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In pasture-based dairy farming, animal behavior data can improve data-driven

pasture management. Information on the grazing behavior of dairy cows can be

retrieved from sensor-based data. However, this approach generally requires

sophisticated sensor equipment and involves labor-intensive animal observations.

As an alternative, the use of data from simple and commonly used collar-mounted

accelerometers and global navigation system services (GNSS) receivers was

investigated. In our on-farm study, cows grazed in a rotational or in a continuous

grazing system, with a higher sward or a lower sward height, respectively. As an

indicator of grazing activity, the overall dynamic body acceleration (ODBA) was

calculated from the accelerometer data. After differentiating the grazing process

(forage uptake) into grazing with grazing steps (i.e., moving to the next feeding

station) and grazing without grazing steps (i.e., true standing) from the GNSS data,

only a negligible effect of grazing steps on ODBA was found. The ODBA was higher

in short swards (3.47 m s−2) than in tall swards (2.88 m s−2). The ODBA was also

affected by the time of the day, with major grazing activity around dusk. These

findings show the potential of simple accelerometers on collars in research on

grazing patterns and cattle monitoring and for use in pasture management. The

ODBA can be calculated from any three-dimensional accelerometer also from

existing commercial technology, which allows a wide in-field application.
KEYWORDS

dairy cow, pasture, sward height, behavior, sensors, rotational grazing system,
continuous grazing system, global navigation satellite system (GNSS)
1 Introduction

For the behavior classification of cattle, collar-mounted sensors, which are usually

based on accelerometers, are widely used in precision livestock farming. The aim is to

monitor animal health and welfare and the production parameters of the individual

animal (Halachmi et al., 2019). The monitoring of the grazing process as the uptake of
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forage of cows is more complex, and research studies have often

involved the use of noseband or jaw sensors, which are

uncommon in commercial farming (Chapa et al., 2020). For an

on-farm setting, a simpler approach with collar-mounted sensors

could be a solution as such sensors are already established in

many dairy farms. Especially with the increasing interest in

sensor-based virtual fencing technology, an extension of data-

driven pasture management with animal data could be of high

value (Hamidi et al., 2023). The grazing behavior of cattle is

influenced by a number of factors including the sward height, the

time of the day, and grazing bouts (Taweel et al., 2004). The sward

height is considered a major influence on the grazing behavior of

cattle: a number of studies on noseband and jaw sensors have

shown that the bite rate and the head and jaw movement increase

with decreasing sward heights (Gibb et al., 1997; Shafiullah et al.,

2019; Rombach et al., 2022). The challenge, however, is that an

isolated analysis of the jaw or head movement seems hardly

feasible using a collar-based approach. Nevertheless, the study

of Guo et al. (2018) indicated the potential of movement-

measuring devices at the neck of sheep to discriminate grazing

in different sward heights. The overall dynamic body acceleration

(ODBA) extracted from three-dimensional acceleration

measurements is a frequently used proxy for activity (Wilson

et al., 2006; Miwa et al., 2015). The magnitude of the ODBA can be

affected by head movements and by spatial movements such as

walking. As the sward height affects the step number and the

walking distance of grazing dairy cows, a differentiation of

movement in non-spatial and spatial acceleration is necessary

for an exact assessment of the ODBA. Spatial movement can be

tracked using step sensors or by spatial tracking with global

navigation system services (GNSS). The step number is higher

and the walking distance is greater in short swards [“Kurzrasen,”

continuous grazing (CG)] than in higher swards [strip or

rotational grazing (RG)] (Hoekstra et al., 2019; Obermeyer and

Kayser, 2023). During the grazing process (uptake of forage) itself,

the cow is at one place (static) or it makes a very short move to the

next feeding spot. The spatial movement during the grazing

process is characterized by grazing steps, which are defined as a

single or a few steps of the cow moving from one feeding station to

the next (Rook et al., 2004; Menegazzi et al., 2021). The GNSS

technology is widely used in grazing research on topics such as

habitat use (McGranahan et al., 2018), animal relations

(Keshavarzi et al., 2022), and behavior classification (Williams

et al., 2022). However, most of the commercially available

technologies for animal monitoring operate only with inertial

motion units (IMUs; accelerometer and gyroscope), with the

major exception of virtual fencing technology (Goliński et al.,

2023). This means that the monitoring of grazing with only IMUs

would be more practical in most cases.

Our overall objective was to assess, in an on-farm setting,

whether it is possible to use information based on the ODBA

derived from commonly used collar-mounted accelerometers to

describe the grazing process. This was performed in a case study

with two different grazing systems (CG and RG) mainly

characterized by different sward heights. The hypotheses were:
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1. The ODBA is affected by spatial movement (grazing steps)

within the grazing process.

2. IMU is sufficient to discriminate grazing with and without

spatial movement.

3. Cow activity during the grazing process indicated by the

ODBA is higher in CG compared with the RG grazing

system and is equally influenced by different grazing bouts.
2 Materials and methods

The experiment was conducted in 2022 on a conventional

pasture-based dairy farm located in the “Bergische Land,” North

Rhine Westphalia, Germany (51.1460, 7.5060; World Geodetic

System 1984), at an altitude of 385 m a.s.l. The long-term annual

precipitation (1991–2020) was 1,163.7 mm, while the long-term

daily mean temperature was 8.8°C. The grazing block of the farm

covers 42.3 ha. The grassland can be classified as Lolio

Cynosuretum dominated by Lolium perenne, Poa pratensis, and

Trifolium repens. The pasture was managed in two ways: the

majority of the grazing block (38.1 ha) was managed as CG

targeting a constant compressed sward height (CSH) of 6 cm.

This area was split into two paddocks, which were grazed at

alternate days. The remaining 4.2 ha were managed as RG with a

pre-grazing target CSH of 10 cm and a post-grazing target CSH of 5

cm. The RG area was split into four paddocks of approximately 1

ha, with each paddock allocated in turn as a 24-h grazing. The 24-h

grazings started after the morning milking, were interrupted by the

afternoon milking, and ended with the following morning milking.

However, during the last run in August, the RG paddocks were

allocated for only 12 h, either day or night, as a drought led to an

acute shortage of available feed. The CSH was recorded with a

Jenquip EC20 (Fielding, New Zealand) rising plate meter with at

least 150 measurements per paddock before and after the cow

accessed a paddock (Table 1).

The herd of the farm consisted of 93 crossbreed cows (Jersey ×

Friesian, New Zealand Strain) with a milk yield of 7,057.7 ± 1,294.6

kg (average ± SD) energy-corrected milk in 2022 for the standard

305-day lactation. The farm practiced seasonal calving beginning in

January. During the grazing season (April–November), the cows

were grazed without any further feed except for minerals.

Cow activity and position were tracked in three runs. The three

runs had a duration of 2 or 3 days, which summed up to a total of

eight tracking days equally divided between the two pasture

management strategies, RG and CG (Table 1). On average, 23

cows, which were randomly selected and stratified by age, were

tracked. Self-assembled and programmed cow trackers based on

the Arduino environment and constructed from breakout

boards obtained from Adafruit (New York, NY, USA) were used

for the tracking (Obermeyer and Kayser, 2023). The tracker recorded

the spatial position and the time at a frequency of 0.5 Hz. The circular

error probable was calculated from 509 measurements under field

conditions comparing the GNSS measurements against a reference

point defined with an RTK GNSS device (ArduSimple, Andorra la

Vella, Andorra) (Kalafus and Chin, 1986). The circular errors for
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10%, 50%, and 90% were 2.11, 3.92, and 8.54 m, respectively. The

acceleration and rotation in three dimensions was read at a frequency

of 20 Hz. The accelerometer and the gyroscope range were 4 g and

250 deg s−1, respectively. The tracking of the animals was calibrated

against visual observations. The observations were based on an

ethogram including the following behaviors: grazing, ruminating,

walking, resting, and drinking. The behavior grazing was defined as

feed intake on pasture, the grazing process, including mastication

with an elevated head and single steps (Delagarde and Lamberton,

2015; Barwick et al., 2018). For further details on the herd, the cow

tracker, and the visual observation procedure, see Obermeyer and

Kayser (2023).

The classification of the cow behaviors such as grazing,

ruminating, walking, resting, and drinking followed the

approach suggested by Riaboff et al. (2022). A detailed

description of the classification procedure for the presented data

is given in Obermeyer and Kayser (2023). In brief, the first step

consisted of the extraction of further axes from the raw recordings

of the accelerometer, gyroscope, and the GNSS module. The

second step involved the segmentation of all axes in windows of

10-s width with an overlap of 75%. Subsequently, each axis was

summarized in every window by multiple summary features,

resulting in a temporal feature resolution of 2.5 s. Among

others, these features included the mean, variance, median,

quartiles, and range. In the third step, the pre-processed data

retrieved from the cow trackers were merged with the visual

behavior observations by time stamp and animal identity. The

fourth and final step was the machine learning procedure with

training and subsequent validation of a random forest algorithm

for behavior classification.
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For the data presented here, only the behavior “grazing” was of

interest. Accordingly, the behavior categories were simplified into

two classes: “grazing” and “other,” with “other” including walking,

ruminating, resting, and drinking. The timeline of behavior was

smoothed by a centered running window with a width of 1 min

counting the occurrence of the two behavior classes. The more

frequent behavior was subsequently used as the defining behavior

for each minute. The aim of the smoothing was to decrease the

influence of a single misclassification and of the short expressions of

other behaviors during the grazing process.

Grazing bouts were defined for the individual cow by intervals of

7 min for the intra- and inter-meal duration (Pérez-Ramıŕez et al.,

2008; Werner et al., 2018). This means that a grazing bout needs to

have at least a duration of 7 min without interruption in order to be

identified as a grazing bout. If within another 7 min after the end of

the present grazing bout another grazing bout emerged, these bouts

were merged. The major diurnal grazing bouts were defined by the

overall herd behavior, as some degree of synchronization among

cows is to be expected (Rook and Huckle, 1995). Following this, the

occurrence of a major grazing bout was defined by the fact that

≥50% of the tracked cows grazed simultaneously. For further

analysis, the full dataset was than subset to the herd grazing bouts

by removing data when less than 50% of the herd was grazing. By

doing this, a potential excessive influence of a few grazing animals

during longer periods of non-grazing of the majority of the herd

could be avoided. The class “morning bout” (MB) contained grazing

bouts from 1 h before to 5 h after dawn, “evening bout” (EB)

contained the same intervals at dusk, the class “day bout” (DB)

contained grazing bouts between MB and EB, and the “night bout”

(NB) contained the bouts between EB and MB (Barrett et al., 2001;

Gregorini, 2012). Apart from the factor grazing bout, the factor

grazing management with the two levels—CG and RG—was

considered. During the grazing process, the spatial movement (i.e.,

the grazing steps from one feeding station to the next) needs to be

addressed. The walking derived from the GNSS described the spatial

movement of the cows while grazing based on the distance traveled

in each 2.5-s segment. However, the raw distance contains the

grazing steps, therefore not only the actual spatial movement

between feeding stations but also the noise from non-sufficient

GNSS precision. The behavior grazing was therefore classified into

grazing activity with spatial movement (i.e., grazing steps between

feeding stations) and grazing without any spatial movement (i.e.,

true standing) for every individual cow. This discrimination was

based on finding a threshold in the distance traveled per 2.5-s

segment. This was performed by calculating a density function of

the walking speed medians across all cows and subsequent visual

inspections. The density function had a bimodal shape in the interval

of the highest density from 0 to 4 m min−1. The local minimum in

this interval was calculated for every individual cow and was used as

a threshold (Figure 1).

The ODBA median of the 2.5-s segments was used for the

exploration of activity. The ODBA was calculated against the

background of the 10-s sliding window as follows:

ODBA = ax − �axj j + ay − �ay
�
�

�
� + az − �azj j
TABLE 1 Average ± standard deviation of the compressed sward height
(CSH) of the eight grazing days.

RG management

Month Grazing
days

Pre-grazing
CSH (mm)

Post-grazing
CSH (mm)

May 1 115.9 ± 23.9 68.3 ± 15.2

May 1 176.2 ± 32.1 71.0 ± 20.3

June 1 104.5 ± 19.0 59.5 ± 14.7

August 0.5 83.3 ± 15.7 53.5 ± 13.2

August 0.5 79.5 ± 14.6 44.7 ± 10.3
CG management

Month Grazing days CSH (mm)

May 1 67.7 ± 18.2

June 1 68.8 ± 27.3

August 1 51.3 ± 16.4

August 1 55.8 ± 15.5
For rotational grazing (RG), the pre- and post-grazing CSH values are given. For CG, the
average CSH was calculated from the pooled pre- and post-grazing measurements. In RG
management, the grazing in August was split on two paddocks.
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where a is the magnitude of acceleration and a ̄ is the acceleration
of the 10-s sliding window (usually close to the magnitude of

gravitation). x, y, and z represent the three raw acceleration axes in

three dimensions. The extracted ODBA axis was favored as it

combines the raw axes. Therefore, the extracted axis can be

considered as independent from the sensor position and robust

against differences in the sensor mounts between and within animals.

For the statistical analysis, mixed linear models were used. Some

animals were tracked more than once within the experiment. To

consider this, the identity of the cow and the identity of the cow

nested in the run were used as random effects. All statistical models

were fitted with the package “glmmTMB” (Brooks et al., 2017) and

subsequently validated by inspection of the residual plots with the

package “DAHRMa” (Hartig, 2022). P-values were produced with the

marginal Wald test. The package “emmeans” was used for the post-

hoc calculation of means with confidence intervals (Lenth, 2021).

The differentiation between grazing with and without spatial

movement was obtained from the GNSS data, as described above.

We further attempted to replicate this classification from the IMU

data only including the three-dimensional accelerometer and the

gyroscope data. A random forest (package “ranger”) (Wright and

Ziegler, 2017) was trained on the summary statistics of the 2.5-s

segments of the raw accelerometer and gyroscope axes and on the

summary features of the axes (i.e., vectorial dynamic body

acceleration, ODBA, signal magnitude, signal magnitude area,

and rotational activity) to classify the grazing segments with and

without spatial movement. For details on the summary statistics

and summary features, see Obermeyer and Kayser (2023). For

validation, 15% of the IMU data of individual cows were retained,

with the remaining data used for algorithm training and tuning. The
Frontiers in Animal Science 04
hyperparameter tuning was performed in a grid search and 10-fold

cross-validation in the package “caret” (Kuhn, 2021).

The proportions of the 2.5-s grazing segments with and without

spatial movement were modeled by the interaction of the presence

of a grazing step and the grazing management with a generalized

linear mixed effects model (referred to as the grazing step model)

with an underlying beta distribution including the random effects as

described above. A total of n = 272 observations were used in the

model. The model CG vs. RG evaluated the effect of the interaction

of grazing management and grazing bout and the additive effect of

spatial movement on the ODBA of the 2.5-s segments. The dataset

used for the first model included 1,523,748 ODBA observations

collected in 68 tracks from 43 individual animals in three runs. This

equals to 1,058 h of grazing observation.

All data processing was conducted in R 4.2.2 (R Core

Team, 2022).
3 Results

The differentiation of the grazing process with and without

spatial movement, i.e., grazing steps or standing, from GNSS

resulted in a threshold for the 2.5-s segments of 2.83 ± 0.37 m

min−1 (mean ± SD). In CG, proportions of 0.666 (95%CI = 0.645;

0.687) and 0.334 (95%CI = 0.313; 0355) were allocated to grazing

with and without grazing steps, respectively, calculated from the

threshold of 2.83 m min−1. Compared with CG, there were fewer

grazing steps in RG, where the proportion of grazing with grazing

steps was 0.546 (95%CI = 0.524; 0.568) and that without grazing

was 0.454 (95%CI = 0.432; 0.476; all p < 0.0001) (Table 2).
FIGURE 1

Histogram of the median walking speed (in meters per minute) differentiated in the two classes “no spatial movement” and “spatial movement”
during the grazing process. The solid line indicates the average threshold for the differentiation of the two movement classes across individual cows.
The dashed lines indicate the standard deviation of the thresholds. The bin width of the histogram is 0.9 m min−1, which was chosen not only as a
compromise between sufficient details but also to allow a clear visual assessment and to avoid an overfitting appearance.
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Our second approach, predicting the spatial movement in the

grazing process, i.e., the grazing steps, only with the IMU data was

not successful. The validation of the random forest with the

independent test dataset had an accuracy of 0.668 (95%CI =

0.666; 0.669) and a Cohen’s kappa of 0.2796. When treating the

class “without spatial movement” as a positive class, the sensitivity

was 0.487 and the specificity was 0.784. Similarly, when modeling

the ODBA in different grazing bouts, grazing management, and

grazing steps, the grazing steps had only a negligible effect on the

ODBA. The difference in the ODBA between grazing with and

without spatial movement was small, with mean ODBAs of 3.20 m

s−2 (95%CI = 3.01; 3.38) and 3.15 m s−2 (95%CI = 2.96; 3.33),

respectively (p < 0.0001), indicating that grazing with or without

spatial movement could not be differentiated by IMU.

The ODBA was affected by the interaction of the factors grazing

management and grazing bout (p < 0.0001, model RMSE = 0.66 m

s−2) (Table 2). The CSH measurements clearly showed that the

swards were shorter in the CG grazingmanagement and taller in RG.

The ODBA was generally higher in CG (3.47 m s−2, 95%CI = 3.28;

3.65) than in RG (2.88 m s−2, 95%CI = 2.69; 3.07). However, this

finding needs to be interpreted in the interaction with the grazing

bout (Figure 2, Table 2). CG management showed ODBA values of

3.54 m s−2 (95%CI = 3.31; 3.76) in the MB, 3.53 m s−2 (95%CI = 3.3;

3.76) in the DB, 3.75 m s−2 (95%CI = 3.52; 3.98) in the EB, and 3.05

m s−2 (95%CI = 2.82; 3.27) in the NB. In RG management, the

ODBA values were 3.02 m s−2 (95%CI = 2.8; 3.25) in the MB, 2.82 m

s−2 (95%CI = 2.6; 3.05) in the DB, 3.05 m s−2 (95%CI = 2.82; 3.28) in

the EB, and 2.62 m s−2 (95%CI = 2.4; 2.85) in the NB.
4 Discussion

Precision livestock farming technology is well established in

many commercial dairy farms.While most of these systems focus on

dairy cows in confinement, monitoring grazing behavior is gaining
Frontiers in Animal Science 05
increasing attention, particularly with the growing interest in virtual

fencing and the collars used there (Goliński et al., 2023). The

behavior classification of commercial ear tags and collars showed

promising results with regard to behavior classification on pasture

(Werner et al., 2019; Leso et al., 2021). Up to now, pasture-specific

measurements, especially for describing the behavior grazing as the

uptake of forage, have only been conducted with noseband or jaw

sensors (Gibb et al., 1997; Shafiullah et al., 2019; Hart et al., 2022).

Our approach aimed at taking simple IMUs such as on commonly

used collars to monitor grazing-specific behavior in an on-farm

environment with a simple metric, the ODBA. The ODBA can be

calculated from three-axis accelerometers that record data in

three dimensions.

The ODBA is a well-established measure of movement activity

and can be related to the energy expenditure of an animal (Qasem

et al., 2012). A higher ODBA indicates higher energy expenditure

(Wilson et al., 2006). Miwa et al. (2015) found a correlation between

ODBA and heart rate in grazing cattle and concluded that the

ODBA is the best single metric from IMUs to predict physiological

parameters. Our experiment was an approach to implement the

findings of Miwa et al. (2015) in an on-farm grazing research. We

assumed that the ODBA is affected not only by head and neck

movements but also by spatial movement. In the case of behavior

grazing (grass intake and short movement to the next feeding

station), the spatial movement is caused by grazing steps as

opposed to true standing.

The threshold of 2.83 mmin−1 found in this study is close to the

threshold of 2.47 m min−1 Rook et al. (2004) found when observing

the grazing process including manually measuring the grazing steps

of heifers. A typical residence time at a feeding station is

approximately 10 s, which allows for the assumption that the

temporal resolution of 2.5 s used in this study is sufficient for the

differentiation of grazing with and without grazing steps (Rook

et al., 2004). Hoekstra et al. (2019) found more steps per grazing

hour in a CG system compared to a strip grazing system with higher

swards (1,732 vs. 1,588 steps per hour) in a study using step sensors,

which is similar to our findings. This difference can be explained by

a more frequent relocation to new feeding stations in CG with less

feed-on-offer per feeding station (Menegazzi et al., 2021). It needs to

be considered that our approach of differentiating grazing steps by

GNSS was not compared to “gold standard” methods such as step

sensors or visual observations (Ungar et al., 2018). The circular error

probable of our device, which is similar to other studies, suggests

some uncertainty with regard to the threshold of movement during

grazing (Zhao et al., 2024). Tracking with real-time or post-

processing kinematics GNSS, as shown by Keshavarzi et al. (2021),

allows spatial positioning with errors smaller than 10 cm, but

increases the complexity and costs of the tracker setup. However,

this could improve small-scale GNSS applications such as that in our

study, whereas larger errors can be neglected when observing

livestock on habitat (Riaboff et al., 2020) or even landscape level

(Brennan et al., 2021). In comparison to the differentiation with

GNSS, the approach using only machine learning and IMU data was

not successful. We conclude that the ODBA from a neck-mounted

accelerometer is primarily influenced by head and neck movements
TABLE 2 Results of the type II Wald chi-square tests.

Response Predictor c2 Df p-value

Model grazing steps

Proportion
grazing step

GM 0 1 1

Step 331.9 1 <0.0001

GM × Step 118.3 1 <0.0001

Model RG vs. CG

ODBA

GM 418,995.5 1 <0.0001

SM 2,664.7 1 <0.0001

GB 118,096.0 3 <0.0001

GM × GB 11,814.264 1 <0.0001
The proportion of grazing segments with and without grazing steps is modeled by grazing
management (GM) and the presence of spatial movement in grazing (Step), as well as the
interaction of GM and Step. The response variable overall dynamic body acceleration (ODBA)
is described by the predictor variables GM, spatial movement (SM), grazing bout (GB), and
the interaction of SM and GM for model RG vs. CG.
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rather than spatial movement, as grazing steps cannot be detected

without GNSS-based spatial differentiation.

Grazing management and the grazing bout had an effect on

ODBA. This is partly an effect of the differences in the grazing

process. The feed intake of cows on pasture includes different types

of bites such as prehension (gathering and ingestion of herbage),

manipulative (mastication), and rumination. The head and neck

movement can be mainly related to prehension bites in the grazing

process as the manipulation and mastication of ingested herbage

mainly cause jaw, but not neck, movement (Laca et al., 1992;

Shafiullah et al., 2019; Rombach et al., 2022). Thus, we assumed

that mainly the prehension bites affect the ODBA in our collar-

based approach. The bite rate (prehension bites) is influenced by

factors such as the sward height, feed quality, and rumen fill. With a

decreased CSH, the proportion of prehension bites increases and

the proportion of manipulative bites decreases; in tall swards, more

herbage per bite increases the need for manipulative bites (Gibb

et al., 1997). This can explain the higher ODBA in CG compared

with that in RG in our study. Furthermore, the time of the day and

the allocated grazing bouts further influenced the grazing behavior

of cattle. Typically, the major grazing bouts occur at dawn or after

the morning milking (when milking twice a day, in the afternoon

and at dusk: Rook and Huckle, 1995; Gibb et al., 1998; Taweel et al.,

2004). Earlier studies found an increased grazing activity and a

higher bite frequency in the dusk grazing bout and explained this as

the cows trying to have a high feed intake before nighttime; during

nighttime, the grazing activity is usually low (Gibb et al., 1998;
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Taweel et al., 2004). In addition, the higher feed quality around dusk

contributes to high feed intake rates (Gibb et al., 1998; Taweel et al.,

2004; Gregorini et al., 2008; Gregorini, 2012). In the NB, the grazing

activity was low, as reported in multiple other studies (e.g., Taweel

et al., 2004; Gregorini, 2012). The allocation of fresh pasture in the

afternoon usually leads to a more intensive grazing than an

allocation in the morning (Gregorini, 2012). This might explain

the grazing pattern in RG: in four out of five RG pasture allocations,

the cows received fresh pasture in the early evening after milking

(Supplementary Figure 1). This resulted in a high ODBA in the EB.

The MB, as expected, had a slightly lower ODBA, but the distinctly

lower values of ODBA were visible in DB. An increase of the ODBA

would be expected with decreasing CSH in RG from the start to the

end of grazing in one paddock. However, additional effects need

consideration: Barrett et al. (2001) found increasing stem/leaf

proportions and decreasing CSH in RG from the start to the end

of grazing a paddock as the cows favored and selected leafy material.

While the overall bite rate (prehension and chewing) only slightly

decreased during the grazing period of the RG paddocks, the intake

rate declined strongly. This means that the increased need for

chewing in swards with a high stem/leaf proportion leads to a

smaller number of prehension bites, hence a lower ODBA. In CG,

the difference in the ODBA between MB and DB was less

pronounced. In continuous grazing, sward characteristics such as

CSH and stem/leaf proportion are not affected by the allocation

time or cow selection. However, also in CG, the sward was not of

even height, but there was a pattern of somewhat taller, less
FIGURE 2

Violin plots showing the overall dynamic body acceleration (ODBA) for the two grazing management strategies—continuous grazing (CG) and
rotational grazing (RG)—and for the grazing bouts: morning grazing (MG), day grazing (DG), evening grazing (EG), and night grazing (NG). The dots
represent the estimate of the model with 95% confidence interval. The plot is truncated at ODBA 6.5 m s−2 for better readability.
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frequently grazed patches and short, frequently grazed patches; this

can have a non-observed effect on the grazing process (Gibb et al.,

1997). The findings in the CG management in our study appear to

be similar to those of Taweel et al. (2004), who found a linear

increase in the prehension bites during the day from dawn until

dusk in continuous grazing. We conclude that the grazing activity in

RG management as described by the ODBA in our study is

influenced by the combined effects of pasture allocation, declining

CSH, increasing stem/leaf proportion over the grazing time, and the

diurnal pattern; on the other hand, in CG, the sward characteristics

are more stable and the major influence on ODBA is by the diurnal

pattern of grazing and fluctuations in pasture quality.
5 Conclusion

Our findings extend the use of collar-based accelerometers in a

grazing context. We were able to reproduce well-researched grazing

patterns from the ODBA; however, there is still a need for a validation

against “gold standard” methods. The negligible influence of spatial

movement on the ODBA allows observing grazing patterns even

without GNSS-supported data, while the GNSS data can add

substantial value in answering other research questions. The

widespread use of accelerometer sensors in dairy farming allows on-

farm research on grazing management without additional expensive

equipment and, moving further, an animal-centered pasture

management approach. Future research could include the use of

ODBA for a detailed differentiation of grazing in different settings

(i.e., height, botanical composition, and livestock type), as well as to

better gain insights into grazing practices in commercial farms.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The animal studies were approved by Animal Ethics

Commissioner of the University of Vechta. The studies were

conducted in accordance with the local legislation and institutional

requirements. Written informed consent was obtained from the

owners for the participation of their animals in this study.
Author contributions

KO: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft. MK: Conceptualization, Funding

acquisition, Project administration, Resources, Supervision, Writing

– review & editing. JI: Conceptualization, Resources, Supervision,

Writing – review & editing.
Frontiers in Animal Science 07
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work (Model- and

Demonstration Project for animal welfare) is financially supported

by the Federal Ministry of Food and Agriculture based on a decision

of the Parliament of the Federal Republic of Germany, granted by

the Federal Office for Agriculture and Food. The project grant

number is 2819MDT100.
Acknowledgments

We would like to thank both the families and staff of the Apelt

Farm and Bartels Farm for their willing participation and support

for our study. We would further like to thank Christina Behrendt,

Lena Weber and Thore Heß for their help with animal observations

and the accompanying field work.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fanim.2025.

1517570/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Grazing bouts for all grazing days of the study time withmarking lines for dusk
and dawn. The breaks in the plot (white) show the time off paddock i.e.

milking time. Grazing in rotational grazing management is abbreviated as RG,

in continuous grazing as CG. The abbreviated months also outline the run.
Grazing 7 describes the grazing of two RG paddocks.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fanim.2025.1517570/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fanim.2025.1517570/full#supplementary-material
https://doi.org/10.3389/fanim.2025.1517570
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Obermeyer et al. 10.3389/fanim.2025.1517570
References
Barrett, P. D., Laidlaw, A.S., Mayne, C.S., and Christie, H. (2001). Pattern of herbage
intake rate and bite dimensions of rotationally grazed dairy cows as sward height
declines. Grass Forage Sci. 56, 362–373. doi: 10.1046/j.1365-2494.2001.00286.x

Barwick, J., Lamb, D.W., Dobos, R., Welch, M., and Trotter, M. (2018). Categorising
sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 145, 289–297.
doi: 10.1016/j.compag.2018.01.007

Brennan, J., Johnson, P., and Olson, K. (2021). Classifying season long livestock
grazing behavior with the use of a low-cost GPS and accelerometer. Comput. Electron.
Agric. 181, 105957. doi: 10.1016/j.compag.2020.105957

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W.,
Nielsen, A., et al. (2017). glmmTMB balances speed and flexibility among packages for
zero-inflated generalized linear mixed modeling. R J. 9, 378–400. doi: 10.32614/RJ-
2017-066

Chapa, J. M., Maschat, K., Iwersen, M., Baumgartner, J., and Drillich, M. (2020).
Accelerometer systems as tools for health and welfare assessment in cattle and pigs – A
review. Behav. Processes 181, 104262. doi: 10.1016/j.beproc.2020.104262

Delagarde, R., and Lamberton, P. (2015). Daily grazing time of dairy cows is recorded
accurately using the Lifecorder Plus device. Appl. Anim. Behav. Sci. 165, 25–32.
doi: 10.1016/j.applanim.2015.01.014

Gibb, M. J., Huckle, C. A., Nuthall, R., and Rook, A. J. (1997). Effect of sward surface
height on intake and grazing behaviour by lactating Holstein Friesian cows. Grass
Forage Sci. 52, 309–321. doi: 10.1111/j.1365-2494.1997.tb02361.x

Gibb, M. J., Huckle, C. A., and Nuthall, R. (1998). Effect of time of day on grazing behaviour
by lactating dairy cows. Grass Forage Sci. 53, 41–46. doi: 10.1046/j.1365-2494.1998.00102.x
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