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Enhancing rabbit farming
efficiency with integrated
genomics and
nutritional strategies
Naqash Goswami, Ifeanyi Solomon Ahamba, Lionel Kinkpe,
Ali Mujtaba Shah, Ye Xiangyang, Bing Song*, Xianggui Dong,
Shuhui Wang and Zhanjun Ren*

College of Animal Science and Technology, Northwest A&F University, Xianyang, China
Rabbit farming plays a crucial role in meeting the global demand for high-quality

meat and sustainable agricultural practices. In recent years, significant attention

has been directed toward the integration of Genomic-Assisted Selection (GAS)

and Precision Nutrition (PN) as synergistic strategies to improve productivity and

animal welfare in rabbit production systems. This integration is particularly critical

given the intricate interplay between genetic predispositions and nutritional

demands in optimizing rabbit farming outcomes. The present review

systematically explores the genetic diversity inherent to rabbit breeds,

examines the impact of key genetic traits on productivity and welfare metrics,

and highlights advancements in genomic research and associated tools within

the context of rabbit breeding practices. By examining the importance of

personalized nutrition tailored to individual rabbit requirements, as well as

nutritional strategies to optimize productivity and longevity. In this regard, we

provide essential understanding for farmers and researchers in the rabbit farming

industry. Our goal is to provide a new perspective on the significance of this

integrated approach and its implications for future practices and research in

rabbit production, emphasizing the need for continued efforts to harness the full

potential of genomics and nutrition in enhancing rabbit farming practices.
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GRAPHICAL ABSTRACT
1 Introduction

Rabbits are commonly farmed for their meat, skin, or hides, and

therefore, concerns about rabbit breeding practices have grown

among farmers and consumers over the last decade (Pilarczyk et al.,

2020). Rabbit meat is a nutrient-rich product with a higher content

of protein and polyunsaturated fatty acids while low levels of

carbohydrates, sodium, and cholesterol, as well as energy levels

comparable to many types of red meat that are commonly

consumed (Siddiqui et al., 2023). Similarly, rabbit skin and hides

are sustainable industrial raw materials for the production of high-

quality leather commercially (Sikiru et al., 2020). Thereby, rabbit

farming is one of the sustainable and profitable agricultural

practices due to the higher fecundity, efficient feed conversion,

and the ability of rabbits to adapt to a variety of environments as

well as the lower initial investment and a small production area

required to breed rabbits on the large scale (Wongnaa et al., 2023).

However, the efforts to develop genetically superior rabbit breeds

are still lacking along with the limited studies on the effect of

nutrition, diseases, genetic characteristics, and housing conditions

of rabbits to improve the productivity and efficiency of farming. On

the whole, the genetic characteristics and nutritional factors of

rabbits play a significant role in rabbit farming, particularly in terms

of productivity and welfare. For instance, the prolactin receptor

gene (PRLR) polymorphisms significantly affected milk production

in rabbits in larger liters (Benedek et al., 2023). In addition, genomic

selection and crossbreeding reduced mortality while enhancing the

growth rates of rabbits ultimately resulting in economical rabbit

farming (Assan, 2018). Similarly, nutrition is also a critical factor in

rabbit production since rabbits have a complex microbiota in their

gastrointestinal tract that plays a critical role in feed digestion,
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vitamin production, fermentative activity, and stimulation of

immune response (Mancini and Paci, 2021). By selecting rabbits

with superior genetic characteristics and adopting suitable diets

supplemented with additives, farmers can significantly enhance

productivity and profitability in rabbit farming.

Nowadays, genomic-assisted selection (GAS) and precision

nutrition (PN) approaches are used to enhance the production

and farming potential of rabbits as the demand for rabbit meat and

sustainable raw materials is growing worldwide. GAS, particularly

genomic selection (GS), Marker-assisted Selection (MAS), Genome-

wide Association Studies (GWAS), Genomic prediction models,

and genotyping and phenotyping, have been widely adopted in

animal breeding programs due to its potential to improve selection

accuracy, minimize phenotyping, reduce cycle time, and increase

genetic gains. GS utilizes genomic-estimated breeding values of

individuals obtained from genome-wide markers to choose

candidates for the next breeding cycle, making it a powerful

approach to improve quantitative traits such as productivity and

welfare traits in rabbit farming (Sharma et al., 2024). PN, on the

other hand, involves the use of personalized nutrition interventions

based on an individual’s unique characteristics and needs. This

approach takes into account various factors such as nutrition intake,

lifestyle, phenotype, and genotype to achieve personalized and

accurate nutrition interventions. PN techniques such as

nutrigenomics, metabolomics, microbiota profiling, deep

phenotyping, artificial intelligence, and wearable technologies can

be used to develop personalized nutrition recommendations that

are tailored to an individual’s unique characteristics and needs

(Pomar and Remus, 2023). Therefore, by combining GAS and PN

approaches, rabbit farming can be optimized to meet the growing

demand for rabbit meat and sustainable raw materials worldwide as
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GAS has the potential to improve selection accuracy and genetic

potential, while PN can be used to optimize reproductive

performance and health outcomes in rabbits. This integrated

approach can lead to improved productivity, sustainability, and

welfare in rabbit farming, contributing to a more efficient and

responsible production system. This review explores the genetic

diversity in rabbit breeds, key genetic traits influencing productivity

and welfare, and advances in genetic research and genomic tools in

rabbit breeding. The nutritional needs of rabbits for optimal growth

and health, the importance of personalized nutrition in meeting

individual rabbit requirements, and nutritional strategies to

enhance productivity and longevity in rabbits are also discussed.

Overall, the review provides a comprehensive overview of the

integration of GAS and PN approaches in rabbit farming,

highlighting the potential benefits and challenges of this

integrated approach for sustainable and efficient rabbit farming.
2 Genetic characteristics of rabbits

The genetic diversity of rabbit breeds is crucial for

understanding the underlying structure and variation within these

breeds, which plays a pivotal role in the selection of distinct physical

and physiological traits, such as coat color and structure (Demars

et al., 2018; Fontanesi, 2021). Several studies have explored the

genetic diversity of indigenous rabbit breeds, such as the Sichuan

White, Tianfu Black, Fujian Yellow, and Fujian Black, using

advanced techniques like restriction-site-associated DNA

sequencing (RAD-seq) and whole-genome resequencing (Ren

et al., 2019; Xie et al., 2024). These studies reveal that the Fujian

Yellow breed exhibits the highest genetic diversity, followed by the

Tianfu Black and Sichuan White breeds, with the principal

component analysis (PCA) clearly distinguishing the breeds.

Similarly, Xie et al. (2024) found significant genetic diversity

across various breeds in relation to key traits, such as coat color,

reproductive capacity, disease resistance, and body size,

highlighting the importance of understanding these genetic

foundations for breeding purposes. Moreover, studies have shown

that the integration of genomic selection with genetic diversity

assessment can significantly improve traits that are economically

important for rabbit farming, such as growth rate, feed conversion

ratio, and meat quality (Yang et al., 2020; Piles et al., 2024).

Research on the genetic mechanisms underlying beneficial traits,

such as disease resistance, larger body size, and adaptability in

Indonesian rabbits, also supports the idea that local genetic

resources can be key to enhancing productivity and welfare in

commercial rabbit farming (Setiaji et al., 2023).

Additionally, genetic studies have focused on optimizing

productivity traits such as fertility, longevity, and litter size, which

are crucial for enhancing rabbit farming commercially. For

example, Ragab et al. (2021) demonstrated that crossbreeding

four maternal rabbit lines led to increased longevity, especially in

the early reproductive cycles, which is important for the

sustainability of rabbit farming. Similarly, Biada et al. (2024)

found that genetic differences in gut microbiota diversity were
Frontiers in Animal Science 03
linked to better resistance to diseases and longer lifespans,

emphasizing the potential of manipulating the gut microbiome to

improve the health and productivity of rabbits. Furthermore, the

identification of genes associated with reproductive capacity, such

as Cellular Retinoic Acid Binding Protein-1 (CRABP1), could serve

as a tool for improving the breeding practices of farmed rabbits (Bao

et al., 2024). Ultimately, combining Genetic-Assisted Selection

(GAS) with Precision Nutrition (PN) strategies can enable more

effective targeting of specific traits to improve both the productivity

and welfare of farmed rabbits.
3 Nutritional requirements
and strategies

Rabbits require a carefully balanced diet to meet their energy

needs for growth, metabolism, reproduction, lactation, and the

maintenance of nutrient reserves, with these requirements varying

according to environmental factors (e.g., temperature, humidity),

vital functions (such as reproduction and lactation), and

physiological characteristics l ike breed, sex, and age.

Understanding and addressing these needs is essential to optimize

productivity, including meat, fur, and milk production. To

determine the specific nutritional requirements of farmed rabbits,

several methods are employed, including long-term feeding

experiments, calorimetric measurements, comparative slaughter

techniques, and non-invasive methods for body composition

analysis. These approaches help predict the dietary needs of

farmed and domestic rabbits, ensuring high productivity and

healthy growth (Xiccato and Trocino, 2020).

To measure the varying energy needs of farmed rabbits,

different methods such as long-term feeding experiments,

calorimetric measurements, comparative slaughter techniques,

and non-destructive methods for body composition measurement

are used to predict the required nutrition of farmed or domestic

rabbits and ensure productivity. Figure 1 illustrates the pyramid for

rabbit food.

A well-balanced diet is crucial for promoting productive traits

and maintaining rabbit health. For instance, an optimal fiber-to-

starch ratio supports healthy digestive motility, stimulates the gut

microbial community, and enhances fermentation. High-quality

proteins are essential during growth and fattening stages, while

dietary lipids support small intestine health. Essential minerals and

vitamins are key for metabolic processes, particularly in growing and

reproducing rabbits (Gidenne et al., 2020). Personalized nutrition

strategies have been developed to meet the specific needs of rabbits at

different growth stages and health conditions. Delgado et al. (2019)

highlighted the importance of dietary fiber, particularly soluble fibers,

in improving the health of crossbred hybrid rabbits post-weaning.

Their study showed that while omega-3 fatty acids did not have

significant health benefits, a high-fiber diet reduced mortality by 87%

and improved digestibility and immune function.

Similarly, Shao et al. (2021) studied the effects of fat

supplementation in rabbit diets, showing that adding 10% lard to

the diet increased fat accumulation, serum cholesterol, and thyroid
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hormone levels, underscoring the importance of controlling fat

levels to prevent obesity and other metabolic disorders in farmed

rabbits. In another study, Marıń-Garcıá et al. (2020) explored the

impact of genetic selection on the nutritional needs of rabbits,

revealing that genetically selected rabbits with higher growth rates

(e.g., Line R) required specific protein levels for optimal growth and

body composition. These findings emphasize the importance of

tailoring diets to genetic traits and growth rates to ensure

optimal productivity.

Additionally, Birolo et al. (2022) assessed genotype-diet

interactions in two rabbit breeds, Grimaud and Hyla. Their

research found that Hyla rabbits responded better to high-energy

diets, exhibiting faster growth, improved feed conversion, and better

nutrient digestibility, while Grimaud rabbits showed better carcass

traits despite different dietary regimens. These results suggest that

understanding the genotype-diet relationship is crucial for optimizing

nutrition to improve the overall efficiency of rabbit farming.

To further optimize rabbit nutrition, Precision Nutrition (PN)

strategies have been developed. These strategies use genetic,

environmental, and physiological data to create personalized

feeding plans. For instance, de Toro-Martı ́n et al. (2017)

discussed various PN approaches, including microbiota

manipulation through probiotics and prebiotics, targeted

supplementation, and the use of functional feeds to enhance

nutrient absorption and feed efficiency. Paës et al. (2020)

demonstrated that pre-weaning diets containing prebiotics

significantly altered the gut microbiota, improving nutrient

absorption and reducing mortality. These studies highlight the

potential of PN to improve growth rates, feed efficiency, and

overall rabbit health by tailoring nutrition to specific needs.

Understanding and addressing the complex nutritional

requirements of rabbits through personalized feeding strategies is

key to improving productivity and animal welfare. By considering

factors like breed, growth stage, and environmental conditions,

these strategies ensure that rabbits receive optimal nutrition for

both health and productivity, contributing to more efficient and

sustainable rabbit farming.
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4 Genomic-assisted selection in
rabbit breeding

GAS makes use of both genotypic and phenotypic data of the

reference population to predict the genetic traits of individual

animals and select the most favorable breeding values to increase

the technical and economic efficiency of animal breeding. The basic

principle of genomic selection involves using marker data to assess

the breeding value of animals without having the information of

gene location. The process begins by gathering phenotypic and

genotypic data from a reference population. The animals in the

reference population are genotyped for SNPs across the entire

genome. This data is then used to build a statistical model to

estimate how each SNP affects the traits of interest. A predictive

equation, known as the genomic estimated breeding value (GEBV),

is developed based on this model. The GEBV can then be used to

calculate the genomic breeding value of new animals based on their

genotypes, even in the absence of reliable phenotypic data

(Figure 2). The accuracy of the GEBV depends on factors such as

trait heritability, the number of animals in the reference population,

and the q parameter. Genomic selection accelerates the pace of

genetic gain and improves productivity compared to traditional

breeding techniques (Demircioglu, 2024; Ibtisham et al., 2017). In

breeding selection programs of rabbits, different criteria are used to

select the favorable traits in maternal and paternal lines to enhance

the efficiency and production of rabbit farming. For instance, the

maternal rabbit lines are selected based on the litter size and weight

at weaning reflecting the fertility and the maternal ability of the doe

as well as its ability for lactating and nourishing the progeny. On the

other hand, the paternal rabbit lines are selected based on the daily

weight gain from weaning to slaughtering. However, some multi-

purpose farming used to select the rabbit lines with both the

reproductive and growth traits to ensure productivity and welfare

(Garcıá and Argente, 2020). Under the parent category of GAS,

several subcategories including GS, MAS, and GWAS used genomic

data of rabbit populations to improve rabbit breeding practices and

enhance productivity and welfare on a large scale.
FIGURE 1

Illustrates the pyramid for rabbit food.
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This representation showed that The GEBV can then be used to

calculate the genomic breeding value of new animals based on their

genotypes, even in the absence of reliable phenotypic data.
4.1 Genomic Selection (GS)

GS is a potential breeding tool used to reduce the generation gaps,

enhance the genetic gain, improve the accuracy and intensity of the

selection, and optimize the economic traits of dairy or model animals

including rabbits. Though the efficiency of GS for selecting low

heritability traits in rabbits is considerable, the genotyping cost in

identifying genetic marker information and genomic breeding values

is too high to enable genetic predictions in selective breeding

programs of rabbits. Therefore, Mancin et al. (2021) employed

genotype imputation to identify SNP density across the rabbit

genome to ultimately improve the cost-efficiency of GS in rabbits.

Thereby, Ning et al. (2022) improved the accuracy of GS for woolen

traits in Angora rabbits through single-trait model evaluation using

marker density and statistical designs. The efforts were directed to

optimize the rabbit breeding pipeline by increasing the number of

SNPs across the rabbit genome. A total of 629 Angora rabbits were

taken and kept under farming conditions, the wool was harvested at

70, 140, and 210 days of age and the wool characteristics including

diameter and length of fine wool, length, and production rate of

coarse wool, as well as the weight of sheared wool were measured,

genomic DNA was isolated from ear samples, pair-end libraries were

constructed and sequenced using low-coverage whole genome

sequencing, and marker densities were evaluated to estimate the

heritabilities and stable genomic breeding values. The results showed

3.84% genomic coverage and a total of 18,577,154 high-quality SNPs

were imputed with an increased accuracy of genetic imputation by

98%, revealing the potential of GS performance for the successful
Frontiers in Animal Science 05
imputation of multi-trait models to boost animal breeding.

Subsequently, Li et al. (2024) employed marker density data and a

multi-trait genomic best linear unbiased prediction model to improve

the GC accuracy for growth and slaughter traits of meat rabbits. A

total of 1515 Kangda V line meat rabbits along with 399 litters were

studied (1159 were examined for growth and the remaining 798 were

slaughtered), the growth traits including feed conversion ratio and

weight were recorded at 35, 49, and 70 days of the age, remaining

rabbits were slaughtered at the age of 70 days to determine the

eviscerated weight, net head weight, kidney weight, and leg weight,

genomic DNA was extracted from blood samples and sequenced

using low-coverage whole genome sequencing method, and finally

the genotypic data was imputed. As a result, a total of 20,125,019

high-quality SNPs were produced with the imputation accuracy

greater than 98% using the multi-trait GS model providing a

baseline for the optimization of breeding programs of farmed

rabbits to boost productivity and welfare. Since SNPs serve as a

potential molecular marker for understanding rabbit traits and

improving the efficiency of rabbit breeding employing genomic-

assisted data, Li et al. (2022) identified a total of 32,144 SNPs

within a rabbit genome through genotyping-by-sequencing method,

indicating relevant genes associated with the important rabbit traits

like fur color and weight, which can be used to improve the GS-based

breeding techniques of rabbits on the large scale.
4.2 Genome-Wide Association
Studies (GWAS)

GWAS is a powerful tool used in animal breeding programs to

identify genetic markers associated with traits of interest. The basic

idea behind GWAS is to scan the entire genome for specific genetic

variations called SNPs that are significantly linked to the traits being
FIGURE 2

Genomic assisted selection in rabbit farming.
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studied (Degen and Müller, 2023). To conduct a GWAS, a reference

population of animals with both genetic marker data and trait

measurements is established. These animals are genotyped using

advanced sequencing technologies to identify millions of SNPs across

their genomes. Statistical models are then used to find SNPs that

show strong associations with the traits of interest. The identified

SNPs are then used as markers and their estimated effects can then be

incorporated into genomic selection models to improve the accuracy

of breeding value estimation and accelerate genetic progress in animal

breeding programs (El-Sabrout et al., 2020). GWAS uses genetic

marker information, without needing to know the exact location of

the genes, to estimate the breeding values of animals and select the

most favorable individuals for breeding. It can be particularly useful

for complex traits that are influenced by many genes. By scanning the

entire genome, GWAS can detect associations even for traits with

complex genetic architectures. The identified markers can then be

used for advanced selection techniques in breeding programs (Sneller

et al., 2021; Uffelmann et al., 2021). Sánchez et al. (2020) identified

189 SNPs across the genome of rabbits and found 20 candidate genes

associated with feed efficiency and growth performance, both are

economically productive traits in rabbit farming, using GWAS which

can be manipulated to optimize the breeding values of farmed rabbits

and choose the favorable genetic lines as parents of the next

generation. Similarly, litter size is also an important reproductive

trait of maternal rabbit lines which can be optimized by selecting the

rabbit breeds with the excellent combination of functional genes

associated with the uterine capacity identified through GWAS as

Sosa-Madrid et al. (2020) employed GWAS to find high-density

SNPs across 181 does from a control population and investigated the

associated genes for characteristics like total number born, number

born alive, number born dead, ovulation rate, and implanted embryos

of rabbit, and identified the relevant genomic area on chromosome 11

and chromosome 17 closely linked with the reproductive traits of

rabbit, providing a baseline for choosing maternal lines with superior

reproductive ability during breeding programs. Zhang et al. (2023)

identified a total of 91,456 SNPs evenly distributed on 21 autosomes

across the rabbit genome using a restriction-site associated DNA

sequencing approach and applied GWAS using a mixed linear model

to identify functional SNPs containing coat-color associated genes on

a particular genomic area. The study investigated the blood samples

from the ear of 250 genetically unrelated Rex rabbits with different

coat colors, the genomic DNAwas extracted, sequenced, and mapped

to identify potential SNPs, and then the genomic distribution and

association were analyzed. The results showed a single genomic

region on chromosome 4 containing the most important set of 24

SNPs in which the coat-color-associated agouti signaling protein

(ASIP) gene was found that can help to choose the rabbit lines with

the functional gene to improve phenotypic traits among farmed

rabbits. Though, the coat color of a rabbit is a trait not linked with the

productivity of the animals but important to select fancy rabbit lines

with desirable phenotypes. Besides, GWAS has also become a

promising approach for improving the meat quality of rabbits by

identifying the genetic factors that directly affect the organoleptic

properties of meat including fat consistency, shelf life, and nutritional

values, improving the productive traits of breeding lines in the next

rabbit generations. El Nagar et al. (2023) identified a genomic area
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across the genome of rabbits containing candidate genes on the rabbit

chromosomes 1, 5, and 19 associated with the traits of intramuscular

fats, saturated fatty acids, monounsaturated fatty acids, and

polyunsaturated fatty acids using GWAS and provided insights into

the manipulation of candidate genes to optimize the nutritional

content of rabbit meat to ultimately improve the breeding

efficiency and welfare. The study also emphasized the fact that the

genetic variations of maternal rabbit lines influence the relevant

genomic characteristics of progeny associated with the quality of

meat and intramuscular fat deposition, suggesting the importance of

selecting superior maternal rabbit lines during genomic-based

selection programs. Similarly, Liao et al. (2021) identified growth-

related genes across the genome of meat rabbit lines using the GWAS

approach to enhance the longevity and growth potential of farmed

rabbits. Targeting feed conversion ratio and residual feed intake of

rabbits, Garreau et al. (2023) employed the GWAS approach and

identified17 significant SNPs feed conversion ratio and 111 for

residual feed intake with the estimated heritability traits for growth

ranging from 0.14 to 0.33, for feed intake and efficiency traits ranged

from 0.40 to 0.47, indicating a strong genetic component influencing

these traits. The most significant peaks for feed conversion ratio and

residual feed intake were located on rabbit chromosome 7 and 18,

respectively along with a significant region on chromosome 18 was

identified, containing the putative functional candidate gene, GOT1,

involved in the metabolism of amino acids and urea, which aligns

with the observed improvements in nitrogen balance and reduced

nitrogen output in selected rabbit lines. Overall, GWAS used in this

study has made significant contributions to rabbit breeding selection

programs based on genetic information by identifying genome-wide

significant SNPs associated with feed efficiency traits.
4.3 Marker-Assisted Selection (MAS)

MAS is a breeding technique in animals that uses genetic markers

to select individuals with desirable traits for breeding. The basic

principle of MAS is to identify genetic markers, such as SNPs, that

are associated with traits of interest and then use these markers to assist

in the selection of breeding animals (Kandel et al., 2023). To implement

MAS, genetic markers associated with traits of interest are identified by

scanning the entire genome. Once these markers are identified, animals

are genotyped to determine their genotypes at the identified markers,

and animals with the most favorable marker genotypes, indicating the

presence of desirable alleles, are selected as parents for the next

generation. The advantage of MAS over traditional phenotypic

selection is that it allows for selection at an earlier age, even before

the trait is expressed, and can improve the accuracy of selection,

especially for traits that are difficult or expensive to measure (de

Koning, 2016). Candidate genes for the most important rabbit

production and welfare traits including growth hormone genes,

insulin-like growth factor 2 gene, myostatin gene, fat mass and

obesity-associated genes, and leptin genes related to growth, carcass,

and meat quality of rabbits have been identified for MAS to

revolutionize the rabbit farming industry (Helal et al., 2022).

Ramadan et al. (2020) evaluated the polymorphism of growth

hormone genes, insulin-like growth factor 2 genes, and progesterone
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receptor genes within the genome of Gabali rabbits and studied their

association with the productive traits of rabbits such as growth, litter

size, and milk production through genomic DNA extraction, PCR

amplification, and genotyping to provide functional markers for MAS

rabbit breeding. The study findings revealed that the C/T and Del/Del

genotypes of the growth hormone gene and insulin-like growth factor 2

gene for growth improvement, the C/T genotype of the growth

hormone gene, and the G/G genotype of the progesterone receptor

gene for litter size, and the C/C genotype of the growth hormone gene,

the A/A genotype of the insulin-like growth factor 2 gene, and the A/A

genotype of the progesterone receptor gene were favorable for

incorporating these genotypes into MAS programs. Similarly, Safaa

et al. (2023) also concluded that the Growth hormone genotypes of

rabbits affect the carcass and slaughter traits, the fat mass and obesity-

associated SNPs affect the intramuscular fat content, and insulin

receptor substrate-1 SNPs influence the drip loss ability of rabbit

meat, providing a genetic map to manipulate as markers for

genomic selection of rabbit breeds. Whereas, Gencheva et al. (2022)

suggested SNPs associated with the growth hormone gene and the

related growth hormone receptor responsible for the body weight of

rabbits. To provide genetic markers for carcass and meat quality of
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rabbit, Migdal et al. (2018) analyzed three leptin genes for

polymorphism and identified their associations with the complex

traits of rabbit carcass and meat quality revealing that the content

intramuscular fat, protein, ash, and dry matter of rabbit meat is

influenced by the polymorphism in the leptin gene-containing

genomic area that can be manipulated while selecting meat rabbits

on the basis of genetic markers. However, Wang et al. (2017a) have

previously suggested the calpastatin gene as a candidate for the meat

quality traits of rabbits in addition to leptin that can be used in a

combination to improve the marker-based rabbit selection in the

future. Nonetheless, MAS also has some limitations in that it only

considers a few markers associated with the traits, while genomic

selection (GS) uses the joint merit of all markers across the genome to

estimate breeding values. GS has allowed for unprecedented advances

in commercial breeding in recent years. Despite these limitations, MAS

remains a valuable tool in animal breeding programs, especially when

used in combination with other selection methods like GS to improve

the accuracy and efficiency of selection.

The following table summarizes key candidate genes associated

with important traits in rabbits, including meat and carcass

characteristics, growth and body weight (Table 1), disease resistance
TABLE 1 Key candidate genes associated with meat, carcass traits, growth, and body weight in rabbits.

Gene Gene Function Impact on Meat and
Carcass Traits

Polymorphisms References

MSTN (GDF8) Regulates muscle size and growth by inhibiting
muscle cell proliferation. Highly conserved,
expressed in muscles.

Increased muscle mass (double
muscling), affects skeletal muscle
hypertrophy and
carcass composition.

Genotypes TT and GG
show improved
muscle traits.

(Sternstein et al., 2015;
El-Aksher et al., 2016;
Navratilova et al., 2018)

PGAM2 Enzyme involved in glycolysis, energy
production, and muscle contraction.

Affects meat color, fat deposition,
muscle fiber diameter, and overall
carcass traits.

SNP (195C > T)
influences muscle and fat
deposition traits.

(Wu et al., 2015;
Nahácky et al., 2018;
Helal et al., 2024)

POU1F1 (PIT-1) Transcription factor regulating growth hormone
(GH), prolactin (PRL), and thyroid stimulating
hormone (TSHb).

Affects meat pH, protein structure,
and muscle glycogen reserves.

SNP (C/T) in intron 5
associated with GH
regulation in rabbits.

(Wang et al., 2015)

CAST (Calpastatin) Endogenous inhibitor of calpains involved in
muscle protein degradation, affects postmortem
aging rates.

Influences meat quality, tenderness,
and postmortem muscle aging.

High CAST levels
correlate with improved
meat tenderness
and quality.

(Wang et al.,
2016, 2017a)

Myf5 Muscle regulatory factor, involved in muscle
fiber formation and gene transcription.

Affects intramuscular fat deposition
and muscle development.

N/A (Wang et al., 2017b)

Leptin Regulates body weight and energy balance
through the hypothalamus; linked to fat
deposition and promote
preadipocyte differentiation

Influences body fat, obesity, and
carcass fat traits in rabbits.

SNPs in exon 2 and UTR
associated with fat
percentage and
carcass traits.

(Migdal et al., 2018; Luo
et al., 2020)

FABP3 & FABP4 Fatty acid-binding proteins, regulate fat
metabolism and deposition in tissues.

Associated with intramuscular fat
(IMF) and fat weight, influencing
meat quality.

SNPs associated with IMF
and fat traits, especially in
the loin.

(Migdał et al., 2017;
Bozhilova-Sakova
et al., 2022)

MC4R G-protein coupled receptor regulating food
intake, energy homeostasis, and body weight.

Influences growth performance,
body weight, and fat deposition.

SNP (c.101G > A) linked
to body weight and fat
traits in rabbits.

(Osaiyuwu et al., 2020)

GH1
(Growth Hormone)

Regulates growth and metabolic functions
related to muscle mass, lipid metabolism, and
bone growth.

Influences growth rate, muscle
development, and overall
carcass composition.

SNPs associated with
growth performance and
weight gain in rabbits.

(Hristova et al., 2018;
Gencheva et al., 2022)

IGF2 Regulates growth, reproduction, and lactation,
influencing mammary development and
litter size.

Associated with growth and
reproductive traits, potentially
affecting carcass weight.

SNPs linked to growth
and reproductive traits
in rabbits.

(Ramadan et al., 2020)
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(Table 2), and coat quality (Table 3). Table 4 further extends these

findings by summarizing the integration of GAS and precision nutrition

(PN) strategies in rabbit farming. It also indicates the required

genotypes for each gene, providing valuable insights for optimizing

genomic-assisted selection (GAS) strategies in rabbit breeding.
5 Precision feeding approaches

Precision nutrition (Figure 3) refers to the determination of

nutrient requirements of livestock for protein accretion and

maintenance to prevent nutrient deficiencies or excess (Bailey,

2020). Personalized feeding approaches cater to the specific needs

of rabbits to improve the growth rate, feed conversion efficiency,

and overall animal welfare by optimizing the nutrient utilization

(Nutautaitė et al., 2023). Various commercial poultry growth

promoters have a positive impact on the final body weight gain of

rabbits than the others fed with a general diet. Oyinbo and Shaahu

(2020) carried out a feed trial in which twenty unknown breeds of

rabbits were fed with four different diet groups containing different

poultry growth promoters namely non-inclusion (T1), el-rox (T2),

glofast (T3), and maxgrowth (T4) to determine whether the specific

diet influence the growth performance, fattening, or carcass

characteristics of the rabbit. As a result, the rabbit groups fed
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with modified diet containing growth promoters (T2, T3, and T4)

showed enhanced body weight (1020.40, 1084.00, and 1119.20) as

well as individual organ weight than the control group (T1) with the

maximum final body weight in a group fed with glofast, indicating

that the growth promoter supplementation in rabbit diet is the best

way to enhance the rabbit growth and fattening. Singh et al. (2021)

also determined the effect of four dietary supplementation groups

(t1, t2, t3, and t4) based on the melon seed oil (0%, 0.2%, 0.4%, and

0.6%) on the growth performance and immune response of thirty-

six rabbits of mixed breeds and examined the average daily weight

gain, average feed intake and conversion ratio, mortality, and

antioxidation activities for 12 weeks. The findings turned out to

be significant in which the average daily weight gain and average

daily feed intake increased with the increase of melon seed oil

concentration while the mortality was only recorded in the control

group, and also indicated that the precise nutrient supplementation

strengthen the immune system of rabbits, promoting survival,

productivity, and rabbit welfare. The results were not so different

when rabbits were fed with precise diet supplementation regimens

based on prebiotic (Abd El-Aziz et al., 2022), organic selenium

(Hosny et al., 2020), pepper oil (Abdelnour et al., 2018), n-3

polyunsaturated fatty acids (Castellini et al., 2019), organic

selenium and chromium (Amer et al., 2019), and the combination

of probiotics and prebiotics (Ayyat et al., 2018).
TABLE 2 Key candidate genes associated with disease resistance in rabbits.

Gene Gene Function Impact on
Disease Resistance

Polymorphisms References

MyD88 Key role in innate immunity
and inflammation

Protects against digestive
disorders (NSDD)

c.699T>C (synonymous) (Chen et al., 2013)

JAK1 Involved in immune signaling and
cell growth

Increased risk of non-specific
digestive disorders (NSDD)

c.1421 C>T, c.3036 G>A (Fu et al., 2014)

STAT3 Regulates immune response
and inflammation

Protective role against NSDD c.831 T>C, c.399 G>A (Fu et al., 2014)

TYK2 Mediates immune signaling
and response

Associated with increased risk
of NSDD

c.1477 (C>T), c.2013 (C>T) (Fu et al., 2015)

LKB1 Regulates cellular metabolism and
stress response

Impaired function leads to digestive
abnormalities (NSDD)

c.840 G>C (synonymous) (Li et al., 2018)

CCR6 Chemokine receptor, involved in
immune cell migration

Protective against digestive disorders c.96C>T (coding region) (Liu et al., 2017)

NLRP12 Involved in immune response
and inflammation

Protects against NSDD c.1682A>G (coding region) (Liu et al., 2013)

NLRP3 Inflammasome-related gene; activates
IL-1b production

Protective against digestive
disorders (NSDD)

c.456 C>G, c.594 G>A (Yang et al., 2013)

NOD2 Involved in bacterial recognition and
immune response

Protective against NSDD with a
decrease in susceptibility

c.2961C>T (coding region) (Zhang et al., 2013)

Dectin-1 Plays role in recognizing
fungal pathogens

Increased susceptibility to NSDD with
higher inflammation

ss707197675 A>G (coding region) (Zhang et al., 2013).

FCER1G, FCRLA,
FCRLB, FCGR2A

Immunoglobulin Fc receptors
involved in immune response

Resistance to enteropathy in
suckling rabbits

SNPs in genomic regions on
OCU12, OCU13, OCU16

(Bovo et al., 2024)
The genetic basis of rabbit coat quality involves key genes that regulate pigmentation, hair structure, and hair growth. Mutations in genes such as MC1R, MITF, TYR, and ASIP influence coat
color, while structural genes like LIPH and FGF5 determine hair texture and length. Table 3 provides a comprehensive summary of these genes, their functions, impacts on coat traits, and
associated polymorphisms, along with relevant references.
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6 Synergy of genomic-assisted
selection and precision nutrition in
enhancing rabbit farming

The integration of Genomic-Assisted Selection (GAS) with

Precision Nutrition (PN) offers significant potential to enhance

the productivity, feed efficiency, and overall welfare of rabbits.

Precision nutrition in rabbits is critical due to their specialized

digestive system, which requires a delicate balance of fiber, protein,

and energy to ensure optimal health and growth (Pinheiro and

Gidenne, 2024). Imbalances in the diet can lead to severe health

issues like gastrointestinal stasis (Reponen, 2024), and thus,

providing the correct nutrients at precise levels tailored to the

genetic profiles of rabbits is paramount for sustainable farming.

Recent developments in precision feeding systems further improve

this process, particularly when combined with genomic insights that

identify rabbits with superior genetic traits such as enhanced

growth rates and better feed conversion efficiency.

Genomic-assisted selection allows for the identification of genetic

markers that correlate with growth performance and feed efficiency,

thereby optimizing breeding programs. For example, studies have

shown that genetic traits linked to lean muscle development and

efficient nutrient metabolism can be selectively bred for, allowing

farmers to focus on improving the genetic base of their herds (Li

et al., 2024). Combining GAS with PN allows for the formulation of

diets that are fine-tuned to meet the specific nutritional needs of these

genetically superior rabbits, which in turn enhances productivity and

reduces feed waste. Precision nutrition systems can further support this
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synergy by customizing dietary regimens based on individual genetic

profiles, thus ensuring that rabbits receive the optimal nutrients at

every stage of growth.

An important advancement in this area is the development of

automated and precise feeding systems that enhance the delivery of

tailored nutrition. For example, Mohamad et al. (2023) introduced an

automatic rabbit feeding system based on the eight-step George E.

Dieter design, capable of distributing pellets across multiple cages at a

rate of 400 grams per day. This system ensures each rabbit receives the

correct amount of feed based on its specific nutritional needs. Similarly,

Kharisma and Sintawati (2023) developed an IoT-based system for

managing rabbit breeding that integrates feeding, drinking,

temperature control, and environmental monitoring. This system

leverages ultrasonic sensors, real-time clocks, and IoT cloud

dashboards to adjust feeding and environmental conditions

automatically or manually, ensuring optimal conditions for the

rabbits’ health and productivity. The synergy between GAS, PN, and

automated feeding systems creates a holistic approach to rabbit

farming. This integration not only optimizes the use of resources and

reduces feed waste but also significantly improves both productivity

and animal welfare. Moreover, innovative strategies like feed restriction

(FR), particularly post-weaning feed restriction, have proven effective in

enhancing feed efficiency and maintaining digestive health in young

rabbits. As demonstrated by Ebeid et al. (2022), controlled feed

restriction strategies such as modifying the quantity and quality of

feed at key developmental stages can promote efficient growth while

reducing the need for medication. Similarly, Martignon et al. (2021)

showed that fragmented feed distribution (FFD) enhances feed
TABLE 3 Key candidate genes associated with coat quality.

Gene Gene Function Impact on Coat Polymorphisms References

MC1R Regulates eumelanin
production.

Determines coat color variations,
e.g., black spots.

c.284-285del, c.292-295del (Jia et al., 2021; Xie
et al., 2024)

MITF Regulates
pigmentation.

Influences coat color in TB, SG,
and SW breeds.

g.232587A>G, g.232650C>G, g.232766A>T (Jia et al., 2021)

TYR Enzyme for melanin
synthesis.

Affects pigmentation and albinism
in rabbits.

c.185G>A, c.465C>T

TYRP1 Involved in melanin
production.

Common variant linked to
pigmentation in all breeds.

g.4137286G>A

ASIP Regulates agouti
signaling.

Contributes to agouti patterns and
gray-brown coats.

Not specified (Xie et al., 2024)

LIPH Influences hair
structure.

Causes Rex short-
haired phenotype.

1362delA (Diribarne et al., 2012)

FGF5 Regulates hair growth
cycle.

Responsible for long-haired
phenotype in Angoras.

T19234C (Fatima et al., 2023)

MLPH Associated with coat
color dilution.

Linked to dilution phenotype
in rabbits.

c.585delG, g.606C>A, g.610T>C,
g.642C>G, g.1067>G, g.1095C>T

(Demars et al., 2018; Li
et al., 2020)

KIT Influences
pigmentation.

Plays a role in coat color. Not specified (Xie et al., 2024)

NOX4, GRM5, RAB38 Potential modulators
of TYR genes.

May influence tyrosinase
activity indirectly.

Not studied in rabbits. (Lona-Durazo et al., 2019;
Xie et al., 2024)

MSX2, CERS6, HDAC9,
RASA1, CLDN18

Hair follicle
development.

Involved in hair growth
in Angoras.

Not specified (Xie et al., 2024)
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conversion and improves growth rates in growing rabbits, adding

further value to precision feeding systems.

These developments in precision feeding, in conjunction with

GAS, offer an effective means to ensure that rabbits receive the

optimal nutrition for growth and welfare. Furthermore, the

increasing use of genomic-assisted selection for identifying traits

linked to feed conversion efficiency (FCE) and growth potential (as

shown in studies by Li et al., 2024 and Sánchez et al., 2020) allows

for a more targeted approach to breeding and feeding strategies. As

genetic research continues to advance, and as automated

technologies become more prevalent, the potential for fully

personalized nutrition systems based on genetic profiles is set to

revolutionize rabbit farming. This will make the industry more

sustainable, cost-effective, and capable of meeting the growing

demands for rabbit products while maintaining high animal

welfare standards.
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7 Challenges and future directions

The combination of genomic selection and targeted nutritional

techniques has the potential to synergistically improve productivity,

health, and welfare in rabbit farming. For example, selecting superior

rabbit breeds for gut microbiome resilience, providing prebiotic feeds,

and examining the use of locally available, sustainable feed resources

like agricultural by-products and macroalgae could also enhance the

environmental and economic sustainability of rabbit production (Song

et al., 2021). Additionally, rabbit farming as a low-input, climate-smart

agriculture strategy holds the promise for enhancing food security and

income generation, especially for smallholder farmers in developing

regions. Although, the integration of genomics and nutrition presents

an innovative approach for optimizing rabbit production, some

limitations and challenges are still remained to be addressed. For

instance, there is a lack of comprehensive genomic data and the
TABLE 4 Summarizing integration of GAS and PN strategies in rabbit farming.

Rabbit
Breed

Genetic
Improvement

Target production
traits

Nutritional
strategies

Animal welfare Economic impact References

Angora rabbits Genomic-
assisted selection

Breeding productivity Commercial
diet

Enhanced
genetic profile

Production of high-
quality wool

(Ning
et al., 2022)

Angora rabbits Genome wide
association studies

Growth rate
and productivity

Routine diet Superior genetic
stability and longevity

Cost-effective animal
genetic upgrades and
increased production
of wool

(Wang
et al., 2022)

New
Zealand rabbits

Phenotypic
selection

Disease resistance Routine diet Enhanced immune
functions and
survival rates

Increased profitability of
rabbit farming

(Gunia
et al., 2018)

Synthetic breeds Phenotypic
selection

Litter size Commercial
diet

Enhanced survival
rates and longevity

Increased productivity
and profitability

(Blasco
et al., 2017)

Meat and
fancy breeds

Genomic-
assisted selection

Coat color and body size Routine diet Improved animal
health and survival

Increased production of
meat and productivity

(Ballan
et al., 2022)

New
Zealand rabbits

Phenotypic
selection

Growth rate Commercial
diet

Enhanced animal
growth
and productivity

Increased profitability (Abe
et al., 2019)

Saudi local breed
and imported
Spanish V-line

Genomic-
assisted selection

Growth performance, feed
criteria, and
immune responses

Basal diet Enhanced animal
growth and improved
immune functions

Accelerated productivity (Fathi
et al., 2023)

Pannon Ka
growing rabbits

Genomic-
assisted selection

Productive and carcass traits Routine diet Improved animal
growth
and maintenance

Increased productivity
and profitability

(Matics
et al., 2021)

Synthetic breeds Genomic-
assisted selection

Carcass and meat quality Commercial
pelleted diet

Improved animal
growth and longevity

Increased sustainability
and productivity

(Molette
et al., 2016)

Pannon breeds Phenotypic
selection

Productive, body size,
and carcass

Commercial
pelleted diet

Improved animal
growth and longevity

Increased commercial value
and productivity

(Szendrő
et al., 2016)

New Zealand,
California, and
Rex rabbits

Phenotypic
selection

Growth performance,
carcass, meat quality, and
muscle amino-acid profile

ad libitum
fattening diet

Enhanced growth
activity and body size

Increased production of
high-quality meat
and productivity

(Nasr
et al., 2017)

Kangda rabbits Genomic selection Growth, body size, and
slaughter traits

Routine diet Enhanced growth
activity and body size

Increased commercial value
and productivity

(Li et al., 2024)

Kangda and
California rabbits

Genomic selection Growth, carcass, and
meat quality

Pellet diet Improved growth rate
and survival potential

Increased production of
high-quality meat
and profitability

(Yang
et al., 2020)
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understanding of the genetic basis of important traits in rabbits

(Johnson et al., 2024). This makes it difficult to identify beneficial

genetic markers linked to desired production traits, such as disease

resistance, feed efficiency, and meat quality, and develop effective

genomic selection programs. Additionally, accurately measuring and

optimizing nutrient requirements, especially for specialized rabbit

breeds and production systems, remains a challenge as nutritional

needs vary significantly based on factors like age, health status, and

environmental conditions (Moto, 2024). The limited availability and

high cost of specialized feed ingredients like macroalgae that provide

nutritional and health benefits to rabbits also brings a challenge as

scaling up production and supply chains for these novel feed resources

is difficult (Al-Soufi et al., 2022). Finally, inadequate technical support

and extension services to help farmers adopt new genomic and

nutritional technologies is a significant limitation. In this regard,

improving knowledge transfer to farmers is crucial.

By overcoming these limitations and capitalizing on the

potential synergies, integrating genomics and nutrition has

promising prospects for enhancing productivity, sustainability,

and welfare in rabbit production. Thereby, precision feeding

strategies, developed based on individual genetic needs, should be

practiced to minimize feed waste and create a more sustainable

production system. Similarly, the selection for rabbits with

enhanced disease resistance, facilitated by genomic information,

must be carried out, leading to a significant decrease in antibiotic

usage, benefiting both animal welfare and public health by

addressing antibiotic resistance concerns. Finally, genes linked to

faster growth rates should be identified to accelerate farm
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productivity by allowing breeders to select rabbits that reach

market weight in short period of time. Overall, integrating

genomics and nutrition in rabbit farming offers a promising

technique for achieving significant advancements, but requires

active research and development efforts to fully realize its potential.
8 Conclusion

In conclusion, the integration of GAS and PN in rabbit farming is a

promising approach to enhance productivity and welfare in a

sustainable and efficient manner. Using GAS, farmers can select

rabbits with superior genetic traits for improved productivity and

welfare. This approach, coupled with PN techniques tailored to

individual needs, can lead to personalized nutrition interventions that

optimize reproductive performance and health outcomes in rabbits.

The importance of this integrated approach lies in its potential to meet

the growing demand for rabbit meat and sustainable raw materials

worldwide. By enhancing selection accuracy, genetic potential, and

nutritional optimization, this approach can lead to improved

productivity, sustainability, and welfare in rabbit farming. However, it

is essential to address challenges such as the lack of comprehensive

genomic data, understanding genetic markers for desired traits, and

optimizing nutrient requirements for specialized rabbit breeds.

Additionally, efforts should focus on knowledge transfer to farmers,

scaling up production of novel feed resources, and providing technical

support for adopting new technologies. Overall, integrating GAS and

PN in rabbit farming holds great promise for advancing the industry
FIGURE 3

Key factors in precision nutrition.
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towards more efficient, sustainable, and responsible practices.

Continued research and development in this area will be crucial for

realizing the full potential of this integrated approach and ensuring the

long-term success of rabbit production systems.
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MC4R and PGAM2 genes polymorphism association with production traits in rabbit
(Oryctolagus cuniculus). J. Microbiology Biotechnol. Food Sci. 7, 537. doi: 10.15414/
jmbfs.2018.7.5.493-495

Nasr, M. A., Abd-Elhamid, T., and Hussein, M. A. (2017). Growth performance,
carcass characteristics, meat quality and muscle amino-acid profile of different rabbits
breeds and their crosses. Meat Sci. 134, 150–157. doi: 10.1016/j.meatsci.2017.07.027
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Ibáñez-Escriche, N. (2020). A genomewide association study in divergently selected
lines in rabbits reveals novel genomic regions associated with litter size traits. J. Anim.
Breed. Genet. 137, 123–138. doi: 10.1111/jbg.12451

Sternstein, I., Reissmann, M., Maj, D., Bieniek, J., and Brockmann, G. A. (2015). A
comprehensive linkage map and QTL map for carcass traits in a cross between Giant
Grey and New Zealand White rabbits. BMC Genet. 16, 1–12. doi: 10.1186/s12863-015-
0168-1
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