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Through enteric fermentation, ruminants convert fibrous biomass into high-

quality proteins like meat and milk. In this process however, methanogenic

archaea in the ruminant gastrointestinal tract produce methane, a potent

greenhouse gas, from the by-products of enteric fermentation: carbon dioxide

and hydrogen. Research in ruminant methane mitigation has been extensive, and

over the years has resulted in the development of a wide variety of mitigation

strategies ranging from cutting our meat consumption, to breeding low emitting

cows, to targeting the rumen microbiome. Methods like promotion of reductive

acetogenesis, a natural alternative pathway to methanogenesis in the rumen, are

at the forefront of rumen microbiome engineering efforts. However, our inability

to make acetogenesis a key hydrogen scavenging process in the rumen have

limited these manipulation efforts. Herein we comprehensively review these

mitigation strategies, with particular emphasis on mechanisms involving the

manipulation of rumen acetogenesis. Such manipulation includes the genetic

reprogramming of methanogens for reductive acetogenesis. With the advent of

CRISPR-Cas genome editing technologies, the potential exists to transform

dominant methane-producing archaea, such as Methanobrevibacter

ruminantium, into acetate producing organisms. Acetate can, in turn, be

utilized by the animal to increase meat and milk production, thus

simultaneously reducing emissions and increasing efficiency. The current

status and future challenges of these strategies are discussed. We propose that

CRISPR offers a promising avenue for sustainable ruminant farming.
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1 Methane in global warming and
climate change

Greenhouse gases (GHGs) trap heat energy and contribute to

global warming, and have been rising dramatically in recent years.

Among the greenhouse gases produced by human activities, carbon

dioxide (CO2), methane (CH4), and nitrous oxide (N2O) make up

the largest proportions, accounting for approximately 75%, 18%,

and 4% of the total volume, respectively (Subedi et al., 2022).

Although methane ranks second to carbon dioxide in volume, it

has a more significant impact on the rate of warming due to its

higher global warming potential. Methane warms the earth 86 times

more efficiently than carbon dioxide over a 20-year timescale (Cain

et al., 2019). However, unlike CO2 which remains in the atmosphere

for hundreds of years, methane has a much shorter atmospheric

lifetime of 10–12 years (Stavert et al., 2022). Therefore, targeting the

emission of CH4 will more immediately slow global warming

compared to targeting CO2.

The impact of CH4 includes two major components: climate

warming and atmospheric pollution. Methane warms the earth

directly by its own radiative forcing (RF) of 0.97 Watts per square

meter (W/m2). Oxidation of CH4 in the atmosphere by hydroxyl

(OH) radicals or nitrous oxide produces ozone (O3), CO2, and water

vapor (Rigby et al., 2017) which add weight to the RF of methane. For

instance, when one molecule of CH4 oxidizes in the presence of N2O,

it yields an average of 2.7 molecules of ozone, which increases

methane’s greenhouse effect by 30% (Collins et al., 2018).

The contribution of methane to atmospheric pollution is

primarily driven by ozone, with methane oxidation accounting

for approximately 15% of the tropospheric ozone burden (Collins

et al., 2018). Ozone poses significant threats to human health,

agriculture and ecosystem balance. Globally, about 1 million

premature deaths occur annually due to respiratory illnesses

resulting from ozone exposure. Half of these deaths are

attributable to anthropogenic CH4 emissions (McDuffie et al.,

2023). In addition, ozone exposure affects crop growth and

productivity. Recently, Mills et al. (2018) reported a loss of 537
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million tons of crop yield between the year 2017 and 2019 due to

ozone exposure.

The current global emission of methane is approximately 600

teragrams per year (Tg/yr) (Calabrese et al., 2021). This amount is

approximately 2.6 times the pre-industrial era emission and

accounts for 0.5°C of the current global warming. Generally,

research suggests that all significant methane sources are human

driven and largely biogenic in nature, i.e., they involve microbial

fermentation. Recent estimates suggest emissions from the year

2007 to present are 85% from microbial sources with about half of it

coming from the tropics (Basu et al., 2022).

Human derived methane microbial emissions fall under three

categories: livestock production (115 Tg CH4/yr), landfills and

waste (68 Tg CH4/yr), and rice paddies (30 Tg CH4/yr) (Saunois

et al., 2019). Within the livestock sector, emissions from enteric

fermentation contribute the largest proportion (85%) amounting to

98 Tg CH4 /yr (Saunois et al., 2020). Cattle account for the majority

of enteric fermentation CH4 emissions from livestock worldwide,

due to their large population (1.5 billion animals), large rumen size,

and digestive characteristics (Malik et al., 2021). On average a beef

cow is estimated to emit up to 500 litres (equivalent to 328.5 grams)

of methane per day, or nearly 120 kg per animal per year (Figure 1)

which exit the animal mainly (95%) through the mouth (Cezimbra

et al., 2021) This methane not only harms the environment, but also

impacts animal performance as it accounts for about 12%–15% loss

of dietary energy (Tapio et al., 2017).

As the global population grows and economies strengthen, both

consumption and waste production will increase, leading to higher

microbial emissions. In the case of the enteric fermentation, by the

year 2050 the demand for ruminant products is predicted to

increase for meat and milk production by 76% and 63%

respectively from their levels in 2010 (FAO, 2018). This extensive

production coupled with already existing extreme weather events

will exacerbate microbial emissions. For instance, there is strong

evidence that a prolonged dry season in the drylands reduces feed

quality and causes feed scarcity, both of which reduce digestibility

and increase emissions from enteric fermentation (Tadesse and
FIGURE 1

Global yearly emissions of methane by different species. Emissions are shown in kg per animal per year.
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Dereje, 2018). On the other hand, prolonged rain seasons expand

ruminant feed sources, which in turn promote overfeeding

consequently increasing emissions (Schaefer et al., 2016).

Increasing temperatures and additional rainfall creates and

expands ideal conditions for methane-emitting archaea in landfills

and wetlands (Moomaw et al., 2018).

Methane is therefore an attractive and cost-effective target for

climate mitigation strategies given its potency as a GHG and its

shorter lifetime in the atmosphere. By targeting methane, visible

impact on the climate will be observed within the next few decades.

For instance, it is estimated that if emissions from livestock enteric

fermentation were entirely halted, the climate would cool by 0.3°C

by 2045 (Reisinger et al., 2021).

This review begins by detailing the landscape of broad strategies

of methane mitigation in ruminant animals. Then, we expand upon

strategies for promoting acetogenesis, which is at the forefront of

rumen methane mitigation strategies. We show why acetogenesis is

not dominant in the rumen and then report prior efforts to promote

acetogenesis. Previous reviews have focused on chemical inhibitors

like 3-nitrooxypropanol (3-NOP, Bovaer®) (Kebreab et al., 2023)

and macroalgae (Sofyan et al., 2022). Others have focused on

nutrition and feed additives (Roques et al., 2024). By revisiting

the limited research in acetogenesis, we question the success,

persistence, performance, and the fate of rumen enteric

fermentation. Finally, we propose hypothetical, sustainable

scenarios to maximize the promotion of acetogenesis in the

rumen, including how CRISPR-Cas genome editing techniques

could be applied to execute the proposals.
2 Broad strategies for reducing
methane emission from ruminants

The United Nations Climate Change 26th Conference of

Parties (COP26) through the Global Methane Pledge set a goal

to decrease agricultural methane emissions by 30% by the year

2030 (Meinshausen et al., 2022). Building on this initiative, the

recent COP27 launched an initiative called “fast mitigation

sprint”, the goal of which is to focus on big and correctable

sources of methane, such as livestock, and to act as quickly as

possible (BBC, November 20, 2022).

Research on mitigating rumen methane emissions began over

50 years ago. Prior to 2000, studies focused on enhancing the energy

utilization efficiency of rumen fermentation to ultimately improve

animal productivity (Beauchemin et al., 2020). In the early 2000s,

the research focus shifted toward directly reducing rumen methane,

resulting in numerous strategies and publications. These methods

will be discussed in a historical context below with current research

gaps and future research areas highlighted in Table 1.

The initial response from the two most advocacy institutions for

reducing livestock emissions, the United Nations Food and

Agriculture Organization (FAO) and the Intergovernmental Panel

on Climate Change (IPCC), was to advocate for a reduction in

global cattle herds by cutting meat consumption (FAO, 2022; IPCC

2022). This approach was supported by several prominent reports,
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including the Lancet report (Willett et al., 2019) and the Greenpeace

report (Greenpeace, 2020), which suggested a 50% reduction in red

meat consumption by 2050.

Reduction in meat consumption however, is not practical in

numerous ways. First, it conflicts with the World Health

Organization (WHO) recommendations to meet some key United

Nations Sustainable Development Goals (UNSDGs); e.g., SDG2 on

nutritional requirements and food security and SDG1 on poverty

reduction. This is especially relevant in the Global South, where

animal protein availability is still inadequate (Asano and Biermann,

2019) and consumption is expected to rise as population and

average individual incomes increase. Reducing animal numbers in

these societies would translate to health problems such as

malnutrition, stunted growth, or anemia (Fehér et al., 2020).

Second, large-scale reduction in cattle farming would also require

substitutes for fertilizers, leather, and pet foods, leading to increased

greenhouse gas emissions from synthetic alternatives (Cheng et al.,

2022). Third, while repurposing the livestock land for carbon sink

through forestation is often proposed, this strategy is not practical

where livestock farming dominates, because land use alternatives

like crop farming and tree growing are often not feasible (Houzer

and Scoones, 2021). Thus, while decreasing cattle farming would

reduce GHG emissions, these considerations must be balanced with

potential impacts of leaving livestock land vacant, as well as the

economic and nutritional needs of cattle farming communities.
2.1 Suggested alternatives to
animal proteins

The need to balance human health with environmental concerns

has driven the development of alternatives to animal proteins. These

alternative proteins can provide necessary nutrition while

significantly reducing livestock numbers and emissions. They have

existed since the 1960s and include insect protein, plant-based

substitutes, cultured meat, and fermentation-derived microbial

protein (MP) (Ismail et al., 2020). Each of these categories offers a

novel approach to producing protein without relying on conventional

livestock farming (Humpenöder et al., 2022).

2.1.1 Insect protein
Insects offer an environmentally sustainable alternative to

traditional livestock farming due to their high protein content,

minimal methane production, and lower requirements for land,

water, and feed compared to cattle. Crickets, for instance, require

just 1.7 kilograms of feed to produce 1 kilogram of protein, while

cows require 8 kilograms of feed to generate the same amount of beef

protein (Moruzzo et al., 2021). Despite this efficiency, edible insects

face acceptance barriers. It is worth noting current strategies that aim

to enhance the appeal of insect consumption, such as processing

insects into powders and adding them to familiar products like

protein bars, baked goods, and pasta. These insect-based products

have already reached markets in the United States, Canada, and

Europe, gradually shifting consumer perceptions and promoting the

acceptance of insect-derived foods (Moruzzo et al., 2021).
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2.1.2 Plant based protein
Production-wise, plant-based diets have a lower environmental

footprint than animal foods (Springmann et al., 2018). Studies have

reported that a 70% reduction in GHG emissions and land use

could be achieved by shifting our diets to plant-based proteins

(Fehér et al., 2020). However, it is important to note that the net

environmental benefit is likely to diminish with a complete

transition to plant-based products. This is due to: 1) the complex

interrelationships in mixed farming systems among feed, fertilizer,

and soil quality; and 2) the need for additional land in scaling up

plant-based production, which comes at the expense of

deforestation and biodiversity decline (Kozicka et al., 2023).

While plant-based production is considered safe, its

consumption may lead to more human emissions. Similar to the

rumen of animals, humans produce methane from metabolism of

methanogenic species (Polag and Keppler, 2019). These

methanogens contribute to the production, on average, of 0.35

litres (equivalent to 0.23 grams) of methane per person per day

(Polag and Keppler, 2018; Djemai et al., 2021). In 1986, when the

human population was 4.7 billion, total humanmethane production

via breath only was estimated to be 0.3 Tg per year (Crutzen et al.,

1986). Assuming a direct correlation to population growth, 8 billion

humans in 2024 now emit 0.51 Tg per year. For comparison, this

amount is significantly lower than emissions from ruminant

animals. However, these estimations represent only a fraction

(25%) of what humans emit through breath, and excludes the

75% eliminated through flatus, which is difficult to measure and

thus underreported. Transition to plant-based diet could

significantly increase these numbers, as fiber rich diets produce

more methane than protein or fat rich diets (Wilson et al., 2020).
2.1.3 Cultured meat
Cultured meat, or lab meat, is a promising alternative because it

bypasses the extravagant length of rearing a whole animal, thus

requiring fewer land and water resources (Ismail et al., 2020).

However, converting a cell into a steak in the lab is currently very

expensive. For instance, in 2013, researchers from Maastricht

University spent $2,470,000/kg of production to produce a proof-

of-concept cultured meat product (Rubio et al., 2020). At this rate,

cultured meat is cost prohibitive as large-scale replacements for

beef. Furthermore, consumer concerns persist, with reported fears

related to cancer and insufficient regulation (Chriki and

Hocquette, 2022).
2.1.4 Microbial protein
Fungi, especially Fusarium venenatum, have a high protein

content and an excellent essential amino acid profile, making

them a promising source for meeting human protein

requirements (Lee et al., 2024). However, this potential can only

be realized if a more affordable and eco-friendly energy source

replaces the electricity used in bioreactors. Studies have consistently

reported that the energy required for mycoprotein production

exceeds that of conventional ruminant meat production when

comparing land-related and energy-related greenhouse gas

emissions (Järviö et al., 2021). For this reason, unless renewable
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energies like solar and wind become more efficient and cost effective

to eventually replace the existing energy system, microbial protein

will continue to have a huge environmental impact.
2.2 Reducing emission per kg of animal
protein produced

Considering all the challenges of upscaling alternative proteins,

it is necessary to explore alternative strategies that can meet

emission reduction targets without compromising traditional

livestock practices. Proposed approaches can broadly be

categorized into two groups: 1) strategies to reduce methane

emission per kilogram of animal produced; and 2) strategies to

reduce net emissions by targeting microbial fermentation.

Methane intensity refers to enteric methane emitted per unit of

animal product produced (g/kg of milk yield or carcass weight)

(Beauchemin et al., 2020). Overall, all management practices that

enhance animal performance also reduce methane intensity. For

example, a high-performing animal that yields more milk and meat

may emit higher amounts of methane per animal. But since a

smaller proportion of feed is consumed by the animal, emissions

intensity is effectively lowered. The idea of methane intensity is

highly attractive in low- and medium-income countries as it offers

an opportunity to align food security, development objectives, and

climate change mitigation goals (FAO, 2019).

2.2.1 Management (husbandry) practices
Advancements in nutrition, disease control, and animal

reproduction technologies accelerate animal growth rates,

consequently reducing their emissions over the course of their

lives. In the United States, for instance, the average annual milk

yield in grain-finished cows moved from 1,890 kg to 9,682 kg of

milk per cow between 1924 and 2011 and the carbon foot print

reduced by 41% between 1944 and 2007 (Capper and Bauman,

2013; Georges et al., 2019). Nutritional management however might

introduce competition with human food supply as more land would

be needed for grain production to accommodate both human and

animal food which could create additional emissions (Ravi Kanth

Reddy et al., 2019; Reddy et al., 2019). For this reason, research must

focus on identifying nutrients with the potential to reduce emissions

without compromising human food systems.

2.2.2 Breeding low emitting animals
Breeding for low emitting animals is possible because the

methane production trait has been found to be moderately (0.13–

0.35) heritable in cattle and sheep (Black et al., 2021). However, the

selection of a stock population is hindered by high expenses of

measuring methane (González-Recio et al., 2020). Identification of

methane emission proxies could help offset the cost of methane

measurements (Lassen and Difford, 2020). But even so, the potential

for genetic improvement to reduce methane over 20 years is only 4–

8% (Black et al., 2021). This means that lowering global emissions

by ruminants is unlikely to be realized within the timeframe of

action needed to keep global warming below 1.5°C.
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2.2.3 Capture of methane produced by animals
and their waste

Many methane emission sources continue to leak methane into

the atmosphere despite mitigation efforts, as most strategies are only

partially effective (Lidstrom, 2024). Therefore, it has been argued

that emission-reduction strategies must be augmented by methane

removal from air to slow global warming by 2050 (Warszawski

et al., 2021; Nisbet-Jones et al., 2022). Methane, with an energy

content of 50.4 MJ/kg, can serve as a potent renewable fuel

(Angelidaki et al., 2018). For example, methane from just 12 cows

can supply enough gas for daily use by one average household

(Crutzen et al., 1986). Additionally, methane can be converted into

CO2 and biomass, which can be harvested for use as protein

feedstock (Lidstrom, 2024).Traditionally, methane capture has

been achieved through manure digesters, though only 5% of

methane from animals is emitted through manure, with 95%

expelled through eructation. While devices like cow masks have

been developed to capture eructed methane, they are costly and

raise animal welfare concerns (Kaya and Kaya, 2021).

Methanotrophic bacteria, which oxidize methane, offer a

promising alternative. Biofilters using methanotrophs have shown

success, though they are more effective at higher methane

concentrations located near emission sites (La et al., 2018).

Methylotuvimicrobium buryatense 5GB1C is a particularly

promising candidate, as it can grow at low methane

concentrations (200–1,000 ppm) and demonstrates superior

methane consumption rates compared to other strains (He et al.,

2023). There remains significant potential for research into

methanotrophs that can efficiently remove methane from low-

concentration air. For this reason, scientists invariably stress the

need to drive down net emissions by targeting rumen microbiota

and enteric fermentation.
3 The rumen microbiome

Livestock, particularly ruminants, use low-quality fibrous

feedstock and convert it into high-quality livestock products,

including meat and milk. This conversion is accomplished through

the action of symbiotic microbiota residing in their GI tract

(Martıńez-Álvaro et al., 2022). These microorganisms ferment

feedstock in the rumen to produce short chain fatty acids (SCFAs)

which are consumed by the host for its own energy and growth.

About 70% of the rumen microbiota pass down the GI tract, where

they are themselves digested to further nourish the host with protein,

long chain fatty acids, and vitamins (Mizrahi et al., 2021).

Concomitant with the nourishing effects, the fermentative action of

rumen microbiota produces GHGs, most notably methane.
3.1 Composition of the rumen microbiome

The rumen microbiome is composed of archaea, bacteria, fungi,

viruses and protozoa (Wallace et al., 2019). Bacteria are the most

numerous and diverse, comprising 95% of rumen microbiota

(Pereira et al., 2022). Protozoa are the most abundant by biomass
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(Solomon et al., 2021) and their diversity and abundance tend to

fluctuate more widely across breeds and feed type (Newbold et al.,

2015). Numerically, fungi comprise a very small component of the

rumen microbiome. However, their efficiency in degrading plant

material is remarkable due to their possession of an extensive set of

enzymes and rhizoids that penetrate plant structural barriers,

subsequently increasing the plant cell surface area for other

microbes to colonize (Xue et al., 2020). Viruses are highly

abundant and diverse within the rumen, and play a critical role in

maintaining the microbial population through intra-ruminal

microbial lysis and genetic transfer (Wright and Klieve, 2011).

However, rumen viral populations have been the least explored

population within the microbiome, primarily due to the challenges

in isolation and characterization (Gilbert et al., 2020). The archaeal

population in the rumen ranges from 107–109 cells per ml of

ruminal content (Wright and Klieve, 2011), and is responsible for

all ruminant methane production (Wallace et al., 2019).

As mentioned previously, the microbiota in the rumen interact

with one another to perform enteric fermentation, which ultimately

benefits their host and fosters their ecological balance. Some bacteria,

fungi and protozoa digest plant fiber into sugar monomers, then

ferment these products into three major volatile fatty acids: acetate

(40–75%), propionate (15–40%), and butyrate (10–20%). These

products are then absorbed by the rumen epithelial walls for

metabolic use by the animal (Khairunisa et al., 2023). In addition,

lactate, ethanol, and succinate are produced as reduced intermediates,

then lactate and succinate are further converted to propionate. The

products of primary fermentation are passed down the food chain and

are ultimately degraded to hydrogen and carbon dioxide (Lyu et al.,

2018). Although H2 and CO2 can be expelled from the rumen by
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eructation (burping), the energy in the mix would be lost to the rumen

ecosystem. Consequently, some archaea and some bacteria are able to

use the H2 and CO2 for energy conservation and growth and in turn

produce methane and/or acetate respectively (Ma et al., 2021).

This complex interdependence between microbiota has been

reported in the literature with the interaction between hydrogen

producers and hydrogen consumers (Figure 2) repeatedly observed.

The interaction between hydrogen producers (Figure 2) and

methanogens is the most prevalent because methanogenesis is the key

hydrogen sink in the rumen. For instance, this relationship is observed

between the rumen fungus Neocallimastix frontalis and methanogen

Methanobacterium formicicum (Nakashimada et al., 2000); between the

bacterium Ruminococcus and methanogen Methanobrevibacter

ruminantium (Henderson et al., 2015); and between protozoans

Entodinium, and methanogen Methanobrevibacter thaueri (Xia et al.,

2014). The abundance of these hydrogenic organisms has been linked to

methane emission and animal production; depleting them from the

rumen reduces methane emission but also reduces animal performance,

as evidenced by one mitigation strategy called defaunation (Ibrahim

et al., 2021). Within this framework, it is important to conduct

experiments to explore and understand the metabolic interactions

between the two groups of organisms listed in Figure 2. Additionally,

investigating the efficiency of hydrogen uptake by organisms listed

in Figure 2 could facilitate future development of substitutes

for methanogens.

3.1.1 Factors influencing rumen
microbial composition

Generally, the dynamics of the rumen microbiome are largely

influenced by three factors: feed (Wilkinson et al., 2020), age of the
FIGURE 2

Promising candidates for future research in promoting alternative hydrogen utilizing pathways as a strategy for ruminal methane mitigation.
Key hydrogen producers, termed stimulants of methanogens, are shown on the left branch of the diagram; key hydrogen consumers, termed
suppressors of methanogens, are shown on the right branch of the diagram.
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animal (Martıńez-Álvaro et al., 2022) and genetics (Yáñez-Ruiz

et al., 2015). Feed type and amount have the most dramatic effect on

microbial dynamics and the subsequent effect on methane

generation. Poor-quality feed with high fiber content has been

significantly linked to diversification of the microbiome and

elevated methane emissions as compared to highly digestible,

low-fiber feed (Hayek and Garrett, 2018; Vaghar Seyedin et al.,

2022). Some experiments in the literature show that animals fed

poor-quality feed tend to harbor a high abundance and diversity of

hydrogen-producing organisms. Bacteria like Firmicutes and

Ruminococcaceae have repeatedly been found to dominate the

rumens of high emitters (Wallace et al., 2019; Furman et al.,

2020). Due to the nature of the feed, the fermentation process is

usually slow, leading to a gradual buildup of hydrogen which

supports a greater methanogenic population, ultimately resulting

in increased methane production.

On the other hand, Succinivibrionaceae, Quinella spp., and

Dialister are commonly found in the rumen of cows that emit

extremely low levels of methane (Wallace et al., 2019; O’Hara et al.,

2020). These microorganisms are efficient at utilizing hydrogen,

resulting in propionate production. It must be noted that when

fermentation is fast, which is the case for low-fiber feed, hydrogen

builds up in the rumen rapidly (Wang et al., 2016). High hydrogen

levels in the rumen shift carbohydrate fermentation toward

reactions that consume hydrogen, such as propionate production,

to maintain equilibrium (Arndt et al., 2023). It is for this reason that

bacteria that are capable of producing lactate and succinate, such as

Fibrobacter spp., Kandleria vitulina, Olsenella spp., Prevotella

bryantii, and Sharpea azabuensis dominate the rumens of low

emitting animals (Wallace et al., 2015). Another hypothesis for

low emissions in animals fed a low-fiber diet is that because low-

fiber feed is easier to digest, it leads to increased solid waste passage

rates that slough off and eliminate the methanogenic population,

ultimately resulting in a reduction in total methane production. In

one experiment, substituting grass-clover silage with maize silage

for dairy cows led to a 15% reduction in methane emissions per kg

dry matter intake (Brask-Pedersen et al., 2023).

Age is another factor that affects microbial composition and

subsequently methanogenesis. Young animals have less diverse, less

abundant, and more dynamic microbiome compositions

(Cammack et al., 2018). Their rumen size is small, and they

consume few solids that are also easy to digest. As the animal

matures, the microbiome stabilizes and becomes more diverse and

abundant, thus better supporting methanogenesis. Cattle achieve

this stabilization three weeks after birth (Yáñez-Ruiz et al., 2015).

Research suggests that beneficial microbial signatures must be

imprinted within this sensitive window (first three weeks of life)

for the animal to maintain a healthy, diverse, and stable microbiome

over time (O’Hara et al., 2020). Thus, the dynamic nature of a

young animal’s microbiome presents potential opportunities for

manipulation of the microbiome for reduced methane emissions

(O’Hara et al., 2020).

Besides feed and age, host genetics is also a main determinant of

microbial composition and methane emissions. The composition of

the microbiome and the subsequent methane production are

influenced by both animal species and breed (Roehe et al., 2016).
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For example, in a recent exploratory effort to understand the role of

animal genetics in microbial composition, researchers discovered a

significant association between a region on chromosome 6 with the

densities of Euryarchaeota, Actinobacteria and Fibrobacteres. This

region encompassed the genes that codes for MEPE, matrix

extracellular phosphoglycoprotein (Golder et al., 2018). Despite

this achievement, more studies are needed not only to establish

these associations, but also determine the extent of the influence

and the underlying mechanisms. Overall, rumen microbial

composition and the factors that influence their abundance,

diversity, and function present opportunities for microbial

manipulation, and could serve as potential tools in methane

mitigation strategies.
3.2 Targeting the rumen microbiome

3.2.1 Suppression of methanogenesis using
chemical inhibitors

Rumen additives ranging from chemical to biological have been

used to reduce enteric methane emissions. Historically, the most

commonly used chemical additives were antibiotics with ionophore

activity to target Gram-positive bacteria, creating a shift in rumen

fermentation patterns that are linked with enteric methane

suppression. Due to concerns about antibiotic resistance, other

inhibitory compounds have recently been developed. In a recent

meta-analysis, macroalgae and 3-nitrooxypropanol (3-NOP,

Bovaer®) were reported to be the most potent additives with

significant methanogen reduction (Kebreab et al., 2023).

The molecular structure of 3-NOP resembles that of methyl-

coenzyme M, which is a substrate utilized by coenzyme M reductase

(MCR), in the final step of methanogenesis. Molecular docking

studies suggest that 3-NOP selectively binds to the active site of

MCR and thereby inhibits it. In this process, the nitrate group of 3-

NOP is reduced to nitrite, further inactivating MCR (Duin et al.,

2016). However, methanogens express a repair system that

reactivates MCR (Duin et al., 2016). Therefore, once 3-NOP has

been completely metabolized and is absent, CH4 emissions return to

their original levels. Studies have shown that supplementing cows

with 3-NOP can lead to a reduction in methane emissions on

average by up to 30% (Wesemael et al., 2019; Zhang et al., 2020). In

vivo experiments with beef (Alemu et al., 2021) and dairy cattle

Melgar et al., 2020) demonstrated varying effects depending on

dosage. Lower doses (60–75 mg/kg DM) reduced emissions by 16–

30%, while higher doses (100–183 mg/kg DM) achieved reductions

of 10.6–36.7% (Hodge et al., 2024). In dairy cattle, small amounts

(60 mg/kg DM) cut methane production by up to 38%, with higher

doses (80 mg/kg DM) reducing emissions by up to 45.1% depending

on diet (Van Gastelen et al., 2022). Effects of 3-NOP on animal

performance were varied and included: increased hydrogen

emissions; reduction in acetate to propionate ratio; reduction in

dry matter, organic matter, and energy digestibility; decreased body

weight gain; increased milk fat; no change in milk yield or

composition; no negative effects on dry matter intake (DMI)

(Lileikis et al., 2023). The reasons for these mixed results remain

under discussion. Some studies suggest that increased hydrogen
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accumulation may limit 3-NOP performance. To enhance

productivity, 3-NOP can be combined with phloroglucinol, which

captures excess hydrogen and generates beneficial metabolites for

the host (Martinez-Fernandez et al., 2017). Even though the safety

of 3-NOP has been confirmed with regulatory approval in Europe,

the U.S., and other countries, questions remain regarding its

potential to enhance productivity. Further, there exist economic

and logistical challenges, as consistent administration is required to

achieve effective methane reduction.

Algae, with their diverse array of properties including

antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-

carcinogenic effects, have attracted attention in methane mitigation

research. Macroalgae, notably Asparagopsis taxiformis, is rich in

bromoform. Bromoform is a halomethane compound. It inhibits

methanogenesis by binding to vitamin B12, which chemically

resembles coenzyme F430, a cofactor required for methanogenesis

(Roque et al., 2021). An in vitro study reported that A. taxiformis

supplementation at inclusion rates up to 5% of organic matter

resulted in methane reduction by 99% without a significant negative

impact on volatile fatty acid profiles and organic digestibility

(McCauley et al., 2020). Similar to 3-NOP, the effect of A.

taxiformis is short lived. To tackle this challenge, current research

endeavors focus on devising slow-release formulations and

administering them to young animals for a prolonged effect.

3.2.2 Biological control of methanogens by
means of phages

Viruses modify the rumen microbial ecosystem via infection,

cell lysis, reproduction, and reprograming of microbial metabolism

(Gilbert et al., 2020). For this reason, phages can be used as a tool to

manipulate the rumen microbial community in a targeted manner,

suggesting their potential in methane reduction research (Wolf

et al., 2019). Utilizing viruses offers a means to manipulate key

components of methanogenesis, such as cellulose-degrading

bacteria and methanogenic populations.

Bacterial phages, for instance, can hinder methanogenesis

indirectly by targeting hydrogen producers and thereby reducing

hydrogen availability. Within this category, phages belonging to

families such as Myoviridae, Siphoviridae, Mimiviridae, and

Podoviridae (Lobo and Faciola, 2021) have been isolated and are

closely associated with dominant rumen bacterial phyla, including

Firmicutes and Proteobacteria (Namonyo et al., 2018). Other studies

have also discovered phages in the rumen such as, jBrb01 and

jBrb02, jSb01, jRa02, and jRa04 that specifically target Bacteroides,
Streptococcus and Ruminococcus, respectively (Gilbert et al., 2017).

Methanogen-targeting viruses on the other hand directly suppress

methane production by eliminating methanogenic archaea, creating

space for other hydrogen-utilizing microorganisms to thrive. Only a

limited number of phages specifically targetingmethanogens have been

investigated thus far. Viral families such as Anaerodiviridae,

Leisingerviridae and Speroviridae have been described to infect hosts

within the order Methanobacteriales (Wolf et al., 2019). The family

Pungoviridae has been found to associate with Methanomicrobiales

and family Fervensviridae linked to Methanococcales (Weidenbach

et al., 2021). In addition, a dozen proviruses have been found in
Frontiers in Animal Science 08
Methanobacteriales, Methanococcales, Methanosarcinales and

Methanonatronarchaeales genomes (Krupovič and Bamford, 2008).

Due to challenges in culturing rumen viruses and overall rumen

microorganisms, researchers have shifted their focus to studying

viral enzymes. These enzymes can potentially be fused with easily

cultivable microorganisms, such as Escherichia coli, to aid in

conducting lytic experiments on methanogenic cells. Recent

research demonstrated the effectiveness of the lytic enzyme PeiR,

sourced from a virus targetingMethanobrevibacter ruminantium, in

inhibiting a spectrum of rumen methanogen strains in pure culture

(Altermann et al., 2018). In this work, PeiR was found to hydrolyze

the pseudomurein cell walls of methanogens. Subsequently, PeiR

was utilized to develop bionanoparticles (BNPs) through one-step

biosynthesis in E. coli (Altermann et al., 2022). These tailored BNPs

were capable of lysing not just the intended methanogenic host

archaea, but also a wide range of other rumen methanogen strains

leading to a 97% methane reduction for 5 days post-inoculation.

Despite these milestones, the use of E. coli as a production host may

be limited due to its requirements for oxygen. Similarly, the two-

plasmid system requires the application of two different antibiotics

and has limited scalability to fed-batch fermentations.

3.2.3 Promotion of alternative consumption of H2

and CO2

Since methanogenesis is influenced by intracellular and

intercellular flows of metabolic hydrogen (Ungerfeld, 2020),

targeting both its concentration and direction of flow will

indirectly influence methanogenesis. Methods to reduce hydrogen

availability in the rumen, either by redirecting it to alternative

reactions or by lowering the population of hydrogen-producing

Gram-positive bacteria, fungi, and protozoa, have been explored

(Kelly et al., 2022). One approach involves the use of fats,

particularly unsaturated fatty acids. Firstly, unsaturated fatty acids

undergo biohydrogenation in the rumen, where specific bacteria

add hydrogen to the unsaturated bonds of fatty acids, converting

them into more saturated forms. This process consumes hydrogen,

thereby reducing the amount available for methanogens to produce

methane. Essentially, fats “compete” with methanogens for

hydrogen (Yang et al., 2019). Secondly, unsaturated fatty acids

can inhibit rumen fermentation, leading to a reduction in

hydrogen-producing microorganisms. This includes fermentative

bacteria such as Ruminococcus albus, R. flavefaciens, Neocalimastrix

spp., and Desulfovibrio (Min et al., 2022), as well as protozoa like

Entodinium caudatum (Darabighane et al., 2021) and various fungi

(Ibrahim et al., 2021). This inhibition shifts the microbial

community in favor of propionate production (Wang et al.,

2023). Furthermore, since fats are not fermented in the rumen,

they contribute less substrate hydrogen for methanogenesis

(Belanche et al., 2020). The methane-suppressing effect of fatty

acids, however, is not consistent and largely dependent on the type

of fat, concentration, and nutrient composition of the diet fed to the

animal. In cattle, a 15% reduction in methane was observed when

the diet contained 6% polyunsaturated fatty acids and low fiber. But

then 6% of 15 kg of hay (the usual dry matter intake of a cow)

equates to almost a kg of oil (0.9 kg) every day for a cow that weighs
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500 kg. Given the global vegetable oil shortage, exacerbated by the

Russia-Ukraine conflict, more sustainable approaches that avoid

competition with the human food supply are critically needed

(Mottaleb et al., 2022). Additionally, large-scale oilseed

production has significant environmental costs, including high

greenhouse gas (GHG) emissions and biodiversity loss. Compared

to concentrate feeds production, oilseed production emits nearly

equivalent upstream GHG emissions per kilogram of dry matter

(1.27 vs 0.70 CO2 equivalents kg dry matter -1) (Arndt et al., 2023).

By contrast, a more useful strategy would be to redirect hydrogen

to already existing rumen fermentation pathways like propionate,

nitrate, and sulfate, which are nutritionally useful to the animal and

its microbial consortium (Min et al., 2022; Tseten et al., 2022).

Propionate is the main glucose precursor in ruminants and therefore

important to animals with high requirements for glucose such as high

producing dairy cows in early lactation (Ungerfeld, 2020). But for the

propionate pathway to compete with methanogenesis, animals must be

fed either diets rich in starch or precursors of propionate like fumarate,

lactate, and succinate. Starch is not only expensive but also its

fermentation overwhelms the digestive physiology of cattle leading to

a condition known as ruminal acidosis (Elmhadi et al., 2022). In order

to avoid the occurrence of lactic acidosis, high-starch diets often

include antibiotics such as ionophores to limit bacteria growth.

However, the use of antibiotics in livestock production has been

restricted worldwide due to concerns about antibiotic resistance. Due

to this, researchers have explored the use of propionate-forming

bacteria as a strategy to increase propionate production and reduce

rumen methane emissions. In an in vitro experiment, (Alazzeh et al.,

2012) evaluated the potential for sixteen strains of propionate bacteria

in reducing methane emission from concentrate and forage diets.

Among them, only six showed significant reduction of methane.

Propionibacterium freudenreichii T114, Propionibacterium thoenii

T159, and Propionibacterium thoenii ATCC 4874 significantly

lowered CH4 production from both substrates, whereas

Propionibacterium jensenii T1, Propionibacterium freudenreichii T31,

and Propionibacterium freudenreichii T54 only lowered methane

production when corn was used as a substrate. Despite these

observations, added bacteria were unable to permanently colonize

the ruminal cultures and did not change bacterial, archaeal, and

protozoal populations, implying that the reduction in methane

production was transient.

Unlike the propionate pathway, nitrate reduction (DG=−254 kJ/
mol H2) versus CO2 reduction to methane (DG= −16.9 kJ/mol H2),

stands a good chance to compete with methanogenesis. However,

there are fewer nitrate reducers in the rumen which restrict the rate

of nitrate reduction. Their concentration in the rumen has been

reported to range around 103 cells/ml of rumen fluid, whereas the

methanogenic population is 109 cells/ml of rumen fluid (Iwamoto

et al., 2002). On top of this, the three major nitrate reducers either

grow slowly on nitrate and H2 (e.g. Wolinella succinogenes), or

reduce nitrate and nitrite at lower rates (e.g. Selenomonas

ruminantium and Veillonella parvula) (Iwamoto et al., 2002). To

boost nitrate reduction in the rumen, scientists have considered the

incorporation of nitrate in animals’ diets. The effect of nitrate

supplementation on methane reduction has been reported in

many studies. In an in vitro experiment conducted by (Iwamoto
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et al., 2002), nitrate supplementation to the diet increased the

number of nitrate-reducing bacteria such as Wolinella

succinogenes and Veillonella parvula. Subsequently, when

Wolinella succinogenes was co-cultured with methanogens,

methane production decreased from 1.6 mol/L of culture to 0.1

mol/L of culture. Another study reported 16–25% reduction of

methane emissions in grams per kilogram of dry matter intake

when nitrate was provided at a rate of 21 g NO3−/kg dry matter

(DM) (Van Zijderveld et al., 2011). In a more recent experiment,

nitrate supplementation reduced in vivo methane production by

31% (Olijhoek et al., 2016).

The methane reduction effect of nitrate has been extensively

documented across animal species. Reductions of methane

emissions by 12% in beef steers (Alemu et al., 2019; Granja-

Salcedo et al., 2019; Feng et al., 2020), 17% in dairy cows (Meller

et al., 2019), 26% in sheep (Villar et al., 2019), and 6% in goats

(Zhang et al., 2019) have been observed. Despite these huge

milestones, application in the field is still restricted because nitrite,

which is an intermediate in nitrate reduction, is considered toxic. It

causes methemoglobinemia, a condition which decreases the

capacity of blood to transport oxygen into tissues, leading to

depressed animal performance and even the death of the animal

(Lileikis et al., 2023). Some studies speculate the reduction in rumen

methanogenesis following nitrate supplementation could largely be

due to the toxicity of nitrite on methanogens and other rumen

microbiota (Iwamoto et al., 2002). In 2012, the strain NRBB 57 was

isolated from the rumen of buffalo, which showed a significant

removal of nitrate and nitrite from the medium with a further

reduction in methane production (Sakthivel et al., 2012). More

studies of this nature are needed to further develop the concept of

nitrate supplementation in methane reduction.

Similar to nitrate reduction, sulfate reduction thermodynamics

(DG= −21.1 kJ/mol H2) can compete with methanogenesis (−16.9

kJ/molH2), but is limited in terms of substrates and organism

number (Van Lingen et al., 2016). The abundance of sulfate

reducing bacteria in the rumen is generally low, at a

concentration of approximately 105 cells/ml, with Desulfovibrio

and Desulfotomaculum as the main genera (Lan and Yang, 2019).

It has been suggested that increasing sulfate levels in the animal’s

diet could boost the competitiveness of sulfate reducing bacteria

against methanogens for H2 in the rumen. Few studies have shown

a positive effect of sulfate on methanogenesis inhibition. A 16%

methane reduction was reported in crossbred lambs following a

2.6% sulfate supplementation (van Zijderveld et al., 2010). A more

recent study investigated the effect of supplementing goats with

sulfate-reducing bacteria (SRB) along with sulfur (as sodium

sulfate) on methane production. SRB was purposely added to

minimize the risk of hydrogen sulfide, a toxic end product in the

sulfate reduction reaction. Methane (CH4) production (in l/kg of

dry matter intake (DMI)) was reduced by 11.8% when sulfur (0.19%

DMI) was supplemented along with SRB at the rate 0.5 ml/kg body

weight (Uniyal et al., 2023). Therefore, research to identify specific

sulfate-reducing bacteria that can oxidize H2S, or a mix of sulfate-

reducing bacteria and other rumen microbes that can use H2S, is a

promising way to advance research that focus on sulfate reduction

as a methane mitigation strategy.
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3.2.4 Converting the rumen from methane
producer to acetic acid generator

Reductive-acetogenesis, here termed acetogenesis, is a natural

hydrogen scavenging reaction in the rumen. Acetate, as the end

product of acetogenesis, serves as an excellent energy source for the

host animal, and the microbial community within the rumen (Lan

and Yang, 2019). There are about 22 diverse genera and over 100

species of acetogens among which the genera of Acetobacterium,

Blautia , Clostridium , Morella , Eubacterium , Sporomusa ,

Ruminococcus and Oxobacter are common in the rumen

(Greening et al., 2019; Karekar and Stefanini, 2022). The

abundance of rumen acetogens varies widely between animals,

from undetectable levels up to 107 cells/ml (Fonty et al., 2007).

Acetitomaculum ruminis (A. ruminis) is a notable acetogen in the

rumen, producing 2–8 times more acetate than other species (Le

Van et al., 1998).

Unlike methanogenesis, acetogenesis is less energetically

favorable, with a Gibbs free energy of approximately −95 kJ/mol

for reducing 2 moles of CO2 to acetate, compared to −130 kJ/mol

for methanogenesis (Kim et al., 2020). Irrespective of this, other

anaerobic gut environments like termites (Yang, 2018), kangaroos

(Pester and Brune, 2007), wallabies (Leng, 2018), and rumens of

young animals (Gagen et al., 2010) use acetogenesis as the dominant

hydrogen sink. The dominance of acetogenesis in these other

environments is due to the differences in the gut anatomy,

physiology and hydrogen concentrations (Hegarty and Gerdes,

1999). Anatomy and physiology can influence both gut

metabolism and the types of species that inhabit it. In animals

like kangaroos, wallabies and horses, gut anatomy does not support

mechanisms such as eructation in ruminants, which is responsible

for eliminating gases. To prevent gas buildup that could harm the

digestive system, evolution has favored acetogenesis over

methanogenesis. It has been reported that methanogenesis is

actively prevented in these animals by immune secretions such as

antimicrobial peptides, immunoglobulins, innate lymphoid cells

and mucin that eliminate or suppress methanogenic archaea and

support the growth of acetogenic microbiota (This may have

encouraged colonization by diverse acetogen species that are

more efficient at capturing hydrogen than those in the rumen

(Godwin et al., 2014). Table 2 shows that Sporomusa termitida

from termite guts is more efficient at hydrogen uptake (~800 ppm)

than A. ruminis from the rumen (3830 ppm). Similarly, acetogens

from kangaroos and tammar wallabies also outperform rumen

species. Rumen strains A. ruminis 139B and 190A4 exhibit H2

thresholds 30 to 37 times higher than the rumen methanogen strain

10-16B. Overall, six acetogenic strains with notably low H2

thresholds, including strain TWA4, A. tundrae, T. primitia strains

ZAS-2 and ZAS-1, E. limosum, and S. sphaeroides, stand out as

promising candidates for biotechnological applications (Table 2).

Hydrogen concentration has a central role in the dynamics of

acetogenesis during fermentation (Choudhury et al., 2022). High

hydrogen concentrations create favorable conditions for acetogenesis,

as acetogens have a lower affinity for hydrogen compared to

methanogens. In termites, hydrogen levels have been reported to be

three times higher than in cattle rumen (Pester and Brune, 2007). This

provides a leveling ground for competition with methanogens which
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naturally thrive in low hydrogen levels because of their high hydrogen

affinity (Table 2). The high hydrogen levels in these environments is

explained by high abundant protozoa and spirochetes, which are

responsible for hydrogen production and also double every 24–48 h,

much faster than hydrogenotrophic methanogens (Breznak

et al., 1988).

Based on the considerations described above, the question

arises: how can we promote acetogenesis in the rumen? Most

studies on enhancing rumen acetogenesis have been conducted in

vitro, with only one in vivo study (Table 3). Approaches have

included adding acetogens Yang et al., 2015; Kim et al., 2018;

Pereira et al., 2022), combining methane inhibitors with acetogens

(Nollet et al., 1997; Lopez et al., 1999; Gagen et al., 2012), using

alternative electron acceptors like caffeic acid (Cord-Ruwisch et al.,

1988), and incorporating selective additives such as Saccharomyces

cerevisiae. Yang et al., 2015). Overall, adding acetogenic cultures

alone in the rumen fluid did not affect acetate or methane

production in all systems, even when the concentration of

acetogen was increased ten-fold (Lopez et al . , 1999).

Bromoethanesulfonate (BES) and other methanogenic inhibitors

suppressed methanogenesis up to 90% and increased hydrogen

levels (Klieve, 2009; Zhou et al., 2011). In one study, increased

hydrogen post-BES administration shifted volatile fatty acid

concentrations toward propionate production. However, another

study showed a methanogenic inhibitor reduced both methane and

acetate formation (Zhou et al., 2011). Adding a non-native acetogen

strain along with methanogenic inhibitors promoted acetogenesis

briefly in some studies. One such report showed that the

combination of E. limosum ATCC 8486 and BES stimulated

acetate formation by 51% (Lopez et al., 1999). In these studies,

methanogenesis resumed during the course of the experiments and

all added acetogens perished (Karekar and Ahring, 2023. It is likely

the case that these non-native species were unable to establish a

niche in the rumen, in addition to the diminishing activity of BES

over the course of the experiment. Adding inhibitors while

increasing hydrogen levels increased acetate in pig gut (De

Graeve et al., 1994). The observation aligns with other findings

that collectively suggest that even competent acetogens can only

compete with methanogens when hydrogen levels are elevated

(Gagen et al., 2014) (Figure 3A). The addition of yeast cells

enhanced by more than fivefold the hydrogenotrophic

metabolism of the acetogenic strain and its acetate production

(Chaucheyras et al., 1995), and yeast stimulate cellulose

degradation and elevate hydrogen concentrations (Fonty and

Chaucheyras-Durand, 2006). It can thus be concluded that

strategies aiming to directly outcompete and displace

methanogens with acetogens are unlikely to succeed. However,

approaches that promote hydrogen buildup, such as using

methane inhibitors or introducing yeast cells, can give acetogens a

competitive advantage in the rumen (Figure 3B).

Learning from all these prior efforts, we now explore

hypothetical, sustainable scenarios to maximize the promotion of

acetogenesis in the rumen (Figures 3C, D). Increasing hydrogen

concentration in the rumen is one way to solve this puzzle. This can

be achieved by selecting for microorganisms with high hydrogen

production under rumen conditions. But since high hydrogen levels
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TABLE 2 Hydrogen thresholds of acetogens and archaea species.

Organism Source H2 threshold (ppm) References

Reductive acetogens

Acetobacterium carbinolicum Freshwater sediments 950a (Fonty et al., 2007)

Ser 5 Newborn lamb 342a (Morvan et al., 1994)

A. ruminis Rumen 4200a (Breznak and Kane, 1990)

Ser 8 Newborn lamb 1970a (Morvan et al., 1994)

Sporomusa termitida Kangaroo 830a (Cord-Ruwisch et al., 1988)

Acetobaeterium woodii Kangaroo 520a (Cord-Ruwisch et al., 1988)

A. ruminis 139B Rumen 4,660a (Le Van et al., 1998)

A. ruminis 190A4 Rumen 3830a (Le Van et al., 1998)

Clostridium autoethanogenum German Collection of Microorganisms and Cell
Cultures (DSMZ)

15,787a (Laura and Jo, 2023)

Clostridium ljungdahlli DSMZ 2273a (Laura and Jo, 2023)

Acetobacterium woodii DSMZ 389a (Laura and Jo, 2023)

Blautia hydrogenotrophica. Human 173.7a (Smith et al., 2020)

Acetobacterium wieringae DSMZ 214a (Laura and Jo, 2023)

Acetobacterium malicum DSMZ 205a (Laura and Jo, 2023)

Sporomusa sphaeroides DSMZ 115a (Laura and Jo, 2023)

Sporomusa ovata 2663 DSMZ 66a (Laura and Jo, 2023)

Sporomusa ovata 2662 DSMZ 48a (Laura and Jo, 2023)

Sporomusa termitida Termite 830a (Cord-Ruwisch et al., 1988)

Sporomusa termitida Termite 800a (Breznak et al., 1988)

Treponema primitia strains ZAS-1 Termite 490a (Verme and Ullrey, 1984)

Treponema primitia strains ZAS-2 Termite 650a (Verme and Ullrey, 1984)

Acetobaeterium woodii Kangaroo 520a (Cord-Ruwisch et al., 1988)

Acetobacterium carbinolicum Kangaroo 950a (Cord-Ruwisch et al., 1988)

Acetitomaculum ruminis 190A4 Rumen 3,830a (Le Van et al., 1998)

Sporomusa termitida Termite 871a (Le Van et al., 1998)

Acetobacterium woodii Rumen 362a (Le Van et al., 1998)

Clostridium strains F5a15 Human 2030a (Leclerc et al., 1997)

Clostridium strains M5a3 Human 3680a (Leclerc et al., 1997)

R. hydrogenotrophicus Human 1100a (Leclerc et al., 1997)

Streptococcus strain S5a2 Human 1360a (Leclerc et al., 1997)

C. thermoaceticum Human 1560a (Leclerc et al., 1997)

Stain H3HH Rumen 1390a (Boccazzi and Patterson, 2011)

Strain Al0 Rumen 209–1284a (Boccazzi and Patterson, 2011)

Strain A9 Rumen 1619–5383a (Boccazzi and Patterson, 2011)

Strain A2 Rumen 1383–2516a (Boccazzi and Patterson, 2011)

Strain A4 Rumen 8007a (Boccazzi and Patterson, 2011)

TWA4 Tammar wallaby 10.08c (Karekar and Stefanini, 2022)

(Continued)
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block rumen fermentation, prior to examining this approach,

several questions must be addressed (Table 4). For instance, what

is the relationship between hydrogen-producing bacteria in the

rumen and the methanogens or acetogens? Certain studies indicate

a mutualistic relationship where there is a close physical association

between hydrogen generators and the methanogens. The question

then becomes, is it feasible to selectively disrupt the relationship

between H2 producers and methanogens in the rumen?

Furthermore, do primary hydrogen generators have any

association with acetogens? If not, can we deliberately initiate a

syntrophic relationship between them so that hydrogen is more

available for acetogens?

The use of efficient acetogens that can compete with

methanogens at relatively low hydrogen levels is another

promising research area. Highly efficient acetogens from non-

rumen environments have been targeted for introduction into the

rumen, as demonstrated by Karekar and Ahring (2023). In their

study, methanogenesis was suppressed for seven days without a

significant change in acetate production. To further advance this

line of research, several questions need to be addressed. For

example, what could be the collateral damage of the power shift

from methanogens to acetogens in a rumen ecosystem that has

evolved over millennia to favor domination by methanogens? How

challenging would it be to integrate non-native acetogens into the

cow rumen? Mimicking the kangaroo gut environment might help,
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but is it practical or beneficial for animal performance to alter the

rumen system so extensively? Furthermore, what happens when

hydrogen levels become limiting, which is the case when

methanogenic inhibitors like BES are exhausted? While these

acetogens are efficient at utilizing hydrogen, they have broad

metabolic flexibility and could easily switch to other substrates

when hydrogen becomes scarce. Le Van et al. (1998) reported that

rumen acetogens prefer substrates other than H2 and CO2. In vivo

studies also reveal that replacing methanogens with acetogens

reduces hydrogen capture from fermentation by up to 46%,

compared to the over 90% efficiency seen in methanogen-

dominated rumens (Fonty et al., 2007). This impairs degradative

activity of ruminal fermentative bacteria and decreases overall

animal performance.

The problems highlighted above can be mitigated by focusing

on genetic manipulations. We identify two possible opportunities:

1) genetic engineering native acetogens to increase efficiency of the

Wood–Ljungdahl (WL) pathway (Figure 4), or by employing

traditional mutant selection approaches used in microbiology.

Increasing the copy number of critical genes like Codh and the

Acs genes in core rumen acetogens might increase their hydrogen

scavenging potential; 2) Methanogens can be custom designed to

produce acetate instead of methane (Figure 5). This could be

achieved through genetic engineering of methanogens to abate

the methane production branch of the WL pathway.
TABLE 2 Continued

Organism Source H2 threshold (ppm) References

Hydrogenitrophic Methanogens

Methanospirillum hungatei German Collection of Microorganisms (DSM) 25a (Cord-Ruwisch et al., 1988)

Methanospirillum hungatei DSM 30a (Cord-Ruwisch et al., 1988)

Methanobrevibacter smithii Sewage digester 100a (Ungerfeld, 2020)
(Cord-Ruwisch et al., 1988)

Methanobrevibacter arboriphilus Sewage sludge 90a (Cord-Ruwisch et al., 1988)

Methanobacterium formicum Sewage sludge 28a (Cord-Ruwisch et al., 1988)

Methanococeus vannielii Marine mud 75a (Cord-Ruwisch et al., 1988)

Ruminal methanogen 10-16B Rumen 126 (Le Van et al., 1998)

Methanogen strain NI4A Rumen 90–92 (Boccazzi and Patterson, 2011)

RMB-1 Steer 76b (Lovley et al., 1984)

RMB-2 Steer 75b (Lovley et al., 1984)

RMB-3 Steer 80b (Lovley et al., 1984)

RMB-1 Steer 99b (Lovley et al., 1984)

M. bryantii J. G. Ferry lab 68b (Lovley, 1985)

M. hungatei J. G. Ferry lab 94b (Lovley, 1985)

Methnanobrevibacter ruminantium Rumen 44.41b (Kim, 2012)

Methanobrevibacter spp. SM9 Rumen 46.39b (Kim, 2012)

Methanosphaera spp. ISO3-F5 Rumen 10.86b (Kim, 2012)
aConditions are mentioned as far as they are reported in the cited reference.
bH2 thresholds were converted from Pa to ppm values assuming a total pressure of 1 atm.
cH2 threshold was converted from mM to ppm.
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TABLE 3 Summary of data on strategies to promote rumen acetogenesis.

Treatment Organisms and source Culture
conditions

Overall effect Reference

BES and acetogen Acetobacterium woodii and acetogen
from baby kangaroo feces (DKB)

In vitro BES and DKB suppressed CH4

formation completely for 7 days.
BES and A. woodii decreased CH4 for
24 hrs.
No difference in acetate production.

(Karekar and Ahring, 2023)

BES and acetogen YE255- Clostridium glycolicum
YE266- Kangaroo reductive acetogen
YE257- Kangaroo reductive acetogen

In vitro Addition of acetogen alone did not
affect methane levels.
BES suppressed methane to
undetectable levels (reduced the total
number of methanogens by 90%).
Adding acetogens with BES slightly
increased acetate and propionate.
None of the Kangaroo acetogens
persisted for the entire fermentation
period of 11 days.
YE257 maintained its population
density throughout the experiment.

(Klieve, 2009)

BES and acetogen
absence of sugar

Acetitomaculum ruminis ATCC 43876
from the bovine rumen, Eubacterium
limosum strains ATCC 8486- from
sheep rumen
ATCC 10825 and
Ruminococcus productus ATCC
35244- from non rumen environment
and two acetogenic bacteria, Ser 5 and
Ser 8 isolated from 20 h old lambs

In vitro E. limosum and Ser 5 decreased
methane by 5% after 24 h.
Increasing the concentration of E.
limosum ten-fold did not cause a
further decrease in methane
production.
E. limosum, Ser 5, and BES stimulated
acetate formation by 51%.
BES suppressed methane and
increased H2.

(Lopez et al., 1999)

BES and acetogen Peptostreptococcus productus ATCC
35244 from sewage digester sludge

In vitro Adding Peptostreptococcus productus
alone did not affect methane and VFA
production.
BES and Peptostreptococcus productus
reduced methane from 46 to 42mM;
hydrogen levels dropped significantly
but acetate did not increase,
suggesting promotion of other
hydrogen consuming pathways.
BES had no significant influence on
heterotrophic growth of P. productus.

(Nollet et al., 1997)

Replacing BES with
Lactobacillus plantarum 80
LP80 while adding acetogen

Peptostreptococcus productus
ATCC35244
from sheep

In vitro and
in vivo

24 h: decrease in CH4 production 5–
15%, H2 increased, VFA increased by
5–30%.
72 h: inhibition of CH4 by 18–30%,
VFA production was lower 8–15%.
In vivo: decreased methanogenesis by
80% .

(Nollet et al., 1998)

Amino acids or mucin Beef cattle rumen content In vitro Neither mucins nor free amino acids
activated reductive acetogenesis in
rumen contents.

(Demeyer et al., 1996)

Increased H2 levels (0, 20
and 80% v/v) and addition
of BES

Pig gut In vitro In the absence of BES, increasing H2

significantly increased acetate and
butyrate.
At the highest pH2 and BES acetate
increased from 17.1% to 50.9%.

(De Graeve et al., 1994)

Methane inhibitors;
propynoic acid (PA), 2-
nitroethanol (2NEOH) and
sodium nitrate (SN).

Ruminal fluid collected from
Jersey bull

In vitro PA, 2NEOH, and SN greatly reduced
the production of methane (70 to
99%), VFAs (46 to 66%), acetate (30
to 60%), and propionate (79 to 82%),
with 2NEOH reducing the most.

(Zhou et al., 2011)

Saccharomyces cerevisiae
and acetogenic bacteria

Acetogenic strain Ser 8 from the
rumen of 20h lamb

In vitro Ser 8 alone used only 156.7 mmol of
H2; and produced 37.8mmol of acetate.

(Chaucheyras et al., 1995)

(Continued)
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3.2.5 Genetic engineering of methanogens to
abate methane production

A significant (95%) amount of methane produced in the rumen

arises from bioconversion of the products of fermentation (hydrogen

and carbon dioxide), which is known as hydrogenotrophic
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methanogenesis (Mackie et al., 2024). However, there is a natural

alternative pathway for bioconversion of CO2 and hydrogen into

acetate through the Wood–Ljungdahl (WL) pathway (Figure 4). This

pathway is commonly employed by both methanogens and acetogens

for carbon fixation and by acetogens also for energy generation
TABLE 3 Continued

Treatment Organisms and source Culture
conditions

Overall effect Reference

Ser 8 along with Saccharomyces
cerevisiae used 821.5 mmol of H2 and
produced 37.8 mmol of acetate.

Saccharomyces cerevisiae
and acetogenic bacteria

Acetogen strain (TWA4) isolated from
female tammar wallabie

In vitro Supplementation with TWA4 and
Saccharomyces cerevisiae increased
methane production (P<0.05) by 20%
to 107%.
TWA4 and Saccharomyces cerevisiae
increased (P<0.05) acetate, propionate,
butyrate, and total
VFA concentrations.

(Yang et al., 2015),

Elevating hydrogen (>5
mM), and adding acetogen

Isolate TWA4
and Methanobrevibacter smithii

In vitro Acetate increased from 0–150 mmol
for 18 h.

(Gagen et al., 2014)
BES, bromoethanesulfonate; VFA, volatile fatty acid.
FIGURE 3

Three hypothetical scenarios for enhancing acetogenesis in the rumen. (A) Existing rumen fermentation. Under normal conditions, methane (CH4) is
the main sink of metabolic hydrogen. (B) Current interventions in rumen fermentation, where efficient acetogens from a non-rumen environment
are introduced following inhibition of methanogenesis by chemicals like BES. BES creates more available hydrogen for these competent acetogens.
Methanogenesis is halted, but only briefly. Methanogenesis resumes once BES expires, or when non-native acetogen species are rejected or fail to
establish a niche in the rumen environment. (C) An ideal scenario where native rumen acetogens are enhanced by improving the efficiency of the
Wood–Ljungdahl (WL) pathway. (D) A theoretical and highly promising situation in which engineered strains of methanogens permanently replace
methane production with acetic acid production.
frontiersin.org

https://doi.org/10.3389/fanim.2025.1489212
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Mrutu et al. 10.3389/fanim.2025.1489212
(Rosenbaum and Müller, 2021). The production of acetate from CO2

and H2 is here termed primary acetogenesis, whereby CO2 molecules

are sequentially reduced under two branches, the carbonyl branch

and the methyl branch.

In the methyl branch, CO2 is reduced through a series of

sequential hydrogenations reactions to a methyl intermediate

(Karekar and Stefanini, 2022). In the carbonyl branch, CO2 is first

reduced to carbon monoxide (CO) by means of the enzyme carbon

monoxide dehydrogenase (Codh). The CO then is conjugated to the

methyl intermediate by means of acetyl-CoA synthase (Acs) to

produce acetyl coenzyme A (acetyl-CoA). This acetyl-CoA is

subsequently converted to acetate during catabolism or utilized in

the synthesis of cell carbon during anabolism (Drake et al., 2013).

If the WL pathway is compared between methanogenic archaea

and acetogens it is found that, in archaea, the route that leads to

methanogenesis is a metabolic extension and involves two

additional enzymes, specifically coenzyme M methyltransferase

(Mtr) and methyl-coenzyme M reductase (Mcr), collectively
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known as the Mtr-Mcr module (Figure 4) (Scheller and Rother,

2022). Thus, there is a clear opportunity to delete or bypass the

route that leads to methane production. Acetyl CoA is believed to be

an ancient metabolic product, and given that methanogens evolved

later than acetogens due to their energy conservation advantage

(Martin, 2020), experiments to revert methanogenic archaea to

acetogens seem plausible. Therefore, it is theoretically possible to

rewire methanogenic metabolism by just diverging all substrate

carbon from methanogenesis to flow through acetyl-CoA, and

thereby converting methanogens into acetogens. This can be

achieved either by spontaneous mutation in an adaptive evolution

strategy (i.e. selecting for growth of methanogens in a medium

lacking key methanogenesis substrates or with a methanogenesis

inhibitor) or through targeted mutations of genes encoding

essential enzymes like Mcr, Mtr, and Codh (Figure 4), and several

others as highlighted by (Lessner et al., 2006) using advanced

technologies like CRISPR-Cas (clustered regularly interspaced

short palindromic repeats).
TABLE 4 Outstanding questions for future research.

• At what hydrogen concentration does acetogenesis become activated and maintained?
• At what hydrogen concentration does methanogenesis become impossible?
• How do methanogens and acetogens compete under various hydrogen substrate regimes?
• Is it possible to boost acetogens’ hydrogen affinity?
• Is it possible to establish physical interactions of acetogens with hydrogen producers? Or detach permanently methanogens from protozoans?
• If the metabolic capabilities of acetogens were limited to H2 and CO2, would this promote their competitiveness?
• Under what cultivation conditions would methanogens produce acetate as sole product?
FIGURE 4

Schematic representation of the WL pathways in acetogens (left) and methanogens (right). Steps restricted to bacteria are marked in bright blue
color, whereas those only found in archaea are shown in orange. Dark blue stands for reactions and enzymes observed in both prokaryotic domains.
Abbreviations are as follows: Fdh, formate dehydrogenase; Fmd/Fwd, Formylmethanofuran dehydrogenase; Mtr, coenzyme M methyltransferase;
Mcr, methyl-coenzyme M reductase; Mer, methyl-ene-H4MPT reductase; Mch, methenyl-H4MPT cyclohydrolase; Ftr, formylmethanofuran:H4MPT
formyltransferase; Fch, methenyl-H4F cyclohydrolase; CODH, carbon monoxide dehydrogenase; ACS, acetyl coenzyme A synthase.
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In just a few years since its discovery, CRISPR-Cas-based

approaches have propelled forward the area of precision genome

engineering. The CRISPR-Cas system is a primitive adaptive

immune system found in 40% of bacteria and 90% of archaea

(Dhamad and Lessner, 2020). These organisms use CRISPR-Cas

systems to defend themselves against viruses. The systems generally

have two parts: ‘guide RNA’ molecules that recognize and bind to

the targeted viral DNA or RNA, and the Cas enzymes that cut the

target. This system can be redirected to delete or add new functions

to the cell through direct genome editing. Essentially, the nucleases

generate a DNA double-strand break (DSB) at the targeted genome

locus, triggering repair by either nonhomologous end joining

(NHEJ) or homology-directed repair (HDR). Without a template,

NHEJ introduces insertions or deletions that disrupt the target site.

With a homologous template, HDR allows precise modifications

(Jakočiunas et al., 2016). Although an ever-increasing number of

variants of CRISPR-Cas systems have been identified, the first well

characterized and widely used system in genome editing is the type

II CRISPR-Cas9 system from Streptococcus pyogenes (Jinek

et al., 2012).

Beyond DNA modification, adaptations of CRISPR-Cas can also

regulate gene expression through CRISPR interference (CRISPRi)

and CRISPR activation (CRISPRa) (De Bakker et al., 2022). CRISPRi

suppresses gene expression and is particularly valuable for

modulating essential genes, where deletion might be lethal (Stachler

et al., 2020). Suppression can occur pre-transcriptionally using a

catalytically deactivated version of Cas9 (dCas9), where the dCas9–
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guide RNA complex physically blocks RNA polymerase or

transcription factors. Post-transcriptional suppression involves

mRNA degradation (Doudna and Charpentier, 2014). For gene

activation (CRISPRa), dCas9 is fused to an activator domain,

directly or via recruitment domains on the guide RNA, to enhance

gene transcription (Bikard et al., 2013).

All these CRISPR-Cas tools can be employed to edit

methanogenic archaeal genomes, targeting the genes responsible

for methanogenesis. Mcr is a key gene target, which catalyzes the

final step of methanogenesis and is found in all methanogens

(Beauchemin et al., 2020). Recently, Nayak and Metcalf (2017)

deletedMcr and a heterodisulfide reductase (hdrED) gene using the

S. pyogenes-derived CRISPR-Cas9 platform on Methanosarcina

acetivorans and showed high efficiency in creating insertions

(knock-ins) and deletions (knockouts) through homology directed

repair (HDR) without any evidence of off-target mutations. This

experiment delivered only five transformants, confirming the

essentiality of these genes. Conversely, when deletions were made

in non-essential genes responsible for encoding monomethylamine-

specific methyltransferases (mtmCB1 and mtmCB2), which

facilitate methylamine utilization in the methylotrophic pathway,

thousands of transformants were generated (Nayak and Metcalf,

2017). Although the phenotypic behavior of these transformants

was not studied, the results suggest that knocking out

methyltransferases could be more effective for reducing methane

in methylotrophic methanogens, while suppression may be a better

approach for essential genes like Mcr and hdrED. Indeed, a simple
FIGURE 5

Possible in vitro approach for the gene editing of rumen methanogens. Methanogens would be collected from the rumen and cultured in vitro, at
which point methane producing genes are knocked down using CRISPRi. The gene-edited methanogens are then replicated in vitro and
reintroduced into the rumen for repopulation. If the edited methanogens can compete effectively within the rumen population, the animal is
expected to emit significantly less methane from enteric fermentation. Adapted from Subedi et al. (2022).
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and efficient CRISPRi system for targeted gene repression has been

developed in archaea, successfully achieving a 90% reduction in

transcript levels of nitrogen fixation genes in M. acetivorans

(Dhamad and Lessner, 2020). Similarly, CRISPRi systems using

endogenous type I and type III CRISPR pathways have been

implemented in extremophiles Haloferax volcanii and Sulfolobus

spp. Testing the effectiveness of CRISPRi systems in downregulating

Mcr would be of great interest.

In addition to Mcr, other gene complexes like Mtr and Codh could

be targeted.Mtr transfers amethyl group from tetrahydromethanopterin

(H4MPT) to coenzyme M (CoM-SH) at the end of the WL pathway

(Adam et al., 2022; Figure 4), while Codh plays a central role in CO

metabolism (Biester et al., 2022). By overexpressing Codh or inhibiting

Mtr, it is possible to promote acetyl-CoA production. In 2004, Rother

andMetcalf found that exposingM. acetivorans to varying concentration

of CO inhibited Mtr and upregulated Codh activity threefold. In 2006,

Lessner et al., further observed an eightfold reduction in Mtr when M.

acetivorans was grown on CO as compared to methanol as substrate.

Building on these two experiments, Schöne et al. (2022) successfully

deconstructed M. acetivorans into an acetogenic archaeon by targeted

disruption of Mtr, followed by adaptive evolution. However, since M.

acetivorans in the rumen are very few (Nagarajan et al., 2019) and their

contribution to methane production is insignificant, extending this work

to key emitters likeM. ruminantium could be impactful. Unfortunately,

hydrogenotrophic methanogens lack the Codh complex (Nagoya et al.,

2021), so CRISPR tools could be used to introduce and overexpressCodh

in M. ruminantium to explore CO-dependent acetogenesis.

The availability of the genome sequence of M. ruminantium

(Leahy et al., 2010) and the recent identification of its operon and

functional properties (Bharathi et al., 2020), combined with the

extensive understanding of methanogenic biochemical pathways

(Deppenmeier, 2002), opens up possibilities for genome editing to

mitigate methane emissions in this organism. Advanced tools like

DNA-editing all-in-one RNA-guided CRISPR-Cas transposase

(DART) and environmental transformation sequencing (ET-seq)

now allow for targeted, multi-species editing within complex

microbiomes (Rubin et al., 2021). These innovations address key

challenges in targeting, delivery, and the survival of edited species.

The evidence suggests that when a species of bacteria is isolated

from the target environment, engineered, and then returned, their

persistence is maintained for longer periods than when non-native

species are introduced (Buiatti et al., 2013). However, in situ

microbial engineering is still in its infancy; more research must be

done before direct editing of the rumen microbial community

becomes a reality.
4 Conclusion

Looking forward, we believe engineered biology has the

potential to deliver solutions at a scale equivalent to the scale of

the climate crisis we are currently facing. The potential to engineer

the key methane producer in the rumen of cows is one promising

area. If an engineered strain of methanogen is successfully

integrated in the microbiome of a cow and subsequently

throughout the entire cattle population, a significant and
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persistent reduction of enteric methane could be achieved. While

the technology is promising, there are two critical issues that must

be addressed. One, the potential escape of the edited gene which

could result in unforeseen consequences for the health of the animal

and to the ecosystem at large. Two, the risk of the construct losing

its intended function by re-acquiring methanogenic functions from

the native populations.

For the former, genetic biocontainment technologies that

manage the risk of unintended consequences could be integrated

to improve the safety and security of engineered organisms.

Approaches that physically confine the cells so that they can be

used in the environment without escaping into it have been

developed and used. Example, hydrogels have been used to

encapsulate E. coli engineered to sense trinitrotoluene (TNT)

(Belkin et al., 2017). Techniques have also been developed to

create cells that are intact and metabolically active, but cannot

replicate and do not transfer DNA to the environment (Fan et al.,

2020). Moreover, knocking out an essential biosynthetic gene and

exogenously supply the missing metabolite, thereby creating a

synthetic auxotroph, is another approach (Gallagher et al., 2015).

Therapeutic Lactococcus lactis was controlled by knocking out the

thymidylate synthase gene, blocking growth in the gut where

thymidine/thymine are rare (Steidler et al., 2003). Despite these

advancements, genetic biocontainment remains vulnerable to

factors such as cross-feeding, genetic mutations, or unforeseen

environmental conditions, all of which must be accounted for to

ensure consistent and stable containment (Payne et al., 2024).

The potential of engineered species to re-acquire methanogenic

functions from the native population via horizontal gene transfer

(HGT) warrants attention, as this would dilute the intended effect of

targeted engineering approaches. While HGT is a common process

amongmembers in microbial communities, the literature indicates that

natural competence and transformation in archaea are relatively rare

(Gophna and Altman-Price, 2022). Even archaea that are naturally

transformable typically show lower transformation frequencies as

compared to bacterial counterparts. Moreover, DNA uptake

mechanisms, such as the competence (Com) proteins ComEA and

ComEC, have not been identified in archaea, and only a few archaeal

viruses have been shown to facilitate HGT. Irrespective of this, several

synthetic genetic strategies have recently been proposed to either

prevent or penalize the loss of function as well as eliminating cells

that bear mutations in DNA sequences of interest. The strategies range

from editing the genomes of the host cell for eliminating insertion

sequences, to active genetic circuits for detecting underperformance of

engineered constructs (Nikel and De Lorenzo, 2021). It is crucial to

emphasize the need for extensive research to thoroughly evaluate and

quantify 1) the likelihood of horizontal gene transfer and 2) the efficacy

of built-in biocontainment mechanisms as safety controls.

Given the rapid advancement in artificial intelligence

capabilities, it may be possible to develop predictive tools that can

identify ecological risks quickly as they occur, including deleterious

genetic rearrangements and horizontal gene transfer. Continued

developments in the area of biocontainment will ensure that the

engineered organisms remain controllable, stable, and predictable

in the environment. While completely eliminating the burden of

programmed cells may be unattainable, engineering efforts such as
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those described here can at least mitigate its impact and allow the

development of synthetic biology systems that work efficiently and

in better harmony with the natural environment.

Methane is dramatically more potent at warming the planet

than carbon dioxide, and responsible for 30% of global temperature

rise since the Industrial Revolution. More than half of human-

driven methane emissions are microbial in origin. Cattle, through

enteric fermentation, are at the top of these emissions, making them

a key piece of the climate change puzzle. Some of the proposed

strategies such as reducing livestock production do not address the

root source of emission. In this review, we holistically examined

solutions to the problem of cattle methane emissions, with emphasis

on biotechnological solutions related to the rumen microbiome. We

argue that applying CRISPR technology to methanogen engineering

could result in a permanently low-methane cow. Moreover, such

organisms are likely to be scaled to other biogenic sources such as

wetlands and rice paddies. We postulate that the WL pathway,

especially channeling H2 to acetogenesis, can be a remedy to rumen

methane production and provide a pervasive avenue for addressing

global methane emission beyond the rumen ecosystem.

While HGT is a common phenomenon, natural competence and

transformation in archaea have been reported to be scarce (Gophna

and Altman-Price, 2022) and even those archaea that are naturally

transformable typically show low transformation frequencies when

compared to their bacterial counterparts. Furthermore, DNA uptake

mechanisms such us the competence (Com) proteins ie ComEA/

ComEC have not been found in archaea and, very few archaeal

viruses have also shown to serve as agents of HGT. Despite this, a

number of synthetic genetic approaches have been proposed to either

prevent or penalize the loss of function as well as eliminating cells that

bear mutations in DNA sequences of interest. The strategies range

from editing the genomes of the host cell for eliminating insertion

sequences, to active genetic circuits for detecting underperformance

of engineered constructs (Nikel and De Lorenzo, 2021). However,

multiple studies are needed to qualify and quantify these risks. More

lab-scale and field-scale studies are needed to characterize 1) the

likelihood of horizontal gene transfer and 2) the efficacy of built-in

biocontainment mechanisms as safety controls.

Given the rapid advancement in artificial intelligence

capabilities, it may be possible to develop predictive tools that can

identify ecological risks quickly as they occur, including deleterious

genetic rearrangements and horizontal gene transfer. Continued

developments in the area of biocontainment will ensure that the

engineered organisms remain controllable, stable, and predictable

in the environment. It may not be possible to ever eliminate burden

when programming cells to do extra tasks; however, engineering

efforts such as those described here can at least mitigate its impact

and allow the development of synthetic biology systems that work

efficiently and in better harmony with the natural environment.

Methane is dramatically more potent at warming the planet

than carbon dioxide, and responsible for 30% of global temperature
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rise since the Industrial Revolution. More than half of human-

driven methane emissions are microbial in origin. Cattle, through

enteric fermentation, are at the top of these emissions, making them

a key piece of the climate change puzzle. Some of the proposed

strategies such as reducing livestock production do not address the

root source of emission. In this review, we holistically examined

solutions to the problem of cattle methane emissions, with emphasis

on biotechnological solutions related to the rumen microbiome. We

argue that applying CRISPR technology to methanogen engineering

could result in a permanently low-methane cow. Moreover, such

organisms are likely to be scaled to other biogenic sources such as

wetlands and rice paddies. We postulate that the WL pathway,

especially channeling H2 to acetogenesis, can be a remedy to rumen

methane production and provide a pervasive avenue for addressing

global methane emission beyond the rumen ecosystem.
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Bello-Pérez, E. (2022). Methane emission: strategies to reduce global warming in
relation to animal husbandry units with emphasis on ruminants. Sustainability 14,
16897. doi: 10.3390/su142416897

Van Gastelen, S., Dijkstra, J., Heck, J. M. L., Kindermann, M., Klop, A., De Mol, R., et al.
(2022). Methane mitigation potential of 3-nitrooxypropanol in lactating cows is influenced
by basal diet composition. J. Dairy Sci. 105, 4064–4082. doi: 10.3168/jds.2021-20782

Van Lingen, H. J., Plugge, C. M., Fadel, J. G., Kebreab, E., Bannink, A., and Dijkstra, J.
(2016). Thermodynamic driving force of hydrogen on rumen microbial metabolism: A
theoretical investigation. PloS One 11, 1–18. doi: 10.1371/journal.pone.0161362

van Zijderveld, S. M., Gerrits, W. J. J., Apajalahti, J. A., Newbold, J. R., Dijkstra, J.,
Leng, R. A., et al. (2010). Nitrate and sulfate: Effective alternative hydrogen sinks for
mitigation of ruminal methane production in sheep. J. Dairy Sci. 93, 5856–5866.
doi: 10.3168/jds.2010-3281

Van Zijderveld, S. M., Gerrits, W. J. J., Dijkstra, J., Newbold, J. R., Hulshof, R. B. A.,
and Perdok, H. B. (2011). Persistency of methane mitigation by dietary nitrate
supplementation in dairy cows. J. Dairy Sci. 94, 4028–4038. doi: 10.3168/jds.2011-4236

Verme, L. J., and Ullrey, D. E. (1984). Fawn growth. White-Tailed Deer Ecol.
Management1 70, 91–118. doi: 10.1128/AEM.70.3.1307

Villar, L., Hegarty, R., Van Tol, M., Godwin, I., and Nolan, J. (2019). Dietary nitrate
metabolism and enteric methane mitigation in sheep consuming a protein-deficient
diet. Anim. Product. Sci. 60, 232–241. doi: 10.1071/AN18632

Wallace, R. J., Rooke, J. A., McKain, N., Duthie, C. A., Hyslop, J. J., Ross, D. W., et al.
(2015). The rumen microbial metagenome associated with high methane production in
cattle. BMC Genomics 16 (1), 1–14. doi: 10.1186/s12864-015-2032-0

Wallace, R., Sasson, G., Garnsworthy, P. C., Tapio, I., Gregson, E., Bani, P., et al.
(2019). A heritable subset of the core rumen microbiome dictates dairy cow
productivity and emissions. Sci. Adv. 5. doi: 10.1126/sciadv.aav8391
frontiersin.org

https://doi.org/10.1093/femsec/fiz203
https://doi.org/10.1093/femsec/fiz203
https://doi.org/10.3168/jds.2015-10691
https://doi.org/10.1089/apb.2023.0025
https://doi.org/10.1186/s42523-021-00153-w
https://doi.org/10.1038/ismej.2007.62
https://doi.org/10.1038/ismej.2007.62
https://doi.org/10.1016/j.scitotenv.2017.12.097
https://doi.org/10.1016/j.atmosenv.2019.116823
https://doi.org/10.1371/journal.pone.0220252
https://doi.org/10.1371/journal.pone.0220252
https://doi.org/10.1038/s41598-019-53378-w
https://doi.org/10.1038/s41598-019-53378-w
https://doi.org/10.1098/rsta.2020.0452
https://doi.org/10.1073/pnas.1616426114
https://doi.org/10.1371/journal.pgen.1005846
https://doi.org/10.1371/journal.pgen.1005846
https://doi.org/10.1371/journal.pone.0247820
https://doi.org/10.1371/journal.pone.0247820
https://doi.org/10.1146/annurev-animal-021022-024931
https://doi.org/10.1007/s00792-021-01241-0
https://doi.org/10.1038/s41564-021-01014-7
https://doi.org/10.1038/s41467-020-20061-y
https://doi.org/10.1038/s41467-020-20061-y
https://doi.org/10.5713/ajas.2011.11383
https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/essd-2019-128
https://doi.org/10.1126/science.aad2705
https://doi.org/10.1073/pnas.2113853119/-/DCSupplemental.Published
https://doi.org/10.1073/pnas.2113853119/-/DCSupplemental.Published
https://doi.org/10.1073/pnas.2113853119
https://doi.org/10.1007/s00449-020-02285-w
https://doi.org/10.1016/j.anifeedsci.2022.115503
https://doi.org/10.1016/j.anifeedsci.2022.115503
https://doi.org/10.1101/2020.05.15.080218
https://doi.org/10.1101/2020.05.15.080218
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1016/j.ymeth.2019.05.023
https://doi.org/10.1016/j.ymeth.2019.05.023
https://doi.org/10.1111/gcb.15901
https://doi.org/10.1038/nbt840
https://doi.org/10.3390/agriculture12111780
https://doi.org/10.19080/ARTOAJ.2018.16.556000
https://doi.org/10.1186/s40104-017-0141-0
https://doi.org/10.4014/jmb.2202.02019
https://doi.org/10.3389/fmicb.2020.00589
https://doi.org/10.3389/fmicb.2020.00589
https://doi.org/10.1007/s11250-022-03419-w
https://doi.org/10.3390/su142416897
https://doi.org/10.3168/jds.2021-20782
https://doi.org/10.1371/journal.pone.0161362
https://doi.org/10.3168/jds.2010-3281
https://doi.org/10.3168/jds.2011-4236
https://doi.org/10.1128/AEM.70.3.1307
https://doi.org/10.1071/AN18632
https://doi.org/10.1186/s12864-015-2032-0
https://doi.org/10.1126/sciadv.aav8391
https://doi.org/10.3389/fanim.2025.1489212
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Mrutu et al. 10.3389/fanim.2025.1489212
Wang, M., Wang, R., Xie, T. Y., Janssen, P. H., Sun, X. Z., Beauchemin, K. A., et al.
(2016). Shifts in rumen fermentation and microbiota are associated with dissolved
ruminal hydrogen concentrations in lactating dairy cows fed different types of
carbohydrates. J. Nutr. 146, 1714–1721. doi: 10.3945/jn.116.232462

Wang, K., Xiong, B., and Zhao, X. (2023). Could propionate formation be used to
reduce enteric methane emission in ruminants? Sci. Total Environ. 855, 1–12.
doi: 10.1016/j.scitotenv.2022.158867

Warszawski, L., Kriegler, E., Lenton, T. M., Gaffney, O., Jacob, D., Klingenfeld, D.,
et al. (2021). All options, not silver bullets, needed to limit global warming to 1.5°C: A
scenario appraisal. Environ. Res. Lett. 16, 064037. doi: 10.1088/1748-9326/abfeec

Weidenbach, K., Wolf, S., Kupczok, A., Kern, T., Fischer, M. A., Reetz, J., et al.
(2021). Characterization of blf4, an archaeal lytic virus targeting a member of the
methanomicrobiales. Viruses 13, 1934. doi: 10.3390/v13101934

Wesemael, D. V., Vandaele, L., Ampe, B., Cattrysse, H., Duval, S., Kindermann, M.,
et al. (2019). Reducing enteric methane emissions from dairy cattle: Two ways to
supplement 3-nitrooxypropanol. J. Dairy Sci. 102, 1780–1787. doi: 10.3168/jds.2018-
14534

Wilkinson, T., Korir, D., Ogugo, M., Stewart, R. D., Watson, M., Paxton, E., et al.
(2020). 1200 high-quality metagenome-assembled genomes from the rumen of African
cattle and their relevance in the context of sub-optimal feeding. Genome Biol. 21, 1–25.
doi: 10.1186/s13059-020-02144-7

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., et al.
(2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets
from sustainable food systems. Lancet 393. doi: 10.1016/S0140-6736(18)31788-4

Williams, S. R. O., Hannah, M. C., Eckard, R. J., Wales, W. J., and Moate, P. J. (2020).
Supplementing the diet of dairy cows with fat or tannin reduces methane yield, and
additively when fed in combination. Animal 14, s464–s472. doi: 10.1017/
S1751731120001032

Wilson, A. S., Koller, K. R., Ramaboli, M. C., Nesengani, L. T., Ocvirk, S., Chen, C.,
et al. (2020). Diet and the human gut microbiome: an international review. Digest. Dis.
Sci. 65, 723–740. doi: 10.1007/s10620-020-06112-w

Wolf, S., Fischer, M. A., Kupczok, A., Reetz, J., Kern, T., Schmitz, R. A., et al. (2019).
Characterization of the lytic archaeal virus Drs3 infecting Methanobacterium
formicicum. Arch. Virol. 164, 667–674. doi: 10.1007/s00705-018-04120-w
Frontiers in Animal Science 23
Wright, A. G., and Klieve, A. V. (2011). Does the complexity of the rumen microbial
ecology preclude methane mitigation? Anim Feed Sci Technol. 167, 248–253.
doi: 10.1016/j.anifeedsci.2011.04.015

Xia, Y., Kong, Y. H., Seviour, R., Forster, R. J., Kisidayova, S., and Mcallister, T. A.
(2014). Fluorescence in situ hybridization probing of protozoal Entodinium spp. And
their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. J.
Appl. Microbiol. 116, 14–22. doi: 10.1111/jam.12356

Xue, M. Y., Sun, H. Z., Wu, X. H., Liu, J. X., and Guan, L. L. (2020). Multi-omics
reveals that the rumen microbiome and its metabolome together with the host
metabolome contribute to individualized dairy cow performance. Microbiome 8, 1–
19. doi: 10.1186/s40168-020-00819-8
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