusted P-values of 0.05.
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Results and discussion

The results showing the growth performance of the beef steers

with divergent RADG phenotypes are presented in Table 2. The

average RADG values of positive- and negative-RADG beef steers

were 0.73 and -0.69 kg/d, respectively (P = 0.01). Dry matter intake

and initial BW of the two groups were similar (P > 0.05). Compared

to negative-RADG, final BW and ADG were greater (P ≤ 0.05) in

positive- RADG than negative-RADG beef steers.

The mRNA expression analysis of the 84 innate and adaptive

immune genes is shown in Supplementary Table S3. Among the 84

genes analyzed, the mRNA expression of 4 genes encoding

interleukin 2 (IL-2), nuclear factor NF-kappa-B (NF-kB-1),
myeloid differentiation primary response 88 (MYD88), and the

cluster of differentiation 80 (CD80) were differentially expressed

and were all upregulated in beef steers with positive RADG (FC ≥

1.2, P ≤ 0.05; Table 3). The upregulation of IL-2, MYD88, and NFkB-
1 in positive-RADG beef steers suggests a robust immune interaction

between the innate and adaptive cells of these animals. Myeloid

differentiation primary response 88 (MYD88) plays a crucial role in

innate immune signaling, mediating the innate immune response and

cytokine production to combat pathogens and stimulate adaptive

immunity (Arnold-Schrauf et al., 2014; Li et al., 2020). Upon

lipopolysaccharide recognition, MYD88 plays a critical adapter

protein role in the TLR4 signaling pathway, which in turn activates

downstream signaling molecules that express genes involved in the

inflammatory response during bacterial infection (Fitzgerald et al.,

2004). Interleukin 2 contributes to immune balance and long-lasting

cell-mediated immunity (Liao et al., 2011; Wrenshall et al., 2014).

Nuclear factor kappa B is vital for the development, activation, and

survival of adaptive immune cells (Lee and Kleiboeker, 2005;

Tergaonkar, 2006). It also plays a pivotal role in the innate

immune response to pathogens through pattern recognition

receptor signaling (Lee and Kim, 2007). Prolonged inhibition of

NF-kB-1 can result in inappropriate immune cell development or

delayed cell growth (Hinz et al., 1999; Graham et al., 2010).

The increased expression of CD80-1 in the positive-RADG beef

steers indicates effective adaptive immune responses. CD80, primarily

expressed on antigen-presenting cells like macrophages and dendritic

cells, interacts with its receptor CD28 on T cells, providing co-

stimulatory signals necessary for sustained T cell activation and
TABLE 1 Composition of the total mixed ration.

Ingredients (%DM) % of dietary DM

Corn silage 41.2

Sorghum haylage 29.4

Mixed grass haya 10.3

Concentrate supplementb 19.1

Nutrient analysis

DM % 52.0

Crude Protein % 14.1

NDF % 36.5

NFC % 38.0

Fat % 4.45

Calcium % 0.53

Phosphorus % 0.46

Potassium % 1.50
aContains a mixture of orchard grass, fescue grass, timothy grass, and red clover.
bTraditions 50% beef supplement (Southern States Cooperative, Richmond, VA) contained
processed grain by-products, plant protein products, ground limestone, urea, salt, cane
molasses, potassium sulfate, magnesium sulfate, sodium selenite, vitamin A supplement,
calcium carbonate, vegetable oil, manganous oxide, vitamin D3 supplement, vitamin E
supplement, zinc oxide, lecithin, phosphoric acid, basic copper chloride, magnesium
chloride, propylene glycol, natural and artificial flavors, ferrous sulfate, calcium iodate, and
cobalt carbonate; Guaranteed analysis: 50% CP; 5% Ca; 0.55% P; 2% Na; 3.9% salt; 1% K, and
66,000 IU/kg vitamin A.
DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; NFC, non-
fiber carbohydrates.
TABLE 2 Growth performance of beef steers with divergent residual
body weight gain phenotype.

Item Positive
RADG

Negative
RADG

SEM P-
value

RADG (kg/d) 0.73 -0.69 0.10 0.01

Initial
weight (kg)

494 496 8.90 0.65

Final
weight (kg)

564 555 1.93 0.01

ADG (kg/d) 1.25 1.05 0.06 0.04

DMI (kg/d) 13.2 13.3 0.49 0.96
fron
SEM, standard error of the mean; ADG, average daily gain; DMI, dry matter intake.
tiersin.org

https://geneglobe.qiagen.com
https://geneglobe.qiagen.com
https://doi.org/10.3389/fanim.2024.1349499
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Ologunagba et al. 10.3389/fanim.2024.1349499
proliferation (Lenschow et al., 1996; Sharpe and Freeman, 2002).

Moreover, CD80 plays a role in regulating the balance between

immune activation and tolerance (Martıńez-Méndez et al., 2021).

The upregulation of CD80 in beef steers with positive RADG suggest

a competent immunological memory, enabling rapid response upon

re-exposure to previously encountered pathogens.
Conclusion

The results of this study revealed the upregulation of key

immune-related genes like IL-2, CD-80, MYD88, and NFkB-1 in

the liver of beef steers with positive RADG, suggesting a robust

interaction between innate and adaptive immune cells, potentially

contributing to their improved feed efficiency. Future research should

focus on assessing the immunocompetence of beef steers classified as

positive or negative RADG when exposed to pathogen challenges.

Such investigations are crucial in unveiling the intricate links between

immunocompetence and feed efficiency, thereby enabling targeted

interventions to improve livestock health and growth performance.
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