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Introduction:Mechanical grading can be used to objectively classify beef carcasses.

Despite its many benefits, it is scarcely used within the beef industry, often due to

infrastructure and equipment costs. As technology progresses, systems become

more physically compact, and data storage and processing methods are becoming

more advanced. Purpose-built imaging systems can calculate 3-dimensional

measurements of beef carcasses, which can be used for objective grading.

Methods: This study explored the use of machine learning techniques (random

forests and artificial neural networks) and their ability to predict carcass conformation

class, fat class and cold carcass weight, using both 3-dimensional measurements

(widths, lengths, and volumes) of beef carcasses, extracted using imaging

technology, and fixed effects (kill date, breed type and sex). Cold carcass weight

was also included as a fixed effect for prediction of conformation and fat classes.

Results: Including the dimensional measurements improved prediction

accuracies across traits and techniques compared to that of results from

models built excluding the 3D measurements. Model validation of random

forests resulted in moderate-high accuracies for cold carcass weight (R2 =

0.72), conformation class (71% correctly classified), and fat class (55% correctly

classified). Similar accuracies were seen for the validation of the artificial neural

networks, which resulted in high accuracies for cold carcass weight (R2 = 0.68)

and conformation class (71%), and moderate for fat class (57%).

Discussion: This study demonstrates the potential for 3D imaging technology

requiring limited infrastructure, along with machine learning techniques, to

predict key carcass traits in the beef industry.
KEYWORDS

beef carcasses, objective beef classification, EUROP classification grid, video image

analysis, beef grading cameras, machine learning
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Introduction

Within the livestock industry, new automated practices can be

implemented at different stages of the supply chain from farm to

fork, with various technologies being available to improve efficiency

post-slaughter, for example during carcass processing. This includes

the automation of carcass grading, which has the potential to

improve profitability while reducing emissions, both on-farm and

in the abattoir.

Currently in the UK, carcasses are graded using the EUROP

carcass classification grid, where the conformation (shape) and fat

coverage of a carcass are assessed (Strydom, 2022). Conformation

classes range from E to P, with E representing carcasses of excellent

shape and P carcasses of poor shape, and fat classes range from 1–5,

with one being low, and five being excessive levels. Each class has

the potential to be subdivided into one of three subclasses (plus,

equal or minus), allowing for one of 15 potential conformation and

fat classes to be assigned (15-point scale). The two classes are

combined to give an overall grade, and this determines the price

paid to the producer in pence per kilogram (UK GBP) of the

carcass. With mechanical grading, the 15-point scale is used,

allowing for one of 225 potential grades to be awarded to the

overall carcass (AHDB, 2024). However, many abattoirs rely on

manual (visual) grading when classifying carcasses, and with this

method, different countries across Europe implement different

combinations of the subclasses. For example, in the UK, plus and

minus subclasses are only used for conformation classes U, O, and P

and fat classes 4 and 5, and only equal subclasses are used for

conformation classes E and R and fat classes 1, 2 and 3 (traditional

grid). Regardless of the grid used, cattle of grades that represent the

market specifications more closely result in higher prices, while

lower prices result from cattle of poor conformation or high fat

classes, with the latter often associated with over-finished animals.

Therefore, ensuring cattle are sent to slaughter at the optimum

grade has the potential to reduce emissions resulting from over-

finished animals (i.e., emissions from excess inputs and excess

enteric methane production) and improve profitability due to the

premium prices being met.

It has been recognized, however, that the subjective nature of

visual grading can lead to a lack of trust in the classification system

(Allen and Finnerty, 2000). This is due to the fact that the grades

awarded may be influenced by many factors, such as the classifier

and their experience (Wnęk et al., 2017), the time of day, or prior

carcasses. This may reduce the financial incentive for producers to

finish their cattle at the optimum slaughter date, and therefore

objective techniques must be adopted. Despite this, they are not

widely utilized in the UK, which may be due to only one system

(VBS2000, e + v technology, Oranienburg, Germany) being

approved for commercial use under government guidance. This

system is integrated into the slaughter line, and images are captured

of the carcass side, which has raster stripes projected onto it,

indicating the contour of the carcass for the shape (conformation)

to be assessed. The quantity of red and white flesh is compared for

the estimation of fat class. To ensure this process works effectively,

the system requires 9.2m of floor space to cater for the associated

infrastructure (Craigie et al., 2012). It may not always be favorable
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for abattoirs to sacrifice this space for the technology, particularly

when the costs associated with purchasing and installing the

equipment are factored in. Therefore, visual grading is still

favored in many abattoirs and the final grades, and therefore

prices paid to farmers, are decided subjectively.

In order to encourage the adoption of mechanical grading

systems, technology requiring limited infrastructure, resulting in

lower costs, must be made available. Although large amounts of

infrastructure were previously needed for technologies to extract the

necessary information of the carcass for objective grading (e.g., 3D

information), advancements have not only made more complex

technology more affordable, but also more compact. Therefore, 3D

information can be extracted from small, purpose-built systems

requiring limited infrastructure, reducing the cost and space

required. This is the case with time-of-flight cameras, which can

produce point cloud images, allowing for 3D information to be

generated using the camera alone (Hansard et al., 2013). Along with

new technology, novel approaches for analyzing data are also

available, such as machine learning. Previously, techniques such

as linear regression were used for predictive analytics, however,

advancements in technologies have allowed for real-time analysis of

big data. Machine learning aims to mimic that of humans in terms

of learning from the environment, either for predictions (supervised

machine learning techniques) or pattern recognition (unsupervised

machine learning) (Liakos et al., 2018), and machine learning has

been widely adopted in the agricultural industry in recent years,

aiding the monitoring of crop, water, soil, and livestock

management (Benos et al., 2021). There are many benefits

associated with machine learning compared to that of traditional

statistics (e.g. linear regression), with machine learning in particular

being helpful for analyzing data where the number of inputs exceed

the number of outputs (Bzdok et al., 2018) or where outputs are

categorical (Goyache et al., 2001). Despite this, machine learning

methods have been noted to be more “sophisticated” than that of

linear formulas (Goyache et al., 2001), resulting in what is often

referred to as a “black box” approach (Alves et al., 2019). This can

lead to a lack of understanding of how the algorithm reaches its final

prediction and which features of an observation led to the

prediction. This is particularly true with methods such as artificial

neural networks where there are input and output layers, with a

series of hidden layers between, and thus it has been noted that

there is no automatic procedures to estimate suitable artificial

neural network architecture (Goyache et al., 2001). Despite these

potential negatives, studies have found that various machine

learning techniques often outperform linear regression when

predicting carcass traits (Alves et al., 2019; Miller et al., 2019;

Shahinfar et al., 2019), indicating the potential for their

implementation within the grading industry, assuming suitable

and practical technology is provided.

The objective of this study was to assess the ability of 3D

measurements extracted from images of beef carcasses, combined

with machine learning algorithms, to predict key carcass traits. The

images were obtained from a time-of-flight camera, which required

limited infrastructure. Extracted 3D measurements were included,

along with other fixed effects (carcass details), to predict carcass

conformation, fat class and cold carcass weight (CCW), using
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machine learning algorithms. Two supervised machine learning

techniques were compared, as well as results from models built

using basic fixed effects (kill date, breed type, sex, and CCW for the

prediction of conformation and fat class) or a combination of fixed

effects and 3D measurements.
Materials and methods

Data were collected from 33,730 beef carcasses at one

commercial abattoir in Scotland. Data from a total of 89 different

breeds and crosses were recorded, across 106 days between 16th of

April 2022 and the 6th of October 2022. On average, data were

collected for 318 carcasses per day.
Carcass processing

At the abattoir cattle were stunned by captive bolt and

exsanguinated as each carcass was hooked to an automatic track

conveyor (kill line). The carcasses were then dressed and

eviscerated, following standard abattoir practice, to UK

specification (see Meat and Livestock Commercial Services

Limited beef authentication manual, www.mlcsl.co.uk, for full

description). The carcasses were split down the midline, with

each half being individually hooked to the conveyer by the

achilleas. The carcasses then moved down the kill line, passing in

front of the camera immediately prior to grading, where 7 seconds

worth of video was captured per carcass. After image capture the

carcasses were manually graded, and any excess flesh and fat was

then trimmed before butchery.
3D image capture

A Basler Blaze (Basler Inc., Exton, PA, USA) time-of-flight near

infra-red camera (housing size 100mm x 81mm x 64mm) collected

the image data of the carcasses. The camera used infrared light

beams to generate 3D point cloud images of the external surface of

the right-hand side of the carcass. A total of 35 3D image frames

were captured for each right-hand side of the carcass (seven seconds

worth of video, with five frames captured per second). In addition to

the camera, a 1.6m-wide steer bar was positioned behind the

carcasses, 2m above the ground. This was the only other required

infrastructure and was installed to reduce the risk of the carcasses

rotating while images were being captured.
Visual grading

After the carcasses moved on from image capture, they were

graded manually for both conformation class and fat class. The

grade awarded was assigned from the traditional EUROP

classification grid used within the UK, by a trained assessor.

While the carcasses were being graded, the hot carcass weight was

automatically recorded using a suspension weigh scale installed on
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the line. Two percent of the hot carcass weight was subtracted to

give the value for the CCW.
Image processing and 3D
measurement calculation

The 3D point cloud frames were processed by Innovent

Technology Ltd., through algorithms developed using Halcon

Image Processing Library (MVTech Software GmbH, Munich,

Germany). The algorithms generated a single edge contour

(outline) of the right-hand side of the carcass and from that a

series of 3D measurements were extracted. Although 35 frames

were captured per carcass, it was not always possible for every

frame to be processed, due to unclear images resulting from noise

caused by the carcass swinging horizontally. A total of 713,090

images were processed from 33,730 carcasses and 44 measurements

(5 lengths, 18 widths and 21 volumes) were extracted from each

frame (Figure 1; Table 1) and used to build the machine

learning algorithms.

The locations on the carcass where the 3D measurements were

taken from were selected based upon findings from literature

searches (Borggaard et al., 1996; Bozkurt et al., 2008; Rius-

Vilarrasa et al., 2009; Emenheiser et al., 2010; De La Iglesia et al.,

2020; Stinga et al., 2020). The width and length measurements were

extracted from locations that allowed the carcass side to be

separated into the hindquarter, flank and forequarter, due to the

role these sections play in both butchery and grading. An axis based

on anatomical features of the carcass, measuring from the back of

the rear shin to the top of the front shin, provided a total length

measurement of the carcass and the rest of the 3D measurements

were extracted relative to this axis. Widths were measured

perpendicular to the axis (Figure 1A), with the width of the

hindquarter being identified as the narrowest width of the carcass

and two further width measurements were extracted at equal

spacing below the narrowest width and the lowest point of the

axis. Smaller subsections of each measurement were also recorded,

which were identified by points where measurements crossed, for

example widths to the left/right-hand side of the total length axis.

Volumes were extracted from within the carcass outline (Figure 1B).

Smaller individual volumes were extracted, again defined by

subsections determined by the lines drawn to measure widths and

the axis. An additional series of width measurements (Figure 1C)

and volume measurements (Figure 1D) were extracted from the

hindquarter of the carcass. These measurements were selected due

to the rump region of the carcass appearing susceptible to changes

across the classification grades when assessed visually.
Preliminary data inspection and
data cleaning

The 3D measurements extracted from the carcass images were

imported into RStudio, V4.2.3 (RStudio, Boston, MA, USA).

Quality assurance measures put in place by Innovent technology

Ltd., identified 407,770 of the 713,090 images as unsuitable for
frontiersin.org
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TABLE 1 Three-dimensional (3D) measurements extracted from the carcass.

3D measurements

Length measurements

LenTOT Length of the carcass either from the back of the rear shin to the top of the front shin (LenTOT)

LenHQ Length of LenToT from the back of the rear shin to WidHQ

LenUF Length between WidHQ and WidF

LenLF Length between WidF and WidFQ

LenFQ Length below WidFQ to the outline of the carcass

Width measurements

WidHQ Narrowest Width of the carcass, perpendicular to LenTOT

WidHQL Width measurement of WidHQ to the left of LenTOT

WidHQR Width measurement of WidHQ to the right of LenTOT

WidF Width of the carcass, perpendicular to LenTOT at the lower end of LenUF

WidFL Width measurement of WidF to the left of LenTOT

WidFR Width measurement of WidF to the right of LenTOT

WidFQ Width of the carcass, perpendicular to LenTOT at the lower end of LenLF

WidFQL Width measurement of WidFQ to the left of LenTOT

WidFQR Width measurement of WidFQ to the right of LenTOT

Volumes

VolTOT Total Volume of the carcass

VolHQ Volume of the area of the carcass above WidHQ

VolHQL Volume of the area of VolHQ to the left of LenTOT

VolHQR Volume of the area of VolHQ to the right of LenTOT

VolUF Volume of the area of the carcass between WidHQa and WidF

VolUFL Volume of the area of VolUF to the left of LenTOT

(Continued)
F
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FIGURE 1

(A) Length and width measurements extracted from images of the carcass, (B) volume measurements extracted from images of the carcass,
(C) width measurements of the rump extracted from images of the carcass, (D) volume measurements of the rump extracted from images of
the carcass.
frontiersin.org04

https://doi.org/10.3389/fanim.2024.1383371
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Nisbet et al. 10.3389/fanim.2024.1383371
analysis, due to issues such as the carcass side rotating, or

members of the abattoir’s workforce being included in the image

processing. Along with this, it was observed that the flank tissue on

some carcasses was severed during dressing. This resulted in

abnormalities in carcass presentation (Figure 2A) compared to

that of carcasses that had not been cut (Figure 2B), impacting

measurements. For this reason, carcasses that had the flank severed

were also removed from further analysis.

Carcass details collected by the abattoir (such as the carcass

classification grade, weight, eartag number (UKID), sex and breed)

were stored in a SQL server management database (version SQL

Server 2014, Microsoft, Washington, USA), and were imported into

RStudio to be joined with the measurements of any corresponding

carcasses. Only images for steers and heifers were considered

for analysis.
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The measurements extracted from the remaining 305,320

images for 19,186 carcasses were used to build density plots to

test for normal distribution. Any measurement values that were

identified as obvious outliers were removed. The mean and

standard deviation values were calculated for each measurement

using the remaining values. Any values outwith 5 standard

deviations above or below the mean of each measurement were

also removed, leaving 285,109 images for 17,250 carcasses (Table 2).

The most common manually recorded classification grade in

the final dataset was R4L (n=6,104). Few carcasses of the extreme

grades (E+, P+, P−, 1, 5L, 5H) were recorded (Table 3). The breed of

the carcass, which was recorded as a breed code categorized under

the cattle tracing system (British Cattle Movement Service, 2014),

was also converted to a simplified breed type category (cattle of

either Continental or British descent).
TABLE 1 Continued

3D measurements

Volumes

VolUFR Volume of the area of VolUF to the right of LenTOT

VolLF Volume of the area of the carcass between WidFa and WidFQ

VolLFL Volume of the area of VolLF to the left of LenTOT

VolLFR Volume of the area of VolLF to the right of LenTOT

VolFQ Volume of the area of the carcass below WidFQ

VolFQL Volume of the area of VolFQ to the left of LenTOT

VolFQR Volume of the area of VolFQ to the right of LenTOT

Rump widths

WidR First widest point of the hindquarter moving down from the rear shin, perpendicular to LenTOT

WidR1L Width of WidR1 to the left of LenTOT

WidR1R Width of WidR1 to the right of LenTOT

WidR2 Next narrowest width of the hindquarter moving down from WidR1, perpendicular to LenTOT

WidR2L Width of WidR2 to the left of LenTOT

WidR2R Width of WidR2 to the right of LenTOT

WidR3 Next widest width of the hindquarter, moving down fromWidR2, perpendicular to LenTOT

WidR3L Width of WidR3 to the left of LenTOT

WidR3R Width of WidR3 to the right of LenTOT

Rump volumes

VolR1L Vol of VolR1 to the left of LenTOT

VolR1R Vol of VolR1 to the right of LenTOT

VolR2L Vol of VolR2 to the left of LengthTOT

VolR2R Vol of VolR2 to the right of LenTOT

VolR3L Vol of VolR3 to the left of LenTOT

VolR3R Vol of VolR3 to the right of LenTOT

VolR4L Vol of VolR4 to the left of LenTOT

VolR4R Vol of VolR4 to the right of LenTOT
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Data analysis

A minimum of one and up to thirty-five 3D images were

captured per carcass, resulting in an average number of 16 useable

images per animal. Coefficients of variation (CV) were calculated for

each dimensional measurement per carcass to assess variation from

measurements extracted across images of each carcass. The majority

of carcasses had a low CV for each measurement (average across all

images <0.3) between frames and consistent levels of variability were

noted across the 3D measurements. For this reason, the values

within each 3D measurement were averaged using the arithmetic

mean over all suitable images for each carcass, resulting in one

row of data per carcass, each containing 3D measurements,

conformation class, fat class, cold carcass weight and fixed effects

(breed, sex, and kill date) for further analysis. For each of the three

carcass traits (carcass conformation, fat class and CCW), separate

training and validation datasets were created, containing 70% and

30% of the datapoints respectively. For the prediction of
Frontiers in Animal Science 06
conformation and fat class, as the dependent variables were

categorical, the data were split using stratified random sampling,

selecting 70% of datapoints from each class, ensuring each class was

represented in the training dataset. The CCW was also included as

fixed effect for the prediction of conformation and fat class, therefore

this variable was included in these datasets. Random sampling was

used to split the data for the prediction of CCW as this was

continuous. The split of carcasses remained the same for all

models per trait. The data were then analyzed using two

supervised machine learning methods: Random Forest (RF) and

artificial neural network (ANN) models in RStudio, version

2023.03.1 + 446 (R Core Team, 2023).
Random forests
The “train” function from the “caret” package (Kuhn, 2008) was

used to build the RF models using the training dataset for each

respective carcass trait. For all RF models built, roughly two thirds

of the data in the training dataset is automatically sampled

randomly with replacement to build numerous trees in the model.

These are referred to as bootstrap samples. In some trees an

observation may be included in the bootstrap sample more than

once, or not at all. The outcomes across all trees are then averaged to

give the final result from the RF. The data that were not included in

the bootstrap samples are known as the out-of-bag (OOB) sample,

and this can be used to estimate the error rate of the model, by

calculating the percentage of incorrect predictions (Breiman, 2001).
FIGURE 2

Example images of carcasses and extracted measurements, with (A) flank tissue cut and (B) flank tissue not cut.
TABLE 2 Number of datapoints (images) and animals in the final dataset.

Sex Number of images Number of animals

Steers 153,806 9,174

Heifers 131,303 8,076

Total 285,109 17,250
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A 10-fold cross validation repeated three times was used to validate

each RF model built in the training process and the type of

algorithm was set to “Classification” for the prediction of

conformation and fat class, or “Regression” for the prediction

of CCW. The parameters of the algorithm were the number of

trees per RF (ntree) and the number of randomly selected variables

(mtry). Ten ntree values were chosen at increments of 100 between

100–1,000. The mtry ranged from one to the maximum number of

predictors available in the dataset and therefore, for models built for

the prediction of cold carcass weight, the mtry ranged from one to

three, when using only the fixed effects, and one to forty-seven for

models including the 3D measurements. For the prediction of the

categorical traits (conformation class and fat class), the maximum

mtry was one higher than that of the mtry for models built for the

prediction of CCW, as CCW was included as a predictor for

conformation and fat class. Models were built using the training

dataset to test all possible combinations of parameters to optimize

model performance. This resulted in grid combinations of up to 40

models when using only fixed effects, and 480 models when

including dimensional measurements. The OOB estimate of error

was recorded for the models built for the prediction of

conformation or fat class, and the mean absolute error (MAE)

was recorded for the model predicting CCW. Accuracy (the

percentage of correctly classified classes) was chosen to measure

the prediction accuracy of RF models predicting the categorical

traits (conformation and fat class), and the coefficient of

determination (R2 value) and root means squared error (RMSE)

were used as the metrics for the prediction of the continuous

trait (CCW).

Out of all possible parameter combinations, the model with

the parameter values that resulted in the highest prediction

accuracy was selected as the final model. Predictor variable

importance was calculated from each final model, using the

“varImp” function (Kuhn, 2008), indicating the metric “mean

decrease Gini”. This is the average of a variable’s total decrease in

node impurity, weighted by the proportion of samples in the node

of each decision tree. A higher mean decrease in gini value reflects

variables of higher importance. The final models were then used to
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predict the dependent variable from previously seen data (training

dataset) and then unseen data (validation dataset), using the

“predict” function (R Core Team, 2023). Similar metrics as

those used when building the models were used to assess the

prediction accuracy when validating the final model, with different

metrics being used for the continuous (CCW) and categorical

traits (conformation and fat class). The R2 value, RMSE and MAE

were calculated for CCW. For conformation and fat class, the

recorded and predicted classes were compared using a confusion

matrix, with the percentage of correctly classified cases being

calculated, along with the percentage of classes over-/under-

scored by one class. The area under the receiver-operator curve

(AUC) was then calculated for conformation and fat class,

providing an additional metric for assessing the accuracy of the

models. Initially the probability of each grade was predicted and

the multiclass receiver operating characteristic (ROC) curve was

calculated, plotting the true positive and false positive rate using

the “multiclass.roc” function (Robin et al., 2011). As multiple

classifications were being assessed, the resulting AUC was the

average across all classes, and this resulted in a value between 0–1.

The higher the AUC, the better the model is at predicting the

correct class.

Artificial neural networks
The original cleaned data were then used to build ANN models,

using the “train” function from the “caret” package (Kuhn, 2008).

Initially the independent variables were normalized using the “scale”

function in base R (R Core Team, 2023). Here the mean of each

variable was subtracted from each value before being divided by the

standard deviation (Xscaled = (Xoriginal – mean)/standard deviation).

For the RF models, the data did not need to be scaled as this was a

tree-based function and the variables are not directly compared. The

normalized data were then split into training and validation datasets

for each dependent variable. For each trait, the training data was

used to build the ANN models, using the method “nnet” (Venables

et al., 2002). Values for size (the number of units in the hidden layer)

and weight decay (the regularization parameter) were specified and

a tenfold cross validation, repeated three times, was used. For all
TABLE 3 Number of each grade awarded for all carcasses in the final dataset.

Fat class

1 2 3 4L 4H 5L 5H Total

C
o
nf
o
rm

at
io
n 
cl
as

s

E 1 13 12 2 1 29

U+ 4 53 110 67 16 1 251

U− 14 179 945 1,516 403 20 2 3,079

R 19 338 2,743 6,104 1,514 63 3 10,784

O+ 5 120 849 1,505 408 18 1 2,906

O− 3 21 96 62 2 184

P+ 6 9 15

P− 2 2

Total 54 733 4,755 9,256 2,344 102 6 17,250

C
o
n
fo
rm

at
io
n
cl
as
s
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ANN models built, decay was set to either 0.1, 0.01, or 0.001. The

size was set to either 2, 4, 6, or 8 for models built using only fixed

effects, or 20, 40, 60, or 80 for models built using fixed effects and 3D

measurements. Although a different method (nnet) was used for the

ANNmodels compared to that of the RF models, the metrics used to

evaluate the prediction of CCW remained the same (R2, RMSE,

MAE). However, for the categorical traits, the prediction was

assessed through the accuracy (percentage of correctly classified

cases) and the kappa statistics (comparison of observed and

expected classifications). The final model for each trait was

selected as the model with the highest accuracy or highest R2, and

the lowest RMSE, or MAE, or Kappa statistic. The “varImp”

function (Kuhn, 2008) was again used to identify the most

important variables, however, for the ANN models, the output for

this function assigns each variable a percentage of importance, with

the sum of all variable percentages equaling 100%. The variable with

the highest percentage indicates the variable of the greatest

importance in the model. The final model was then used to

predict the dependent variables, initially using seen data (training

dataset) and then unseen data (validation datasets). The same

processes used to build the RF model confusion matrices and

estimate the AUC were used for the ANN models.
Results

Prediction of cold carcass weight

Random forests
The cold carcass weights ranged from 163.6–588.0kg, with an

average of 335.2kg. A total of 30 RF models were created for the

prediction of CCW, using only the fixed effects. The number of

variables tried at each split ranged from 1 to 3. The RMSE and the

R2 values were used as metrics for determining the prediction

accuracy of the RFs, as the CCW is a continuous variable rather

than categorical. The RMSE for the RFs ranged between 36.48–

37.42kg and the R2 ranged between 0.21–0.24. The best RF was

identified as being built with 500 trees and it had a mtry of 3, and

resulted in a MAE of 28.62. The sex of the carcass was identified as

the most important variable, followed by the kill date and then the

breed type.

When including the dimensional measurements, 470 RF models

were built for the prediction of CCW. The RMSE decreased, ranging

between 22.10–24.00kg, and the R2 increased substantially, ranging
Frontiers in Animal Science 08
between 0.68–0.72. The RF with the lowest RMSE and highest R2

value was the RF built with 1,000 trees and a mtry of 27 and resulted

in a MAE of 16.76. The most important variable in the final RF

model was the total length of the carcass, followed by the volume of

the hindquarter. The kill date was the 8th most important variable,

and the sex of the carcass was the 14th most important. Breed type

was the least important predictor variable. The CCW for carcasses

in the validation dataset were then predicted using this final model,

with comparisons between the actual and predicted CCW displayed

in Figure 3, with the best fit line (y = 110 + 0.68x). Results from the

most accurate RF models built for the prediction of CCW are

displayed in Table 4 and the top 5 most important 3D

measurements in those models, along with the ranking of the

fixed effects importance are listed in Table 5.

Artificial neural networks
The R2 values for the ANNs built using only fixed effects

(n = 12) ranged between 0.16–0.20. The RMSE for the ANNs

ranged between 36.84–38.86kg and the MAE ranged between

29.52–31.50. The RMSE was used to select the optimal model,

and this was identified as the model built with a size of 6 and decay

of 0.01. The sex of the carcass was identified as the most important
FIGURE 3

Actual vs. predicted cold carcass weight for carcasses in the
validation dataset, predicted using the best artificial neural network
model (black) and the best random forest model (grey).
TABLE 4 Comparison of results for different metrics across the best random forest model and best artificial neural network model for the prediction
of cold carcass weight, considering only fixed effects (kill date, sex and breed type), and fixed effects and 3D measurements.

Metrics1 Random forest Artificial neural network

Fixed effects Fixed effects and
3D measurements

Fixed effects Fixed effects and
3D measurements

R2 0.24 0.72 0.20 0.68

RMSE 36.48 22.10 38.86 23.81

MAE 28.63 16.76 29.52 18.08
1R2, coefficient of determination; RMSE, root mean squared error; MAE, mean absolute error.
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variable (40.07%), followed by breed type (37.11%) and then kill

date (22.82%).

When including the dimensional measurements, both RMSE

and MAE decreased, and the R2 increased across all size and decay

combinations (n = 12). The R2 ranged from 0.58–0.68 and the MAE

ranged from 18.08–20.10. The RMSE ranged from 23.81–28.02kg,

with the lowest RMSE resulting from the model built with a size of

40 and a decay of 0.001. This model was then used to predict the

CCW of carcasses in the validation dataset. The actual and

predicted weights are displayed in Figure 3, with the best fit line

(y = 81 + 0.76x).

Results from the most accurate ANN models built for the

prediction of CCW are displayed in Table 4 and the top 5 most

important 3D measurements included in those models, along with

the ranking of the fixed effects importance are listed in Table 5.

When including the 3D measurements in the ANN models, the

most important variable was again identified as sex (2.83%). The

breed type was the 39th most important variable (1.80%) and the

kill date was the least important (1.15%). The volume of the upper

flank (VolUF) was the second most important variable and the most

important 3D measurement in the ANN.
Prediction of conformation class

Random forests
A total of 520 RF models were built for the prediction of

conformation class. Of the 40 RFs built using fixed effects only,

the accuracy ranged between 0.59–0.65. The most accurate RF

consisted of 900 trees and a mtry of 2, with an OOB estimate of

error of 35.22%. The model predicted 69% of the training dataset’s

classes correctly and a further 29% were over-/underscored by only

one neighboring grade. Slightly lower results were seen for the

validation dataset, however, where the model predicted 64% of

classes correctly and 34% of classes were over-/under-scored by one.

For the final model built using only fixed effects, CCW was

found to be the most important variable. Kill date and breed type

were the two next most important variables, with sex being the least

important variable in the model. Random forests built including the

dimensional measurements resulted in more accurate models, with

accuracy ranging between 0.63–0.71. Of the 480 RF models built

including the 3D measurements, the most accurate model was built

with 900 trees and 32 variables at each split with an OOB estimate of

error rate of 29.24%. This RF predicted 100% of classes correctly in

the training dataset. The confusion matrix built using the validation

dataset (Table 6) showed that 71% of classes were correctly

classified (black) and 28% were over/under-scored by one

neighboring class (grey).

For the most accurate model including the 3D measurements,

CCW was again the most important variable. The width of the

forequarter, the total length of the carcass and the width of the flank

were identified as the top three most important measurements after

CCW. Kill date was identified as the sixth most important variable

and breed type as the eight. The sex of the carcass was again

identified as the least important variable. Results from the most

accurate RF models for the prediction of conformation class are
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displayed in Table 7 and the top 5 most important 3D

measurements in those models, along with the ranking of the

fixed effects importance, are listed in Table 8.

Artificial neural networks
A total of 24 ANN models were built for the prediction of

conformation class. All twelve ANN models built using only fixed

effects resulted in accuracies of 36% and the Kappa statistic ranged

between 0.08–0.09. The most accurate model had a size of 6 and a

decay of 0.001. The confusionmatrix resulted in an accuracy of 65% for

both the predicted classes in the training dataset and validation dataset.
Frontiers in Animal Science 10
A further 34% of classes for the training dataset and 33% in the

validation dataset were over-/under-scored by one class. The averaged

multiclass AUC for this best model, built using only fixed effects was

0.68. The most important variable for the prediction of conformation

class, using the best ANN with only fixed effects was identified as the

sex of the carcass (33.85%). The breed type (31.19%) and CCW

(23.73%) were the second and third most important variables

respectively, and the kill date was the least important variable in the

ANN (11.23%).

Including the 3D measurements in the models improved

accuracies, with 41–43% of classes being classified correctly across
TABLE 6 Confusion matrix for actual vs. predicted conformation classes for carcasses in the validation dataset, predicted using the best random
forest model built using fixed effects and 3D measurements.

Actual

E U+ U− R O+ O− P+ P−

P
re
d
ic
te
d

E 0 0 0 0 0 0 0 0

U+ 3 3 1 0 0 0 0 0

U− 6 59 368 143 2 0 0 0

R 0 13 552 2,951 522 14 0 0

O+ 0 0 3 141 347 39 3 0

O− 0 0 0 0 1 2 2 1

P+ 0 0 0 0 0 0 0 0

P− 0 0 0 0 0 0 0 0

P
re
d
ic
te
d

The individual letters of “EUROP” represent carcasses of excellent conformation (shape) to carcasses of poorer conformation, from E through to P. Plus (+) and minus (−) subclasses are used for
classes U, O and P.
Black shading denotes correctly classified conformation class, predicted using the best fitting model, and grey shading denotes carcasses over/under-scored by one neighboring class.
TABLE 7 Comparison of results for different metrics across the best random forest model and best artificial neural network model for the prediction
of conformation class, considering only fixed effects (kill date, sex, breed type and CCW), and fixed effects and 3D measurements.

Random forest Artificial neural network

Fixed effects Fixed effects and
3D measurements

Fixed effects Fixed effects and
3D measurements

Training dataset

Accuracy 65% 71% 36% 43%

OOB 35.22% 29.24% NA NA

Kappa NA NA 0.09 0.23

Confusion matrix

% correctly classified 69% 100% 65% 77%

% over/under-scored by
one class

29% / 34% 23%

AUC 0.68 0.81 0.68 0.81

Validation dataset

Confusion matrix

% correctly classified 64% 71% 65% 71%

% over/under-scored by
one class

34% 28% 33% 28%
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the 12 models, and the Kappa statistic increased, ranging between

0.18–0.23. The optimal model was built with a size of 20 and a decay

of 0. The confusion matrix for the training dataset showed that the

model predicted 77% of classes correctly and 23% were over-/

under-scored by one class. For the validation dataset (Table 9) the

confusion matrix showed 71% of classes were predicted correctly

(black) using the best model. A further 28% were classified within

the neighboring class (grey). The averaged AUC across the classes

was 0.81. The CCWwas identified as the most important variable in

the best ANN using fixed effects and 3D measurements (6.33%).

The sex (3.09%) and the breed type (3.09%) were the third and

fourth most important variables. The kill date was the 26th most

important variable (1.81%) out of the 48 variables input into the

model. LenTOT was the second most important variable (3.31%)

and the most important 3D measurement.
Prediction of fat class

Random forests
For the 520 RFs built for the prediction of fat classification,

again 40 of those were built using only fixed effects, with the mtry

ranging between 1–4. The percentage of correctly classified

classes resulting from the models ranged between 46–55%. The

RF identified as the best model included 500 trees and a mtry of

2. The OOB estimate of error rate for this model was 45.47%. The

model predicted 56% of classes in the training dataset correctly

and a further 39% of classes were over/under-scored by one

neighboring class. Similar results were seen for the validation

dataset, where the model predicted 55% of classes correctly and

40% within one neighboring class. The averaged multiclass AUC

for fat classes predicted using the best RF with the fixed effects

only, was 0.58. The CWWwas the most important variable in the

best RF model build including only fixed effects, followed by kill

date, breed type and finally the sex of the carcass.

The remaining 480 RFs, using fixed effects plus dimensional

measurements, combining the ntree values with the mtry values

(1:48) resulted in similar accuracies however, ranging from 0.54–

0.56. The best model had 1,000 trees and a mtry of 33 and an OOB

estimate of error rate of 44.24%. When the model was used to

predict the fat class of carcasses in the training dataset, 100% of

classes were predicted correctly. When used to predict unseen data

from the validation dataset (Table 10), the model predicted 57% of

fat classes correctly (black), and a further 28% were over/under-

scored by one subclass (grey).

The CCW was identified as the most important variable in this

RF. Kill date was the second most important variable, however the

breed type and the sex of the carcass were the 47th and 48th most

important variables respectively. Width of the flank (WidthF) was

the third most important variable in the RF. The averaged area

under the multiclass curve was 0.69.

Results from the most accurate RF models for the prediction of

fat class are displayed in Table 11 and the top 5 most important 3D

measurements in those models, along with the ranking of the fixed

effects importance, are listed in Table 12.
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Artificial neural networks
The accuracy for all 12 ANNs built for the prediction of fat class,

using fixed effects, was 0.55 and the Kappa statistic was 0.08. The

best model was defined as the model built with a size of 4 and a

weight decay of 0. The confusion matrices for both the training and

validation dataset produced the same results, with 55% of fat classes

predicted correctly, and 28% within one neighboring class. The

averaged multiclass AUC was 0.71. Breed type was identified as the

most important variable (31.06%), followed by kill date (29.92%),

sex (27.44%) and finally CCW (11.57%).

The ANNs for prediction of fat class including the dimensional

measurements (n = 12) resulted in accuracies of 0.48–0.54. The

Kappa ranged between 0.15–0.19. The best model was defined as the

ANN with size = 20 and decay = 0. The best model predicted 62% of

classes correctly with the training dataset and 27% within one

neighboring class. The confusion matrix comparing actual and

predicted fat classes for carcasses in the validation dataset,

predicted using the best ANN (Table 13) showed 57% of classes

were correctly predicted (black) and 30% were classified within one

neighboring class (grey). The averaged AUC across the classes was
Frontiers in Animal Science 12
0.77. The breed type of the carcass was again identified as the most

important variable (3.62%) for the prediction of carcass fat class.

Sex (3.50%) and CCW (3.39%) were the second and third most

important variables, followed by WidFL (width of the flank to the

left of the axis), which was the most important 3D measurement

(3.35%). Kill date was the 29th most important variable in the best

ANN (1.81%).

Results from the most accurate artificial neural network models

for the prediction of fat class are displayed in Table 11 and the top 5

most important 3D measurements in those models, along with the

ranking of the fixed effects importance, are listed in Table 12.
Discussion

Supervised machine learning algorithms (random forests and

artificial neural networks) were used to predict the conformation

class, fat class, and CCW of beef carcasses. The models were built

using either fixed effects or fixed effects and 3D measurements

(widths, lengths and volumes) extracted from 3D images of the
TABLE 9 Confusion matrix for actual vs. predicted conformation classes for carcasses in the validation dataset, predicted using the best artificial
neural network.

Actual

E U+ U− R O+ O− P+ P−

P
re
d
ic
te
d

E 1 2 0 0 0 0 0 0

U+ 5 24 20 4 1 0 0 0

U− 3 44 494 270 5 0 0 0

R 0 4 410 2,732 423 5 0 0

O+ 0 1 0 220 428 31 1 0

O− 0 0 0 8 13 15 4 1

P+ 0 0 0 1 2 4 0 0

P− 0 0 0 0 0 0 0 0

P
re
d
ic
te
d

The individual letters of “EUROP” represent carcasses of excellent conformation (shape) to carcasses of poorer conformation, from E through to P. Plus (+) and minus (−) subclasses are used for
classes U, O and P.
Black shading denotes correctly classified conformation class, predicted using the best fitting model, and grey shading denotes carcasses over/under-scored by one neighboring class.
TABLE 10 Confusion matrix of actual vs. predicted fat classes for carcasses in the validation dataset, predicted using the best random forest.

Actual

1 2 3 4L 4H 5L 5H

P
re
d
ic
te
d

1 0 0 0 0 0 0 0

2 2 5 9 3 1 0 0

3 7 103 408 260 11 1 0

4L 5 110 1009 2,479 657 24 2

4H 0 1 3 35 34 6 0

5L 0 0 0 0 0 0 0

5H 0 0 0 0 0 0 0

P
re
d
ic
te
d

The classes represent carcasses of low levels of fat (1) to carcasses of excessive levels of fat (5). High (H) and low (L) subclasses are used for classes 4 and 5.
Black shading denotes correctly classified conformation grades, predicted using the best fitting model, and grey shading denotes carcasses over/under-scored by one neighboring class.
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carcasses. The study aimed not only to compare the prediction

accuracies resulting from the two machine learning techniques, but

also the accuracies resulting from the two sets of variables.
Prediction of cold carcass weight

Machine learning models built for the prediction of CCW using

fixed effects only resulted in low accuracies (R2). The best RF

resulted in higher accuracies than that of the best ANN, however,

with an increase from 0.20 to 0.24. These results were similar to

those achieved using traditional statistics (multiple linear

regression) with the same dataset, where the R2 = 0.22 (Nisbet

et al., 2024). In terms of all models built using only fixed effects, the

accuracies (R2) for CCW were lowest across the three traits. This

could be due to the other traits including an additional fixed effect

predictor (CCW), which may have a stronger relationship with the

other two traits compared to the breed, sex and kill date alone. This

can be seen with the models for fat and conformation, where the

CCW was in the top three most important variables across both

methods per trait, including or excluding the 3D measurements.

In terms of the variables highlighted as important for the

prediction of CCW, there were few similarities across the two

machine learning methods. For models built including only the fixed

effects, sex was the most important variable, and this was also the most

important variable in the ANN build including the 3D measurements

suggesting differences in the carcass weight of steer and heifer carcasses.

This agrees with that of previous studies, where significant differences

have been noted between the sex of a carcass and the carcass weight

(Tůmová et al., 2021). Heggli et al. (2021) also found carcass weights

between young bulls and heifers to be significantly different.
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Despite this, in the current study, sex was, however, the 14th

most important predictor in the RF model, and placed after kill

date, which was second in the RF model built including only fixed

effects. The remaining fixed effects were found to have little

importance when predicting CCW, indicating the 3D

measurements to be valuable in the prediction of this trait. In

particular, the measurements from the upper flank section of the

carcass (VolumeUFL, VolumeUFR, and LengthUF) were identified

as important for the prediction of CCW, being the 2nd–4th most

important variables in the ANN, and the LengthUF was the third

most important variable in the RF model. The total length of the

carcass was the most important variable in the RF model. This may

be explained by the fact that CCW and the total length of the carcass

(LenTOT) were highly correlated (R2 = 0.69), mirroring that of a

study by Seo et al. (2021), where the carcass weight and total length

of the carcass were found to be highly correlated. In the current

study, kill date was the 8th most important, sex was the 14th most

important, and breed type was the least important variable. For the

ANNs, however, breed type and kill date were the second least and

least important variables respectively. This further indicates the

weak relationship between the fixed effects and the cold weight of

the carcass, and hence the importance of dimensional

measurements for CCW prediction.

Including the dimensional measurements in the models

increased accuracies compared to that of models built just

including fixed effects for both machine learning techniques (RF

R2 = 72%; ANN R2 = 68%). The results using the machine learning

approaches were similar to those previously obtained from the same

dataset using traditional statistics (multiple linear regression)

(Nisbet et al., 2024), where the prediction accuracy again

improved when including the 3D measurements (R2 = 0.70).
TABLE 11 Comparison of results for different metrics across the best random forest model and best artificial neural network model for the prediction
of fat class, considering only fixed effects (kill date, sex, breed type and CCW), and fixed effects and 3D measurements.

Random forest Artificial neural network

Fixed effects Fixed effects and
3D measurements

Fixed effects Fixed effects and
3D measurements

Training dataset

Accuracy 55% 56% 55% 55%

OOB 45.47% 44.24% NA NA

Kappa NA NA 0.08 0.19

Confusion matrix

% correctly classified 56% 100% 55% 62%

% over/under-scored by
one class

39% / 28% 27%

AUC 0.58 0.69 0.71 0.71

Validation dataset

Confusion matrix

% correctly classified 55% 57% 55% 57%

% over/under-scored by
one class

40% 28% 28% 30%
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Although the previously fitted linear regression models resulted in

higher accuracies than that of the ANNs, the RF models

outperformed all tested techniques. This is similar to results

found in a study by Shahinfar et al. (2019), where RFs resulted in

higher accuracies than that of linear regression models for the

prediction of all tested carcass traits. For the prediction of hot

carcass weight in particular, the linear regression models resulted in

correlation coefficients of 0.68, whereas the RF models resulted in a

correlation coefficient of 0.79, despite linear regression being viewed

as the “gold standard”. There are many potential reasons why the

RF model may have outperformed the linear regression models, one

of which being the fact RFs are ensemble approaches, allowing them

to overcome limitations such as overfitting (Chiaverini et al., 2023).

In order to avoid overfitting with linear regression, typically

variables included in models have to meet a certain criterion and

thus are user chosen. This was also the case in the previous study

(Nisbet et al., 2024) due to the stepwise selection method, and

variance inflation factor threshold (<5). Machine learning

approaches, however, are data driven and thus the model is

created by the algorithm based on the available data. Therefore,

machine learning techniques are often superior to traditional

methods such as linear regression, particularly when many

variables are included (Ley et al., 2022). The parameter tuning

implemented for the RF algorithms also may have aided this, with

every possible number of variables being tested at each split, across

different RFs resulting in 470 different parameter combinations.

This allowed for an optimum variable input number to be

highlighted, and although this was not always the maximum

possible, it did not mean any variables were necessarily excluded

from the random forest. This, along with the utilization of bagging

(bootstrap aggregation), which seems to enhance accuracy

(Breiman, 2001), may also provide an explanation as to why the

RFs outperformed the results produced from the ANN models,

which had no form of feature selection or refinement of included

variables, which may have lead to the inferior results, compared to

the two other tested techniques. Similarly, it has also been noted

that RF models perform better on medium sized datasets than ANN

algorithms (Grinsztajn et al., 2022), suggesting the RF algorithms

are more suited to the current dataset compared to that of the

ANNs algorithms.

the results in the current study were lower than those reported

by Alves et al. (2019), where measurements were used to predict

the hot carcass weight of commercial lambs with high accuracy

(R2 = 0.82 when considering all variables, or R2 = 0.88 when using

variable selection methods). These measurements, however, were

recorded directly on the live animal, rather than on images of the

carcass, and included physical measurements as well as subjective

scores. Similar accuracies to Alves et al. (2019) have been found in

a study by Miller et al. (2019), where a series of measurements

from 3D images of live beef animals were used to predict the

CCW, using either traditional statistics or machine learning

approaches. The machine learning techniques (ANNs) resulted

in R2 of 0.88, higher than that of the results from the multiple

linear regression models (R2 = 0.83), again built using stepwise

selection methods. Both, however, were higher than that of the

current study. Miller et al. (2019) included height measurements
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of the live animal, which may offer an insight into the volume of

the carcass and, therefore, its potential weight. Depth

measurements of the carcass were not measured in the current

study, however, the 3D volumes were used to convey the depth of

the carcass. Although the measurements are only extracted from

one half of the carcass (right hand side), they are used to predict

the combined weight of both sides. Differences in the two sides, as

a result of dressing for example, could impact the accuracy of

the prediction.
Prediction of conformation class

Including the dimensional measurements in the models

resulted in increased prediction accuracies for both the RFs and

the ANNs (7% increase across both methods). Although the

percentage increase was similar across the two traits, the RF

algorithm resulted in higher accuracies than that of the ANN

models, for both predictions made using fixed effects only, and

fixed effects and 3D measurements.

Despite the 3D measurements adding value in terms of increasing

the prediction accuracies, the CCW was identified as the most

important variable across both techniques for models built including

the dimensional measurements, indicating the role the fixed effects still

play in the accuracy. This can further be seen in the ANN, where sex

and breed type were both included in the top 5 most important

variables. Despite this, the sex was listed as the least important variable

for both RF models and the kill date was the 6th most important

variable in the RF model, however the 28th most important variable in

the ANN. The total length of the carcass (LengthTOT) was ranked in

the top 3 most important variables for both techniques, suggesting this

measurement has a strong relationship with the conformation. The

total volume of the carcass, however, was not highly ranked (top 5) in

either model, which was suspected to have a strong relationship with

the conformation.

The results recorded were slightly higher than those produced

from the same dataset using traditional statistics (multiple linear

regression), rather than machine learning techniques (Nisbet et al.,

2024). The stepwise selection models in that previous study built
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using only fixed effects resulted in low accuracy for the prediction of

conformation class (R2 = 0.22, RMSE = 36.48kg). The accuracy

increased, however, when the same set of 3-dimensional

measurements were included in the models (R2 = 0.48,

RMSE=0.99). Despite this, the prediction accuracies for both

machines learning techniques, using either fixed effects (64–65%)

or fixed effects and 3D measurements (71%) were higher than the

accuracies resulting from the respective multiple linear regression

models. This is also consistent with findings by Dıéz et al. (2003)

where three separate machine learning techniques outperformed

linear regression models when being used for the prediction of

conformation class, in terms of resulting in lower errors. This may

be due to the potential for machine learning algorithms to specify

whether an output is linear or categorical. Despite this, in a study by

Dıéz et al. (2006), the machine learning technique used to predict

conformation was found to mimic that of the linear regression

model that was also performed in the study.

In the current study, only carcass categories steer and heifer were

included, limiting the age range of the carcasses, with young or older

animals being excluded from the dataset. It was noted by Dıéz et al.

(2006), however, that there is a strong relationship between age and

conformation. The current study only included data from carcasses of

steers (castrated male animal aged from 12 months) and heifers

(female animal aged from 12 months that has not calved). Therefore,

young animals (<12 months of age) were not included, reducing the

variety of ages seen in the study. Further to this, it is also unlikely that

older animals were present in the study, due to the nature of beef

enterprises in the UK, (castrated males are scarcely kept for longer

than a few years, and female cattle over 2 years would typically have

calved and, therefore, no longer be classified as a heifer). Therefore,

this suggest the cattle in the current study are likely to be aged

between one and two years of age, leading to a lack of variation in the

current study that could bias the results.
Prediction of fat class

The best random forests and artificial neural network models

resulted in moderate accuracy for the prediction of fat class.
TABLE 13 Confusion matrix for actual vs. predicted fat classes for carcasses in the validation dataset, predicted using the best artificial
neural network.

Actual

1 2 3 4L 4H 5L 5H

P
re
d
ic
te
d

1 0 0 0 0 0 0 0

2 2 29 29 5 0 0 0

3 10 114 571 454 36 1 0

4L 2 74 811 2,192 522 10 2

4H 0 2 17 121 142 19 0

5L 0 0 1 5 3 1 0

5H 0 0 0 0 0 0 0

P
re
d
ic
te
d

The classes represent carcasses of low levels of fat (1) to carcasses of excessive levels of fat (5). High (H) and low (L) subclasses are used for classes 4 and 5.
Black shading denotes correctly classified conformation grades, predicted using the best fitting model, and grey shading denotes carcasses over/under-scored by one neighboring class.
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Including the dimensional measurements only increased accuracy

for the RF models, increasing accuracy from 55% to 56%. The

ANN model accuracies did not change (55%) when the 3D

measurements were included. When using the models to predict

the fat classes of carcasses in the validation dataset, however, the

model including the dimensional measurements resulted in

increased accuracies across both techniques, albeit by only by

2%. Similar results were seen in a study by Miller et al. (2019),

where ANN built using measurements from 3D images of live

animals predicted the fat class of beef carcasses with 54.2%

accuracy. The lack of increase in the prediction accuracy when

including the measurements in the current study, however,

suggests that the 3D measurements do not add any predictive

power to the models. Despite this, prediction accuracies were still

greater than those produced using linear regression models

(Nisbet et al., 2024), which produced low accuracies for both the

models built, using only fixed effects (R2 = 0.12) and including the

3D measurements (R2 = 0.20). The machine learning techniques

may have outperformed the linear regression models due to the

trait being categorical, and therefore less suited to linear methods

than that of machine learning. This may have allowed for the RF

models and ANN models to result in more accurate outcomes

with little information compared to that of the linear regression

models in the previous study, particularly for the models built

using only fixed effects. The minimal increase in prediction

accuracy resulting from the inclusion of the 3D measurements

in the models, however, was anticipated as it has been recognized

previously that the fat class of a carcass has little relationship with

the conformation (shape) of a carcass For example the two traits

were found to have a low correlation (r = 0.07) in a study by

Conroy et al. (2010). The 3D measurements were further found to

add little value in terms of the ranking of importance, with the

most important variable in both models built including 3D

measurements being one of the fixed effects. For the RF model,

the top 3 most important variables were all fixed effects (breed

type, sex and CCW). The CCWwas the most important variable in

the ANN model, however, breed type and sex were found to be

least important, ranking 47th and 48th respectively, showing

inconsistencies in the role the fixed effects play across the

techniques. The width of the flank (WidthF) was the most

important 3D measurement in both the RF and ANN

algorithms (ranked 4th and 3rd respectively), however, showing

consistencies with the 3D measurements and their importance.

As the 3D measurements were highlighted as less important for

the prediction of fat class, and negligible improvements were

observed in the accuracies between models built including the 3D

measurements and models built using only the fixed effects, it can

therefore be understood why many alternative technologies rely on

color scales for the prediction of fat class, over carcass measurements

that are otherwise extracted for the prediction of conformation class.

The BCC-2 has used color data extracted from carcasses to build

linear models, predicting the fat class with high accuracy (R2 = 0.75)

(Borggaard et al., 1996). The same technology has also been

compared with two other VIA systems using color scales for
Frontiers in Animal Science 16
classification (VIAscan® and VBS2000), and their ability to predict

carcass grades assigned by a reference panel (Allen and Finnerty,

2000). All three technologies, however, predicted fat class on the 15-

point scale with low accuracy, classifying 28.0–34.4% of fat classes

correctly. The accuracies were higher, however, when predicting on a

smaller scale (5-point scale), predicting fat class with 66.8–72.2%

accuracy. Predicting on a smaller fat class scale outperforms the

prediction on the 15-point scale, perhaps indicating why the results of

the current study (estimating on an 8-point scale) resulted in higher

accuracies using the carcass measurements than Allen and Finnerty’s

15-point scale color data results, using color data. Despite the benefits

that may result from using color scales, there is still the question as to

whether the extracted measurements are indeed representative of the

key areas to assess when predicting the carcass traits. Although the

measurements were based on literature searches and expert opinion,

alternative methods for estimating the traits and selecting predictors

may also be useful, such as using the raw image to predict the carcass

traits, rather than using the extracted measurements. This has the

potential to be achieved using deep learning, and further studies are

warranted to assess the potential of this. Alternatively, it is also worth

considering whether the assessed categorical traits are the best traits

to be used for determining the value of a carcass. Alternative

characteristics, such as the saleable meat yield of a carcass, may

offer more insight into the true value of a carcass. In a study by Allen

and Finnerty (2000), the first of two trials compared three video

image analysis systems and their ability to predict beef carcass

conformation class, fat class, and saleable meat yield. The trial

found the systems to be accurate in predicting the saleable meat

yield, indicating the potential for video image analysis systems to be

used for estimating alternative carcass traits, which may offer a more

accurate and true representation of the value of a carcass.
Conclusion

This study explored the use of machine learning techniques

(random forests and artificial neural networks) and their ability to

predict carcass classification grades and carcass weight, using a

series of 3D measurements, extracted using a new imaging system

that required limited infrastructure. Initially models were built

using only fixed effects, excluding the 3D measurements. These

models indicated the predictive power of these variables alone, and

in turn indicated the added value resulting from including the

measurements in further models. The prediction accuracy increased

across all traits when the dimensional measurements were included,

with the exception of the artificial neural networks built for the

prediction of fat class. The study confirmed previous findings

suggesting the potential for the 3D measurements and the camera

system to predict key carcass traits. Along with this, it indicated that

the machine learning techniques provide a promising avenue

forward to predict carcass weight and conformation. However,

further improvement for predicting fat content may be expected

by including color scales in the image data.
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