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Dairy cattle’s susceptibility to diseases significantly impacts their health, welfare,

and longevity. Disability weights reflect the relative severity or impact of

important diseases and provide an extension of epidemiological frequency

measures. They are central for comparing disease burden across diverse

causes when summarizing health status and disease severity. Yet, they often

reflect group-level health status and rely on expert judgment, which is subjective.

In absence of an objective approach, this study aimed to create disability weight

metrics using pathophysiological data with machine learning approach. Four

binary classifiers using a generalized linear model with Lasso regularization were

developed to identify distinguishing features for healthy and diseased cows

affected by hypocalcemia, ketosis, metritis and mastitis. Model performance,

assessed via the Area Under the Curve (AUC), reached values of 0.72, 0.66, 0.82,

and 0.92 for distinguishing hypocalcemia, ketosis, metritis and mastitis in cows

from healthy groups. The selected features were combined into a summary

disability weight – cumulative health measure – for each disease computed

through weighted sums of feature importance from classification models.

Notably, the average cumulative health measure differed significantly between

healthy and diseased groups (p < 0.05). The relative ranking of diseases based on

the average cumulative health measure was comparable to the expert survey-

based approach. Such features will offer insights into disease impact and will

provide a standardized metric for comparing disease severity.
KEYWORDS

disability weight, pathophysiological data, behavior data, gene expression data, feature
selection, disease burden
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1 Introduction

The health and well-being of dairy cattle have profound effects

on herd profitability and public perceptions of dairy farming.

Different factors increase the risk of health deterioration, which

affects animal welfare. Such factors can be associated with the farm

and herd size, management practices related to production systems,

disease diagnosis and treatment, the genetics of cows, and the skills

of personnel (Barkema et al., 2015). Concurrently, the rise of public

awareness and the need to adhere to animal welfare regulations

have promoted transparency in the dairy industry (Barkema et al.,

2015; Temple and Manteca, 2020). However, the concept of welfare

and well-being remains abstract, challenging to define, and difficult

to measure (Temple and Manteca, 2020).

Because of disease occurrence, injuries, and related health

outcomes, the experience of pain and suffering has a detrimental

impact on animal welfare (McLennan, 2018; Temple and Manteca,

2020). A prolonged period of pain and suffering may adversely

affect the biological functioning (McLennan, 2018) and longevity,

which in turn can influence cattle productivity and the associated

economics in a herd. Assessing the impacts of this health loss can be

conducted by developing summary disability weight measure that

describe disease burden (refers to relative impacts of different

diseases and their sequelae) between groups along with the

estimated time lost (refers to the length of productive life) due to

the health event (McConnel et al., 2017, 2018). Different indicators

contribute to the estimation of disease burden (Huntington et al.,

2021). For example, the production loss can be measured in terms

of economic and monetary components (Raboisson et al., 2020).

Disability weights are key to a comparable estimation of disease

burden across diverse reasons. The health loss can be determined

based on disease severity scores or disability weights (McConnel

et al., 2017). The cumulative effect of health loss can be estimated by

extending the severity scores (subjective score from 1 to 10 with 1

representing least impact and 10 representing euthanasia or death)

to account for disease duration (McConnel et al., 2018). Although

the disability weight approach provides single measures of disease

burden, the historical method is subjective and relies on the

evaluator’s expertise. Therefore, in this study, we focused on

establishing a technique to measure disease severity in dairy cattle

with objective pathophysiological data.

The improvement of dairy production systems and the

adoption of precision dairy farming technologies have generated

substantial data that can be used to monitor herd performance and

aid in decision-making (Shine and Murphy, 2021). These

advancements enable the use of machine learning techniques to

derive actionable insights from complex data. Many studies have

investigated machine learning applications in the dairy industry to

optimize farm management and production. For instance, milk

yield, milk protein, milk fat, and concentrate feed intake were

predicted using artificial neural networks (Fuentes et al., 2020).

These predictions relied on features such as environmental factors,

dairy cattle characteristics, and milking parameters, resulting in a

correlation coefficent of ~0.86 (Fuentes et al., 2020). In another

study, a time series classification algorithm was developed to
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identify cows with subclinical ketosis based on behavioral features

and health data, including body condition score, back fat thickness,

non-esterified fatty acids, milk yield parameters, and parity (Sturm

et al., 2020). This study reported a sensitivity to identify diseased

cows ranging between 63% and 67%. Furthermore, research

explored statistical models, such as multivariable logistic

regression, and machine learning algorithms like a recommender

system to predict the likelihood of metritis cure in dairy cattle, using

environmental factors and cow-level features (de Oliveira et al.,

2021). Results indicated that the machine learning approach needs

further optimization as the accuracy obtained was 72% compared to

75% for the multivariable model.

In a another study, eight machine learning classifiers were

employed to identify mastitic cows based on milk quality traits

recorded one day before disease diagnosis (Bobbo et al., 2021).

These classifiers took into account factors such as parity, stage of

lactation, year, and season of sampling. The results of this analysis

indicated that with random forest, neural networks, and linear

classifiers, the classification accuracy reached 79%. Additionally, a

recent study applied a key-feature-based clustering approach that

combined knowledge-driven feature selection with unsupervised

machine learning to design new metrics for evaluating cow health

outcomes (Matzhold et al., 2024). Furthermore, some studies have

applied machine learning to classify data collected with

accelerometer sensors into categories of behavior expressed by

dairy cows (Riaboff et al., 2020; Gertz et al., 2020), and to identify

anomalies of behavioral features as an indicator of a health disorder

(Wagner et al., 2020). Although there is an increasing body of

literature investigating the applications of machine learning in the

dairy industry, very few studies have investigated animal welfare

and to the authors’ knowledge none have attempted to quantify the

physiological implications of the disease within the biological

system on an individual basis. Therefore, the main objective of

this study was to evaluate machine learning approach on the

pathophysiological data for measuring disease severity. We

present a proof-of-concept applied to a limited set of diseases. We

hypothesized that machine learning could identify disease-

associated features objectively, and combining these features into

a weighted measure – cumulative health measure – could help

categorize the severity (impact) of different disease types. This

approach would provide a disease-specific summary disability

weight for cattle. We used pathophysiological data collected for

four different diseases: hypocalcemia, ketosis, metritis and mastitis

in this study. We also explored relationships and integration of

pathophysiological data with behavioral and gene expression data,

based on their availability.
2 Materials and methods

2.1 Disease classes and observations

In this study, we developed a health summary measure

technique based on the pathophysiological data collected from

three different herds, encompassing four diseases to which dairy
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cattle are susceptible. The disease categories were hypocalcemia,

ketosis, mastitis, and metritis. Hypocalcemia and ketosis are both

metabolic diseases. Hypocalcemia (also called milk fever) occurs

when a cow fails to maintain a balanced calcium level, which leads

to a decline in calcium concentration in the blood (Goff, 2008). The

cow can experience subclinical (asymptomatic) or clinical

hypocalcemia (Venjakob et al., 2016). Subclinical and clinical

ketosis are characterized by an elevated concentration of ketones

(b-hydroxybutyrate/BHB) in the blood (Duffield, 2000). Metritis

and mastitis are both inflammatory diseases. Metritis is a uterine

infection caused by bacterial contamination and is characterized by

fetid and discolored vaginal discharge (Sheldon et al., 2006).

Mastitis is an inflammation of the mammary gland, leading to a

decrease in milk production, composition, and quality (Gomes and

Henriques, 2015). The cows with hypocalcemia, ketosis and metritis

were within the early lactation period (less than 21 days in milk/

DIM), with only mastitic cows being outside of this period. The

treatment was at the discretion of dairy farm management with

hypocalcemic cows treated within a week.

The data were collected from three different herds (denoted as

dataset 1, dataset 2, and dataset 3). Dataset 1 included cows

diagnosed with metabolic diseases (hypocalcemia and ketosis) and

a healthy cohort, with a total of 92 observations. All the cows were

within 21 DIM. The identification of hypocalcemia and ketosis

(sometimes referred to as hyperketonemia) diseases was based on

the Washington State University’s Veterinary Teaching Hospital

Clinical Pathology service guidelines regarding calcium

concentrations for hypocalcemia (subclinical <1.0–0.6; clinical

<0.6 mM/L) and BHB concentrations for ketosis (subclinical ≥

1.2; clinical ≥ 3.0 mmol/L), respectively. The samples were selected

from a conventional dairy farm in Eastern Washington State. Some

cattle had follow-up measurements about one or two weeks after the

initial sampling period. The sampling period ranged between

November 2017 and January 2019. Regular visits (about 3 times/

week) were conducted by a veterinarian for diagnosis, and if

selected, blood and serum sampling were performed on the same

day. Some observations were excluded from our analysis to avoid

the effect of confounding factors on feature selection and these

conditions included multiple diseases occurring at the same time (8

samples), cattle with prior diseases (14 samples), or a change in

disease diagnosis during the follow-up measurements (4 samples).

The dataset from cows with the initial sampling period was used for

further analysis. Thus, the dataset was reduced to 50 samples, which

was composed of 26 healthy, 9 hypocalcemic (clinical = 7 and

subclinical = 2), and 15 ketotic (all subclinical) cows.

Dataset 2 included cows (within 4 to 14 DIM) diagnosed with

metritis during early lactation and a healthy group with a total of 60

observations. The observations on cattle were selected from a

conventional dairy farm in Central Washington State, and a

detailed description of sampling and methods can be found in

(McConnel et al., 2020a). Briefly, metritis was initially suspected

based on fetid vaginal discharge and confirmed through rectal

palpation to expel and observe bloody, red-brown, milky, thin or

watery discharge from an enlarged uterus. The diagnosed metritic

cows had anorexic, fetid vaginal discharge (given a score offive) and
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pyrexia and were within 10 DIM. The candidates for sampling were

selected by the dairy personnel followed by veterinarian evaluation.

The sampling period was conducted in June 2018, with

approximately three visits per week were made over three weeks

for diagnosis and sampling. Three repeated samplings were

performed: an initial sampling (referred to as time point 1, TP1)

followed by two follow-up measurements (TP2 and TP3). At each

time point, samples were collected from 9 healthy and 11 metritic

cows (n=20 per time point, totaling 60 observations across all three

time points).

Dataset 3 included cows (in 72–269 DIM) diagnosed with

mastitis and a healthy group with a total of 60 observations. The

observations on cattle were also selected from a different

conventional dairy farm in Central Washington State, and a

detailed description of sampling and methods can be found in

(McConnel et al., 2020b). The mastitic cows (72–269 DIM) were

identified as having abnormal milk (garget), redness, swelling, and

heat in mammary quarters, and systemic signs (severity score of 2

or higher, clinical). The candidates for sampling were also selected

by the dairy personnel followed by veterinarian evaluation. The

sampling period was conducted between February and April 2019

(about 1 visit per week for a few weeks) for diagnosis and sampling,

with three repeated samplings (1 initial sampling date/TP1 + 2

follow-up measurements/TP2 and TP3). In each sampling period, 8

healthy and 12 mastitic cows were sampled (n=20 for each time

point; 20 x 3 = 60 observations in total).
2.2 Data collection

2.2.1 Pathophysiological data
The pathophysiological data (Table 1) included whole blood

and serum measurements for complete blood count, clinical

chemistry profiles, BHB, and haptoglobin concentrations. A total

of 49 features were collected for datasets 1 and 3, and 13 features for

dataset 2 (Table 1). In addition to the blood count data, rectal

temperature was monitored in datasets 2 and 3 using a digital

thermometer during blood and serum sampling.

2.2.2 Gene expression data
Gene expression data were collected for both datasets 2 and 3.

Details about data collection protocols and pre-processing can be

found in (McConnel et al., 2020a, b). The analysis was conducted on

the same trials as those reported in these studies. It identified 14

genes associated with metritis and 19 genes associated with mastitis.

The feature selection was based on a random forest approach

combined with the Boruta algorithm. In this study, we integrate

these pre-identified genes with pathophysiological data to evaluate

whether this combination can improve the distinction between

healthy and diseased cows. The selected genes are listed in Table 2.

2.2.3 Behavioral data
Behavioral data were included in this study for dataset 3. The

behavioral data were collected using an ear-tag accelerometer

(CowManager Sensor™, Agis, Harmelen, the Netherlands). The
frontiersin.org

https://doi.org/10.3389/fanim.2025.1532385
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Marzougui et al. 10.3389/fanim.2025.1532385
TABLE 1 The measured pathophysiological data in each dataset.

Datasets

Biomarkers for disease diagnosis and cow-side tests Units 1 2 3

Calcium Calcium levels to diagnose subclinical or clinical hypocalcemia mg/dL X X

Glucose Glucose levels to indicate hypocalcemia mg/dL X X

BHB b-hydroxybutyrate levels to diagnose subclinical or clinical ketosis mmol/L X X X

Haptoglobin Haptoglobin concentration mg/mL X X X

Hematological and complete blood count

White blood cell biomarkers

WBC Total white blood cells count (x 103) mL X X X

Band neutrophils (Band)† Percentage and quantity (x 103) of white blood cells of each category %/mL X X†† X

Segmented neutrophils (Seg)† %/mL X X†† X

Metamyelocyte neutrophils (Meta)† %/mL X – X

Lymphocytes (Lymph)† %/mL X X†† X

Monocytes (Mono)† %/mL X – X

Eosinophils (Eosin)† %/mL X – X

Basophils (Baso)† %/mL X – X

Unclassified cells† %/mL X – X

Red blood cell biomarkers

RBC Total red blood cells count (x 106) mL X X X

RDW Red blood cell distribution width is a measure of the range of variation of red
blood cell volume

% X – X

Hgb Hemoglobin concentration g/dL X X X

PCV Packed red blood cell volume % X X X

MCV Mean corpuscular volume fL X – X

MCH Mean corpuscular hemoglobin, or mean cell hemoglobin, which is the average
mass of hemoglobin per red blood cell

pg X – X

MCHC Mean corpuscular hemoglobin concentration, which is the average
concentration of hemoglobin in a given volume of packed red blood cells (i.e.,
the ratio of hemoglobin mass to the volume of red cells)

g/dL X – X

Platelet biomarkers

Platelets Platelet count x 103 mL X X X

MPV Mean platelet volume is the average size of platelets fL X X X

Pprot Serum protein level based on a refractometer reading g/dL X X X

Fibrinogen Fibrinogen (inflammatory protein) level mg/dL X X X

Chemistry/blood gas biomarkers

SDH Sorbitol dehydrogenase is a very specific indicator of liver disease U/L X – X

GGT Gamma-glutamyl transpeptidase is concentrated in the liver, but it is also
present in the gallbladder, spleen, pancreas, and kidneys. GGT blood levels are
usually high when the liver is damaged.

U/L X – X

AST The aspartate aminotransferase test is a blood test that checks for liver damage. U/L X – X

ALP The alkaline phosphatase test is used to help detect liver disease or
bone disorders

U/L X – X

(Continued)
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sensor tracks and classifies ear and head movement into five

behavioral patterns: eating (chewing, swallowing feed),

rumination (chewing, standing, or lying), active (walking drinking

water, etc.), high active (behavior related to estrus signs), and not

active (no movement for 60 s – while lying or standing) (Zambelis

et al., 2019; www.cowmanager.com). These activities are measured

as the amount of time spent performing each category. As the

sensor continuously monitored these activities, the proportion of

each hour spent in each activity was calculated. Additionally, the

sensor continuously measured ear temperature. Example plots of

the time series data are illustrated in Figure 1.
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2.3 Disability weight computation

The summary disability weight measure, termed as cumulative

health measure, was computed in two steps: (1) identifying

important features from pathophysiological data collected at the

initial diagnosis (initial sampling period or TP1) to distinguish

between healthy and diseased groups, using machine learning for

feature selection, and (2) integrating these features into a weighted

cumulative health measure based on their importance scores. The

following sections outline the steps to establish this cumulative

health measure. We also explored the integration of gene expression

data (limited to datasets 2 and 3) and behavior (limited to dataset 3),

based on the data availability, to assess their impact on classifying

severity. All analyses were conducted in R (http://www.r-

project.org/; release 4.0.3).
2.3.1 Exploratory analysis and feature
pre-processing

We began by exploring the data from each dataset to identify

missing values, detect outliers, and investigate the relationship

between features and health status prior to feature selection. In

the pathophysiological data, 11 features in dataset 1 and 12 features

in dataset 3 had missing values from the complete blood count and
TABLE 1 Continued

Chemistry/blood gas biomarkers

CK This test measures the amount of an enzyme called creatine kinase. Levels of
CK can rise after skeletal muscle injury.

U/L X – X

BUN The blood urea nitrogen test reveals important information about kidneys and
liver function. A BUN test measures the amount of urea nitrogen that’s
in blood.

mg/dL X – X

Creatinine Elevated creatinine level signifies impaired kidney function or kidney disease mg/dL X – X

TP The total protein test measures the total amount of two classes of proteins
(albumin and globulin) found in the fluid portion of blood.

g/dL X – X

Albumin The most abundant protein in blood plasma; it constitutes about half of serum
protein. It is produced in the liver and is soluble and monomeric.

g/dL X – X

Globulin Some globulins are produced in the liver, while others are made by the
immune system.

g/dL X – X

Phosphorus Phosphorus level mg/dL X – X

Magnesium Magnesium level mg/dL X – X

Sodium Sodium level mEq/L X – X

Potassium Potassium level mEq/L X – X

Chloride Chloride level mEq/L X – X

CO2 In the body, most of the CO2 is in the form of a substance called bicarbonate
(HCO3

-). Therefore, the CO2 blood test is really a measure of your blood
bicarbonate level.

mEq/L X – X

Anion gap The anion gap = (Na+ + K+) − (Cl- + HCO3
-). The anion gap can be normal,

high, or low. A high anion gap indicates metabolic acidosis, the increased
acidity of the blood due to metabolic processes.

mEq/L X – X
frontie
†For these features, count (abbreviated as Count) and percent (abbreviated as Perc) were estimated, for example, BandPerc and BandCount were extracted for neutrophils; ††indicates presence of
only count data. Datasets 1 was sampled once, while datasets 2 and 3 have two follow-up samples after initial sampling with about one week between samples.
TABLE 2 Selected genes used for further analysis in this study (more
details found in McConnel et al., 2020a, 2020b).

Dataset Number of
features

Gene

2 14 BTLA, EAF2, PLPPR5, IGF2BP3, NRCAM,
LCN2, IL17D, KLHDC8A, LRBA, PGLYRP1,
ZNF432, KCNJ16, CATHL6, KLRF2

3 19 BCAR1, C5AR1, CATHL6, CD14, CXCL2,
CXCL6, IFNG, IL17D, IL1B, IL6, IL8, LCN2,
PGLYRP1, SAA3, SELL, STAT5A, TLR2,
TLR4, TNF
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were excluded from further analysis. Additionally, haptoglobin

concentration and ALP in dataset 1 had missing values and were

also removed. The remaining features were checked for zero or

near-zero variance. We analyzed the distribution of each feature

and flagged any observations with extreme values (< or > 1.5 times

interquartile range). The final features used in the models are

described in Supplementary Table S1.

In the behavior data, we noticed that ear temperature

occasionally included negative values. To understand this

anomaly, we plotted the daily and monthly data. The error

seemed to be random and only affected temperature data. A

previous study found that ear temperature can be influenced by

ambient temperature (Venjakob et al., 2016). Since observations in

dataset 3 were collected between February and April, when ambient

temperatures can drop below 0°C, we removed all records with

negative temperature values. Future studies could investigate

anomaly detection and imputation to address such issues. We

selected the observations taken during the disease diagnosis dates

TP1, assuming that cows enduring stress, discomfort, or diseases

would show behavioral changes. For example, reduced feed intake

and changes in resting behavior were observed 3–5 days before

mastitis diagnosis (Sepúlveda-Varas et al., 2016). In this study, we

evaluated the behavior data for 1, 2, and 3 days prior to initial
Frontiers in Animal Science 06
sampling period (TP1). Hourly data were averaged by date, and

aggregated observations were normalized using a daily cohort mean

for each behavioral feature (trimmed mean of 20%) of 3425, 3405,

and 3403 cows on days −1, −2, −3, respectively. The normalization

was performed as described in Equation 1:

Xiat dated =  
Xi at dated −  min(herd daily average at dated)j j
Xi at dated +  max(herd daily average at dated)

(1)

where d is the initial sampling date TP1 – (1, 2, or 3 days) and i is

the ith observation.

Spearman correlation analysis was conducted between

pathophysiological data at TP1 (datasets 1, 2, and 3). We used the

corrr package (Kuhn et al., 2020) to create a correlation network to

visualize relationships between features. This network analysis helps

identify clusters of related variables, supporting the interpretation of

feature selection. Univariate analysis was performed using the

nonparametric Mann-Whitney U test to compare differences

between the healthy and diseased groups.

2.3.2 Feature selection
This section outlines the process of identifying relevant features

for distinguishing between healthy and diseased groups, using the

data collected at the initial sampling period or TP1. The focus on
FIGURE 1

Variation of behavioral data and ear temperature averaged over the herd from dataset 3 (average data per day ± standard deviation).
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TP1 data aims to capture early indicators of disease and reduce

potential bias from disease progression or treatment effects. In

dataset 1, glucose, calcium, and BHB were excluded as they were

used for disease diagnosis. To further reduce the feature space, we

verified the correlation between features and retained globulin and

albumin, removing total protein content as it encompassed both

parameters in datasets 1 and 3. When complete blood count data

included both counts and percentages, percentages were prioritized.

Feature selection was conducted using an embedded method

with L1 (Lasso: least absolute shrinkage and selection operator)

regularization. A binary classifier was built using the generalized

linear model from the glmnet package (Friedman et al., 2010) to

distinguish between healthy and diseased groups. Four models were

developed to classify healthy – hypocalcemia, healthy – ketosis,

healthy – metritis, and healthy – mastitis (Table 3), using the data

from the initial sampling period for all analyses.

Models were trained and tested with a leave-one-out cross-

validation (LOOCV) approach. The sample size (n) was 35, 41, 20,

and 20 for healthy – hypocalcemia, healthy – ketosis, healthy –metritis,

and healthy – mastitis, respectively. The caret package (Kuhn, 2008)

was used for training. Because features had different magnitudes and

the penalty of the regularized linear models depends on the scale of

coefficients, features were centered and scaled during training. Class

weights were applied to balance the data due to the presence of

imbalanced classes (Table 3). The penalty coefficient l was tuned

using a bootstrap-based resampling approach (25 bootstrap, default

value), with the Area Under the Curve (AUC) used as the primary

metric for assessment. The l corresponding to the highest AUC was

selected to train the final model.

The final set of features was selected based on the penalized

coefficients from Lasso regularization, with only features having

non-zero coefficients retained for further analysis. The varImp

function from the caret package was used to extract the

normalized importance score for each feature. To evaluate feature

stability, we computed the percentage of occurrence, defined as the

proportion of LOOCV iterations where a feature had a non-zero

coefficient. Feature importance was reported as the mean ± 1

standard deviation and the percentage of the occurrence across

LOOCV iterations. Finally, model performance was assessed

using overall accuracy, AUC, specificity, sensitivity, and F1 score.
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2.3.3 Cumulative health measure
The goal of this study is to develop amethod for estimatingobjective

summary disability weight measures to quantify howmuch a particular

disease affects dairy cattle.Thismeasure canbeused to comparedifferent

health states and their consequences. It summarizes complex data into a

single number that represents the overall health status or disease burden

of an individual cow, rather than the entire cohort.

As the previous section described, the output of the feature

selection step is a set of relevant features with corresponding mean

importance scores and percentage of occurrence. To create a single

summary measure, these features were combined into a cumulative

health measure, where each feature's contribution was scaled using its

mean importance score relative to the total importance. To standardize

the data, features were centered and scaled to have a range between 0

and 1 before calculating the cumulative health measure.

The cumulative health measure for each disease category was

calculated as Equation 2:

 Cumulative health measurei

=  oj(adjusted weight �  feature dataij) (2)

where the adjusted weight is a global scaling factor ensuring that the

total feature importance sums to 100%, and feature datai,j refers to the

value of feature j for the ith cow.

To assess disease severity relative to the healthy group, the

cumulative health measure was normalized by the average of the

healthy cohort for each dataset. This approach is similar to the

severity scores representing the cumulative effect of health loss, as

reported in McConnel et al. (2018). This normalization helps

estimate the disease burden in comparison to the healthy cohort.

It was performed following Equation 3:

Normalized cumulative health measurei 

=  
cumulative health  measurei  −  min (average cumulative  health  measurehealthy)
�
�

�
�

cumulative health  measurei  +  max (average cumulative  health  measurehealthy)

(3)

where i represents the observation for each diseased cow.

To further analyze how behavior and pathophysiological

profiles contribute to differentiating disease severities, the final

(non-normalized) cumulative health measure was combined with
TABLE 3 Summary of sample size, classes, and number of pathophysiological data for each model.

Dataset Model Total number
of samples

Classes Number of samples

1 1 35 Healthy 26

Hypocalcemia 9

2 41 Healthy 26

Ketosis 15

2 3 20 Healthy 9

Metritis 11

3 4 20 Healthy 8

Mastitis 12
frontiersin.org

https://doi.org/10.3389/fanim.2025.1532385
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Marzougui et al. 10.3389/fanim.2025.1532385
behavior features – such as eating, rumination, and activity levels –

and analyzed using a principal component analysis (PCA) with the

FactoMineR package (Lê et al., 2008).
3 Results

3.1 Comparison of cattle characteristics
and pathophysiological data

We compared cattle characteristics (DIM and lactation

number) and pathophysiological data between healthy and

diseased groups within the cohort. Detailed results are provided

in the Supplementary Materials (Supplementary Tables S2–S5).

In dataset 1, themedianDIMwas≤ 10days,with amedian lactation

number of 2 and 3 for the healthy – ketosis and healthy – hypocalcemia

groups, respectively. At the initial sampling period, dataset 2 had

a median DIM of ≤ 10 days and a median lactation number of 2,

while dataset 3 had a median DIM of ≥ 10 days and a median lactation

number of 3. No significant differences in DIM were observed between

healthy and diseased groups, except in the healthy – hypocalcemia

groups, where hypocalcemic cows had lower DIM than healthy cows

(Mann-Whitney U test, P < 0.05). Overall, we identified 13

pathophysiological features that differed between healthy and

hypocalcemic cows (Supplementary Table S2). The levels of RBC,

hemoglobin concentration, PCV, CK, BUN, creatinine, sodium, and

chloride were elevated in the hypocalcemic group compared to the

healthy group (Mann-Whitney U test, P < 0.05). In contrast, serum

concentrations of calcium, Pprot, total protein, albumin, and globulin

were lower in the hypocalcemic group (Mann-WhitneyU test, P < 0.05).

In the healthy-ketosis comparison, five features differed significantly

(Supplementary Table S3). Serum concentrations of BHB, AST, and

anion gap were elevated in ketotic cows (Mann-Whitney U test, P <

0.0001 for BHB, P = 0.037 for AST, and P = 0.003 for anion gap), while

the concentrations of glucose and BUN were lower (Mann-Whitney U

test, P < 0.0001 for calcium and P = 0.037 for Glucose).

In the healthy – metritis comparison, four features showed

significant differences (Supplementary Table S4). Serum

concentrations of haptoglobin, band count, and fibrinogen were

higher in metritic cows (Mann-Whitney U test, P < 0.01), whereas

the Pprot level was lower (Mann-Whitney U test, P = 0.002). In the

healthy – mastitis comparison, nine features differed significantly

between the two groups (Supplementary Table S5). Serum

concentrations of haptoglobin, fibrinogen, and glucose were

elevated in mastitic cows (Mann-Whitney U test, P < 0.01), while

the levels of SegPerc, SDH, CK, albumin, calcium, and anion gap

were lower (Mann-Whitney U test, P < 0.05).
3.2 Correlation analysis of
pathophysiological data

The relationships between the pathophysiological data were

explored with a correlation network (Figure 2). The absolute

correlation coefficients ranged from 0.002 to 0.97 for healthy-
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hypocalcemia, 0.0003 to 0.97 for healthy – ketosis, 0.005 to 0.91 for

healthy –metritis, and 0.0008 to 0.92 for healthy –mastitis groups. In

the healthy – hypocalcemia groups, calcium level and serum

concentrations of BHB, RBC, hemoglobin concentration, PCV,

platelets, globulin, Pprot, total protein, and albumin were correlated

(Spearman coefficient: 0.37 ≤ |r| ≤ 0.70; P < 0.05). In the healthy-

ketosis groups, serum BHB was correlated with AST, potassium,

anion gap, and glucose (Spearman coefficient: 0.43 ≤ |r| ≤ 0.79, P <

0.05). The features from the complete blood count profile did not

show differences between the healthy and ketosis groups. However,

SegCount and SegPerc were correlated and clustered with BUN, and

AST was correlated with MonoPerc (Figure 2B).

In the healthy – metritis groups, haptoglobin, band count,

Pprot, and fibrinogen were clustered together and correlated

(Figure 2C). In the healthy – mastitis groups, serum

concentrations of fibrinogen and albumin were clustered and

correlated with haptoglobin and calcium, while glucose was

clustered and correlated with SDH and CK (Figure 2D).
3.3 Disease-specific features selection

Feature selection was performed using data collected at the initial

sampling period (TP1) to develop cumulative health measure, which

was then evaluated in the follow-up measurements (TP2 and TP3).

The features used as input for the binary classifiers are summarized in

Supplementary Table S1. As displayed in Table 4, the binary

classifiers achieved moderate to good performance, with AUC

values ranging between 0.66 to 0.92. The lowest discriminatory

ability was recorded in the classification of healthy and ketotic

cows (0.77 sensitivity and 0.53 specificity). Over one-third of

healthy cows were misclassified as ketotic, which increased the false

positive cases (Figure 3C). A similar pattern of misclassification was

noted in the healthy – hypocalcemia groups (Figure 3A). The highest

classification accuracy was achieved in the healthy – mastitis (0.80

sensitivity and 1.00 specificity) and healthy –metritis (0.70 sensitivity

and 1.00 specificity) datasets. All misclassified cases in these

comparisons were false negatives, where diseased cows were

incorrectly classified as healthy (Figures 3E, G).

The selected features for distinguishing between healthy and

hypocalcemic cows included biochemical and blood electrolyte

parameters (sodium, chloride, anion gap, BUN), protein level

(albumin, Pprot), and red blood cell parameters (RBC, PCV).

However, the importance scores and frequency of selection varied

greatly across cross-validation runs (LOOCV = 35) (Figure 3B). In the

healthy – ketosis comparison, the final selected features differed despite

using the same set of features and the same healthy group (Figure 3D).

Anion gap was the most important feature, consistently selected across

all cross-validation runs (LOOCV = 41). Potassium and BUN levels

were the next important features. Both had similar average importance

scores (normalized score ~5.5). However, BUN was selected more

frequently than potassium level. LymphPerc was selected only once

across the 41 runs. For the healthy – metritis groups, three out of four

selected features were associated with complete blood count parameters

(white blood cell and platelet) (Figure 3F). Although haptoglobin
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concentrations were expressed differently between the two groups, this

feature was selected only once in 20 LOOCV runs. For the healthy-

mastitis groups, fibrinogen was themost important feature, followed by

glucose, anion gap and haptoglobin (Figure 3H).
3.4 Cumulative health measure

We computed cumulative health measures, which potentially

represent summary disability weight measures. The value and pattern

of these measures varied across groups, depending on the selected

features. The healthy group showed lower cumulative health measure

values compared to the hypocalcemia and ketosis groups (Figure 4A,

Boxplots of raw data in Supplementary Figures S1, S2). This trend

persisted in comparisons between healthy and mastitis groups, even

during the follow-up measurements (TP 2 and TP 3) (Figure 4C,

Boxplots of raw data in Supplementary Figure S3). However, in

dataset 2, cumulative health measure values were not consistent

across time points and showed greater variability between healthy
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and metritis groups (Figure 4B, Boxplots of raw data in

Supplementary Figure S3). One possible explanation for this

finding is the high variability of the original features used to

compute the cumulative health measure. Haptoglobin

concentrations, in particular, varied greatly within groups and

across time points (Supplementary Figure S4).
TABLE 4 Model performance during classification of different
disease groups.

Classes Input
features

AUC/
accuracy

Sensitivity/
specificity

Healthy – Hypocalcemia 29 0.72/0.74 0.87/0.50

Healthy – Ketosis 29 0.66/0.66 0.77/0.53

Healthy – Metritis 13 0.82/0.80 0.70/1.00

Healthy – Mastitis 34 0.92/0.90 0.80/1.00
FIGURE 2

Networks of pairwise correlation between pathophysiological data for each healthy – disease category. (A) Correlation between features in dataset 1
(healthy = 26 samples and hypocalcemia = 9 samples); (B) Correlation between features in dataset 1 (healthy = 26 samples and ketosis = 15
samples); (C) Correlation between features in dataset 2 (healthy = 9 samples and metritis = 11 samples); and (D) Correlation between features in
dataset 3 (healthy = 8 samples and mastitis = 12 samples). Legend key represents r spearman coefficient. Each node represents a feature, the
distance between nodes reflects the magnitude of correlation, and the transparency and width of the paths represent the strength of correlation.
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The normalized cumulative health measure, which reflects the

disease burden as the gap between a diseased group and a reference

healthy group, was calculated by normalizing each individual cow’s

values in the diseased group by the minimum and maximum values

of their corresponding healthy group. This derived feature (Table 5)

showed a similar ranking of disease severity across the four

conditions when compared to the expert opinion-derived disability

weight classes developed by (McConnel et al., 2017). The higher
Frontiers in Animal Science 10
mean and median values of the normalized cumulative health

measures for hypocalcemia and mastitis (0.38–0.40) align with their

classification as more severe conditions (Table 5). In contrast, ketosis

and metritis had lower values (0.22–0.28), consistent with lower

disability weights (Table 5). However, the normalized health measure

did not show distinct patterns differentiating disease severity classes

(high vs. low) or stages (clinical vs. subclinical), as observed

in Figure 4D.
FIGURE 3

Confusion matrix and the disease-specific selected features. (A, B) Healthy – hypocalcemia, (C, D) healthy – ketosis, (E, F) healthy – metritis, and (G,
H) healthy – mastitis groups. The extent of the grayscale representing selected features highlights the relative differences in the mean importance
score with mean importance and its standard deviation presented by its side and frequency of selection presented in the parentheses.
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3.5 Integration with gene expression and
behavioral data

Several gene expression levels were correlated with

pathophysiological data associated with mastitis (Spearman

coefficient: 0.47 ≤ |r| ≤ 0.83; P < 0.05) and metritis (Spearman

coefficient: 0.47≤ |r|≤ 0.80; P<0.05) (Supplementary Figures S5, S6).

Specifically, the expression of levels of CATHL6, IL17D, LCN2, and

PGLYRP1 were either negatively or positively correlated (P < 0.05)

with the cumulative health measure representing healthy – mastitis

groups and/or with the corresponding pathophysiological features

(fibrinogen, glucose, anion gap, and haptoglobin) (Figure 5A and
Frontiers in Animal Science 11
Supplementary Figure S5). In contrast, no genes showed significant

correlations with the cumulative health measure for the healthy-

metritis groups (Figure 5B). However, gene expression levels of

LCN2, PGLYRP1, KCNJ16, CATHL6, and KLRF2 were correlated

with the individual pathophysiological features (band count,

fibrinogen, haptoglobin, and Pprot) (Supplementary Figure S6).

The integration of gene expression data with pathophysiological

data influenced the performance of classification models for

distinguishing between healthy – mastitis and healthy – metritis

groups. For healthy –mastitis classification, model accuracy declined

when trained solely with gene expression data (Table 6 and

Figure 6A). Of the 19 genes included, only nine were selected
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FIGURE 4

Variation of cumulative health measure data between groups and across time points. (A) Cumulative health measures of dataset 1, (B) cumulative
health measures of dataset 2, (C) cumulative health measures of dataset 3, and (D) normalized cumulative health measure data.
TABLE 5 Mean and median normalized cumulative health measure and reported disability weight.

Disease The current method McConnel et al. (2017)

Mean Median Mean Median Disability weight class Individual disability weight

Metritis 0.24 (1) 0.22 (1) 4.93 (2) 5.00 (1) 0.50 0.50

Ketosis 0.28 (2) 0.28 (2) 4.67 (1) 5.00 (1) 0.50 0.50

Mastitis 0.38 (3) 0.38 (3) 5.47 (4) 5.33 (4) 0.50 0.53

Hypocalcemia 0.39 (4) 0.40 (4) 5.00 (3) 5.00 (3) 0.50 0.53
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during model training (Figure 6B). Re-training the model with both

gene and pathophysiological data did not improve the classification

accuracy (AUC = 0.91, Sensitivity/Specificity = 0.78/1.00, Table 6).

The integration of genes reported in McConnel et al. (2020b) with

pathophysiological data yielded similar results (Supplementary

Table S6).

In the case of healthy – metritis classification, the performance

slightly improved when gene expression data were used (Table 6;

Supplementary Table S6; Figures 6C, E). The best accuracy was

achieved by combining gene expression and pathophysiological

data. Of the 14 genes used, five were selected during model

training (Figure 6D). Among these, only three genes (PGLYRP1,

KCNJ16, and KLRF2) were consistently selected when both data

types were integrated (Figure 6F).

Regarding the behavioral data, we examined the normalized

average daily activities prior to the initial sampling period. Their

correlations with the cumulative health measure for mastitis and the

PCA analysis of these features are shown in Figures 7, 8. The average

daily behavior patterns were similar between the three dates (Figure 7).

However, only the average time spent per hour (min/h) on rumination

and being active differed between healthy and mastitis groups on the

day prior to disease diagnosis. This pattern can also be observed in the

biplots (Figure 8B). Zambelis et al. (2019) reported that the correlation

between sensor data and visual observations was the lowest for eating

behavior compared to rumination and activity levels. Behavior features

one day prior to diagnosis showed better discrimination between

healthy and mastitis groups, though they did not distinguish between

severity classes (high and low mastitis). In addition, the correlation

between behavior and cumulative healthmeasure was also stronger one

day prior to diagnosis (Figure 8A).
4 Discussion

In this study, we investigated the association between

pathophysiological data in dairy cattle with hypocalcemia, ketosis,
Frontiers in Animal Science 12
mastitis, and metritis to estimate a summary measure of health

status using a machine learning approach. Previous studies have

used disability weights to assess disease severity in terms of its

impact on cows’ health and milk production, based on expert

ratings (McConnel et al., 2017, 2018). Here, we extended this

concept by developing a more detailed summary health measure

that accounts for variability in pathophysiological data. Our

approach involved feature selection to identify key indicators of

disease, which were used in classification models to create a disease-

specific composite score or cumulative health measure representing

overall health status for each individual cow.

The classification models achieved accuracies ranging from 66

to 92%, with sensitivity and specificity values between 0.77/0.53 to

0.80/1.00. For example, a previous study reported lower accuracies

(F1 score) when identifying hypocalcemic cows (0.265 ± 0.051 to

0.548 ± 0.064); ketotic cows (0.159 ± 0.047 to 0.606 ± 0.050),

metritic cows (0.171 ± 0.084 to 0.550 ± 0.143), and mastitic cows

(F1 score of 0.51) using the dairy herd improvement (DHI)

assessment data (e.g., age, lactation stage, milk indicators, etc.)

across over 22,000 observations (Lasser et al., 2021). Other studies

using non-blood tests to predict ketosis reported that a logistic

regression model trained on features such as fat-to-protein ratio,

acetone and BHB concentrations in milk, lactose percentage,

lactation number and DIM achieved a sensitivity of ~0.74 and

specificity of ~0.76 (Satoła and Bauer, 2021). Although direct

comparisons are difficult due to differences in features and sample

sizes, these findings highlight the importance of combining milk

and blood data for diagnostics.

Low accuracy in classifying healthy and hypocalcemic cows

could be attributed to differences in DIM at the initial sampling

period, clinical stages (subclinical and clinical), and the seasonal

effects (summer vs winter). In the ketosis group, all enrolled cows

had subclinical ketosis, yet the model performance was weak, with

high rates of false positives and false negatives. Specifically, 35% of

healthy cases were misclassified as ketotic, while 33% of ketotic

cows were misclassified as healthy. The probability differences
FIGURE 5

Networks of pairwise correlations between pathophysiological features for each healthy – disease category. (A) Correlation between features in dataset 3
(healthy = 8 samples and mastitis = 10 samples), and (B) correlation between features in dataset 2 (healthy = 9 samples and metritis = 11 samples).
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between misclassified cases were small (mean ±1 standard

deviation; 0.06 ± 0.06 for truehealthy → predictedketosis; 0.11 ± 0.11

for trueketosis → predictedhealthy). This suggests similarities between

healthy cows and those with subclinical ketosis, particularly after

excluding BHB, calcium, and glucose from the model. Variability in

disease history (e.g., prior illnesses) may also have contributed to

classification errors. Designing experiments with uniform groups is

challenging, especially in field studies where cows may have

different health histories and environmental exposures.

Controlling for confounding factors and including them in the

model can improve accuracy, but this requires larger and more

balanced sample size. In our dataset, the samples were skewed
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towards healthy cows compared to diseased ones, particularly in the

ketosis and hypocalcemia groups. Addressing this imbalance and

increasing the number of samples per class may help enhance

model performance.

The biological interpretation of selected features provides

additional insights into the underlying mechanisms of diseases. For

mastitis and metritis groups, the identified features were linked to

immune responses, as both diseases involve infection and

inflammation. Haptoglobin, identified as a key feature in our

analysis, was reported to be an indicator of mastitis (Huzzey et al.,

2009). These findings were further confirmed with the results of

feature selection when models were trained with gene expression and
TABLE 6 Model performance during classification of different disease groups trained with gene features or combined with
pathophysiological features.

Classes Input gene
features

Input pathophysiological
features

Total input
features

AUC/accuracy Sensitivity/specificity

Healthy – Mastitis 19 0 19 0.72/0.72 0.63/0.80

Healthy – Mastitis 9 4 13 0.91/0.89 0.78/1.00

Healthy – Metritis 14 0 14 0.84/0.85 0.88/0.83

Healthy – Metritis 5 4 9 0.84/0.90 0.82/1.00
FIGURE 6

Confusion matrix and the final selected features. (A, B) Healthy – mastitis: model trained with all gene expression data, (C, D) healthy – metritis:
model trained with all gene data, and (E, F) healthy – metritis: model trained with selected gene and pathophysiological data.
frontiersin.org

https://doi.org/10.3389/fanim.2025.1532385
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Marzougui et al. 10.3389/fanim.2025.1532385
pathophysiological data. The selected genes were found to be

associated with immune response (McConnel et al., 2020a, b).

Incorporating gene expression data alongside pathophysiological

data improved the overall model performance, especially for

healthy – metritis groups. In contrast, none of the selected features

have been directly reported as indicators of hypocalcemia in the
Frontiers in Animal Science 14
literature. Interestingly, albumin was found to be positively correlated

with calcium, which was unexpected given that calcium typically

binds to albumin (Ott et al., 2021). This could be an artifact of the

model or reflect variability in the calcium–albumin relationship

among cows. In our study, sodium and chloride (selected features)

were correlated with each other but showed no correlation with the
FIGURE 7

Variation of normalized daily behavior activities and ear temperature between healthy and mastitis groups. (A–C) Data at 1, 2, and 3 days prior to
TP1, respectively.
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anion gap. To our knowledge, no prior studies have linked changes in

these ions with hypocalcemia in cattle, suggesting a need for further

investigation. Our use of Lasso regularization helped identifying key

features that differentiate health and disease states, but its tendency to

select only one feature from a group of highly correlated features may

have influenced the selection process. This could explain why certain

features, such as sodium and chloride, were chosen over others. To

account for this limitation, we incorporated the occurrence of selected

features when calculating the cumulative health measure. Future

studies could explore alternative feature selection methods.

The cumulative health measure provided an objective estimate of

disease burden across different conditions. The ranking of diseases

based on this measure was consistent with previously established

disability weights. Future studies should consider adding a time

component, such as monitoring the rate of change in the cumulative

health measure over multiple time points to better capture disease
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dynamics. Differentiating between severity classes was not possible

with our current datasets, likely due to limited sample sizes within each

diseased – healthy group. Future studies should attempt to increase the

number of samples per class and integrate different types of data that

could capture the nuances between samples.

Behavioral data analysis showed that cows with mastitis could

be distinguished from healthy cows when combining behavior

metrics one day before diagnosis with cumulative health measure.

Previous behavior studies linked changes in lying time and feed

intake to mastitis, typically observed 3–5 days before diagnosis

(Sepúlveda-Varas et al., 2016). As with the pathophysiological data,

a larger sample size is needed for robust recognition of behavior

patterns and their potential integration with pathophysiological and

other omics datasets such as gene expression/transcriptomics data.

In this study, we did not anticipate environment and dairy farm

conditions to affect the sampling and associated metrics as the cows
FIGURE 8

Normalized daily behavior activities, ear temperature, and their association with cumulative health measure in the mastitis dataset. (A) Correlation
network between behavior features, ear temperature, and cumulative health measure computed at TP1, and (B) biplot based on behavior and
cumulative health measure in healthy and mastitis groups. Low and high represent the severity class of mastitis. From top to bottom, behavior
features represent −1, −2, and −3 days prior to TP1.
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were from the same dairy farm receiving similar water and feed

ratios; nevertheless, differences may be anticipated across different

dairy farms, which needs to be investigated further.
5 Summary

In this study, we provide a novel approach to compute a summary

disability weight measure of the health status of dairy cattle using

pathophysiologic data that can indicate the effect of specific diseases of

dairy cattle and their impact at the individual cow level. We evaluated

this approach on four common dairy cattle diseases and examined the

relationships between pathophysiological data by comparing between

healthy and diseased cows. We generated a cumulative health measure

as a distinct score for each disease. Such a score can be used to

compare health status between diseases. Future studies will validate

this approach with larger herd sizes and incorporate a time

component to account for disease duration and the associated

cumulative health loss. Moreover, integrating behavioral and gene

expression data could further enhance the robustness of this measure,

especially with larger sample sizes and data frommultiple dairy farms.

While this approachmay currently require substantial time, effort, and

costs, focused research using extensive datasets could provide a more

comprehensive understanding of disease impacts on dairy cattle.
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