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Current achievements in omics technologies have modernized livestock

biotechnology, offering extraordinary comprehension of animal productivity,

health, and reproduction. This extensive study examines the integration and

implementation of the omics approaches, genomics, transcriptomics,

proteomics, metabolomics, and epigenomics in livestock production systems.

We reconnoitered how genomic novelties redesign breeding strategies with

marker-assisted selection and CRISPR-based gene editing. Together,

transcriptomic analyses indicate key insights into gene expression patterns

governing economically essential traits such as muscle growth and milk

production. This study also shows the role of proteomics in identifying

biomarkers for health surveillance and product quality improvement along with

metabolomics, which contributes to understanding feed efficiency and disease

resistance. Particular attention is given to epigenomics studies exploring DNA

methylation and histone modifications in reproductive efficacy, underlining their

importance in fertility and embryonic development. Integrating multi-omics data

through systems biology approaches is discussed, demonstrating its perspective

in evolving precision livestock production. We also observed how omics

technologies improve assisted reproductive technologies (ART) by better

understanding of molecular mechanisms underlying fertility and embryo

development. While acknowledging the potential of these technologies, we

discuss critical challenges, data integration complications, and ethical respect

for genetic modification. This review outlines prospect directions and potential

novelties in livestock biotechnology, highlighting the crucial role of omics

approaches in addressing global food security contests through better

livestock productivity and reproductive efficiency. This study suggests that

continuous improvement in omics technologies might be the underlying cause

of the determination of the future of sustainable livestock production.
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1 Introduction

Livestock production is key to global agriculture, providing

significant resources such as meat, milk, wool, and leather (Krostitz,

1993; Rout et al., 2021). Livestock products are projected to increase

considerably, prompting the need for more effective and

supportable agricultural practices (Röös et al., 2017). Traditional

livestock breeding, management, and productivity improvement

approaches have relied on phenotypic selection and basic genetic

approaches, contributing to substantial achievements over the past

few years (van Arendonk, 2011). However, modern biotechnology

has reformed this field, offering new ways to enhance livestock

productivity, health, and reproductive efficiency (Sharma et al.,

2021; Das et al., 2022).

Integrating omics technologies like genomics, transcriptomics,

proteomics, metabolomics, and epigenomics into livestock

biotechnology signifies a paradigm shift in how we procedure

livestock production and reproductive management (Chakraborty

et al., 2022). These omics tools assist an inclusive approach to the

molecular and cellular mechanisms prevailing key traits such as

growth, milk production, feed efficiency, disease resistance, and

fertility (Maru and Kumar, 2024). The capability to arrest vast

amounts of data at multiple biological levels provides unique

insights into the complex collaborations between genes, proteins,

and metabolites (McCue and McCoy, 2017). This integrated

approach, often called systems biology, can optimize livestock

breeding programs, enhance animal welfare, and improve the

permanence of livestock farming systems (Brito et al., 2020).

Genomics has contributed to advancing livestock biotechnology

(ASLAM et al., 2024). Sequencing livestock genomics has opened

up new provisions for understanding the genetic basis of
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economically key traits. Genomic selection, a method that

influences dense marker information across the genome, permits

the prediction of the genome perspective of animals with better

precision (Eggen, 2012; Chakraborty et al., 2022). This has

contributed to further rapid genetic improvement, particularly in

traits that are difficult to measure directly, such as disease resistance

and reproductive productivity (Xu et al., 2017). Genomics is also

instrumental in isolating genes and regulatory regions related to

desirable traits, which can be directed for precision breeding

through innovative gene-editing technologies such as CRISPR-

Cas9 (Bohra et al., 2020).

Transcriptomics, which comprises the study of RNA

transcripts, is another layer of complexity to knowing livestock

biology (Lowe et al., 2017). By studying gene expression patterns in

several tissues and growing stages, transcriptomics describes

insights into how genes are synchronized in response to

environmental, nutritional, and physiological changes (Chandhini

and Rejish Kumar, 2019). This information is valuable for

improving traits associated with growth, lactation, and

reproductive enactment (Long, 2020). Identifying differentially

expressed genes and non-coding RNAs offers new goals for

genetic and nutritional involvements that can improve animal

productivity and health (Jilo et al., 2024).

Proteomics is a comprehensive study of proteins and their

functions, and associated genomics and transcriptomics provide

information about biological effectors in cells and tissues (Satrio

et al., 2024). Meanwhile, proteins are the primary molecules

responsible for cellular functions. Understanding its abundance,

modifications, and interactions is crucial for revealing the

mechanisms underlying key traits in livestock (Wang and

Ibeagha-Awemu, 2021). Proteomics has been applicable to
FIGURE 1

This graphic diagram shows multi-omics integration in livestock biotechnology to advance productivity, health, and reproduction, enabling
innovative breeding and management.
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identify biomarkers for disease resistance, meat and milk quality, and

reproductive traits (Ribeiro et al., 2020). Post-translational

modifications, like phosphorylation, acetylation, and glycosylation,

have revealed key regulatory pathways influencing cellular processes

such as muscle growth, immune response, and reproductive

efficiency (Nissa et al., 2021).

Metabolomics studies identify small molecules or metabolites in

biological processes, offering an exclusive approach to the metabolic

processes associated with livestock growth and reproduction

(Goldansaz et al., 2017). Profiling the metabolome can increase

insights into animals’ nutritional and physiological status and

identify biomarkers allied to feed efficiency, energy metabolism,

and health (Marina et al., 2024). Metabolomics can improve

livestock production by optimizing diets, finding metabolic

bottlenecks, and selecting more efficient animals to convert feed

into valuable products (Sun et al., 2019). Metabolomics studies can

develop our understanding of metabolic adjustments during

pregnancy, lactation, and growth, leading to targeted involvements

that improve animal reproduction (Choudhary et al., 2024).

Epigenomics, exploring the heritable changes in gene expression

that do not involve modifications in the DNA sequence, signifies an

emerging frontline in livestock biotechnology (Ibeagha-Awemu and

Zhao, 2015). Epigenetic modifications, such as DNA methylation

and histone modifications, are key in regulating gene expression

during growth and responding to environmental dynamics such as

nutrition, stress, and disease (Kumar et al., 2020). Livestock

epigenomics will likely improve reproductive efficiency, as

epigenetic mechanisms impact fertility and embryonic

development (Wang and Ibeagha-Awemu, 2021). Understanding

the epigenetic role of livestock species may lead to new approaches
Frontiers in Animal Science 03
for managing reproductive tasks, such as embryonic loss, low

fertility rates, and early embryonic death (Zhu et al., 2021)

(Figure 1).

Integrating these omics methodologies into livestock

biotechnology presents significant challenges. A key issue is the

enormous amount of data produced by omics technologies, which

requires advanced bioinformatics tools for practical analysis,

interpretation, and integration (Fillinger et al., 2019). Integrating

data from various omics tools, including genomics, transcriptomics,

proteomics, metabolomics, and epigenomics, can reveal complex

regulatory networks and molecular pathways underlying key traits.

However, this process demands careful consideration of data

compatibility and robust statistical analysis (Canzler et al., 2020;

Graw et al., 2021). Developing computational models and machine

learning algorithms is key for harnessing the full potential of omics

technologies in livestock biotechnology (Koltes et al., 2019;

Chakraborty et al., 2022). These models must consider the dynamic

interactions between genes, proteins, and metabolites across different

tissues, developmental stages, and environmental stresses.

Even though integrating omics into cattle biotechnology has

several advantages, many studies have not fully examined the variety

of uses across various species. Other significant livestock, like sheep,

goats, poultry, and even aquaculture species, have the potential to

advance livestock biotechnology in addition to more conventional

species like cattle and pigs (Prasad et al., 2023). Because of these

differences in species-specific biological systems, customized strategies

that consider each species’ distinct genetic composition and

physiological traits are required (Council et al., 2002). In this regard,

one example of the technological developments in the field is the

function of non-coding RNAs (ncRNAs), a crucial area of genomics
FIGURE 2

Overview of Genomic Innovations in Livestock Biotechnology. The flow diagram outlines key genomic approaches, including genetic mapping,
marker-assisted selection (MAS), genome-wide association studies (GWAS), CRISPR and gene editing, and transcriptomics. These approaches are
pivotal in improving production traits and exploring gene expression, aiming at muscle growth, milk production, and fat deposition. Integrating these
technologies depicts advancements in livestock breeding, productivity, and reproductive proficiency.
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study. Although most ncRNA research has been on cattle, studies on

the functional roles of ncRNAs in other species, such as pigs, sheep, and

poultry, are gaining popularity (Gong et al., 2023). NcRNAs that

regulate gene expression during essential physiological processes like

immunological responses, growth, and reproduction include long non-

coding RNAs, circular RNAs, and microRNAs (Yadav et al., 2024). It

has been discovered that several miRNAs influence sheep follicular

development, providing insight into how to improve reproductive

success (Yang et al., 2019). Additionally, miRNAs have been shown

to modify poultry’s immune responses, which could be utilized to

enhance disease resistance and vaccine efficacy (Do et al., 2021).

Reproductive management and animal breeding are changing

due to omics technologies other than ncRNAs. Cattle and pig

breeding operations now rely heavily on genomic selection, which

uses genomic data to forecast an animal’s genetic potential (Misztal

et al., 2020). However, genomic selection also spreads to other

species, such as poultry, where genomics increases meat yield and

egg production, and goats, where genome-wide association studies

(GWAS) are used to find loci linked to disease resistance features
Frontiers in Animal Science 04
(Ren et al., 2024). Furthermore, proteomics and metabolomics

provide fresh perspectives on the metabolic processes that control

development and fertility in different species (Panner Selvam et al.,

2021). Researchers are finding biomarkers that predict fertility and

feed efficiency by examining the proteome profiles of dairy cows

and pigs (Aranciaga et al., 2020; Mills, 2021). This could lessen the

environmental effect of livestock farming (Figure 2).

The potential assistance of integrating omics approaches in

livestock biotechnology is enormous. Understanding the molecular

mechanisms, growth, reproduction, and health, we can develop more

accurate and targeted strategies for improving livestock production

(Singh et al., 2014). For instance, genomic selection with

transcriptomic and proteomic data can improve the accuracy of

breeding programs, leading to more practical selection for traits such

as feed efficiency, disease resistance, and reproductive performance

(Gutierrez-Reinoso et al., 2021). Additionally, metabolomics and

epigenomics insights can apprise nutritional interventions that

enhance animal growth and fertility while reducing the

environmental stress of livestock farming (Loor, 2022) (Figure 3).
FIGURE 3

Proteomics analysis in livestock production emphasizes protein profiling, post-translational modifications, and biomarker detection for health and
disease control. It also has essential applications in increasing meat and dairy standards. The figure outlines key proteomic approaches contributing
to the advancement of livestock production.
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2 Genomic innovations in livestock
production

Genomic innovations have transformed livestock breeding and

management, offering previously absent genetic improvement (Perisse

et al., 2021). The integration of genomic technologies like genetic

mapping, marker-assisted selection (MAS) (Boopathi, 2013), genome-

wide association studies (GWAS) (Uffelmann et al., 2021), and

CRISPR-Cas9 gene editing (Singh et al., 2017), with transcriptomics

and gene expression profiling (Kumar et al., 2016) has enabled a more

detailed understanding of the genetic basis of complex traits (Ribeiro

et al., 2020)s. This has significantly improved growth, reproductive

performance, disease resistance, and production traits such as muscle

development and milk yield (Islam et al., 2020). Furthermore, the

expanding repertoire of non-coding RNAs (ncRNAs) has revealed
Frontiers in Animal Science 05
regulatory mechanisms that govern gene expression, providing deeper

insights into the molecular networks that shape livestock phenotypes

(Velez, 2023; Jilo et al., 2024) (Figure 4).
2.1 Genetic mapping and marker-assisted
selection

Genetic mapping discusses identifying the relative positions of

genes and other genetic components within a genome (Council

et al., 1988; Boopathi, 2013). High-resolution genetic maps have

been recognized for livestock species, including cattle, pigs, sheep,

and chickens, consenting to their recognition of quantitative trait

loci (QTLs) with economically essential traits (Cockett and Kole,

2008; Stinckens et al., 2010; Hu et al., 2020). These findings of QTLs

are vital for finding molecular markers for breeding, such as growth
FIGURE 4

This schematic outlines an inclusive, integrative approach to improving livestock reproductive efficacy by leveraging epigenetic modulation. It tells
the complex molecular interactions between epigenetic regulatory mechanisms, metabolomic signatures, and nutritional interventions.
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rate, milk yield, disease resistance, and reproductive productivity

(Khalil, 2020). Advances in next-generation sequencing (NGS) tools

have improved the accuracy of genetic maps, providing more

profound attention to the genetic architecture of livestock traits

(Ghosh et al., 2018). In cattle, high-density single nucleotide

polymorphism (SNP) arrays have been used to identify QTLs

with milk production, fertility, and meat quality (Ibeagha-Awemu

et al., 2016). Genetic mapping in poultry indicates loci associated

with growth rate, egg production, and resistance to infectious

diseases like Marek’s disease and avian influenza (Churchil, 2023)

(Figure 5).
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MAS leverages the association between molecular markers and

desirable traits to accelerate breeding (Cobb et al., 2019). By selecting

animals based on their genetic profiles rather than solely on

phenotypic performance, MAS improves the accuracy and

efficiency of breeding programs (Beuzen et al., 2000; Brito et al.,

2020). MAS has been widely adopted in dairy cattle to enhance milk

yield, fat and protein content, and somatic cell count (a measure of

mastitis resistance) (Alhussien and Dang, 2018). MAS has been used

in beef cattle to select traits like feed efficiency, marbling, and carcass

weight (Hozáková et al., 2020). Identifying markers linked to the

myostatin gene (MSTN), which regulates muscle development, has
FIGURE 5

This indicates the key areas where epigenetic mechanisms, especially DNA methylation and histone modifications, have a potential role in
reproduction. (1) Epigenetic Regulation of Fertility and Embryo Development, wherever epigenetic modifications affect gene expression patterns
essential for reproductive rate; (2) Environmental and Nutritional Influences on Epigenetic Changes, underlining how external influences affect
epigenetic states. (3) Integrating Multi-Omics for Precision Livestock Farming, which highlights the use of multi-omics methodologies to optimize
reproductive efficacy in livestock through agriculture.
FIGURE 6

Signifies the integration of multi-omics data in livestock, with an emphasis on (1) Systems Biology Approaches in Livestock, which focus on
understanding complex biological systems, and (2) Enhancing Precision Breeding and Management, where multi-omics data services in refining
breeding practices and management decisions, and (3) Applications of Omics in Reproductive Biotechnology, illustrating how omics-based
techniques contribute to advancements in reproductive technologies and genetic progresses in livestock.
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enabled the selection of animals with increased muscle mass and

reduced fat deposition (Ayuti et al., 2024). Despite its success, MAS

effectiveness depends on the strength of the linkage between the

marker and the target trait, which can vary between populations and

environments (Podlich et al., 2004). Additionally, MAS is more

effective for traits controlled by a few significant genes (oligogenic

traits) than polygenic traits influenced by multiple genes (Singh et al.,

2015; Boopathi and Boopathi, 2020). As a result, MAS with genomic

selection and GWAS capture a broader spectrum of genetic variation

to develop complex traits (Tam et al., 2019) (Figure 6).
2.2 Genome-wide association studies

GWAS is an effective tool for identifying the genetic variants for

complex traits by scanning the entire genome for connotations

(Xiao et al., 2022). Unlike MAS, which has pre-identified markers,

GWAS permits the discovery of novel loci related to traits of interest

(Korte and Farlow, 2013). This method has been instrumental in

uncovering the genetic basis of complex traits in livestock, with

growth, reproduction, disease resistance, and product quality (Te

Pas et al., 2017). In cattle, GWAS has identified genetic variants

with milk yield, fat composition, fertility, and resistance to mastitis

(Devani et al., 2020). In pigs, GWAS has revealed loci related to feed

efficiency, meat quality, and susceptibility to diseases such as

porcine reproductive and respiratory syndrome (PRRS) (Lunney
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and Chen, 2010). In sheep and goats, GWAS has been identified in

study traits like wool quality, carcass composition, and resistance to

gastrointestinal parasites (Arzik et al., 2022; Carracelas et al., 2022).

A critical success of GWAS in livestock is the discovery of the

DGAT1 gene in dairy cattle, which shows a key role in milk fat

synthesis (Khan et al., 2021). Identifying this gene has enabled the

selection of animals with improved milk fat content, significantly

enhancing dairy production (Barillet, 2007). Another example is

identifying the FTO gene associated with fat deposition in cattle and

pigs, providing opportunities to manipulate body composition for

improved meat quality (Óvilo et al., 2022).

While GWAS has important innovations in livestock genetics, it

also has challenges. The genetic architecture of complex traits

mainly includes small effect sizes, making it challenging to

identify all the contributing loci (McCarthy et al., 2008; Korte and

Farlow, 2013; Tam et al., 2019). The accuracy of GWAS relies on the

quality and size of the datasets in some livestock species (Zhang

et al., 2014). Another task is population stratification, where genetic

differences between subpopulations can confuse the results

(Marigorta et al., 2018). To address these tasks, scientists use

multi-omics approaches integrating genomic, transcriptomic, and

epigenomics data to gain an extensive understanding of trait

variation (Akiyama, 2021). Advances in computational techniques

and machine learning also educate the power and accuracy of

GWAS, permitting the identification of subtler genetic effects

(Okser et al., 2014; Prabhod, 2022). As sequencing costs continue
FIGURE 7

Demonstrates the role of genomics and transcriptomics in enhancing fertility achievement in livestock. The figure indicates three key parts:
(1) Assisted Reproductive Technologies (ART) and Omics Integration, which indicates the combination of ART with genomic techniques to improve
fertility; (2) Impacts on Embryo Development and Success Rates, presenting how genomic and transcriptomic influences embryo viability and
developmental; and (3) Challenges and Future Directions, explaining prospective challenges and research guidance required for progressing fertility-
related genetic and transcriptomic study in livestock.
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to decrease, the whole-genome sequence data in GWAS is becoming

more feasible for enhancing genetic mapping resolution

(Fuentes‐Pardo and Ruzzante, 2017) (Figure 7).
2.3 CRISPR and gene editing in livestock

CRISPR-Cas9 is an innovative genome editing technique that

allows precise modifications to the DNA sequence at specific loci

(Gupta et al., 2019). This can potentially revolutionize livestock

productivity by enabling the introduction, deletion, or alteration of

genes linked with desirable traits (Quétier, 2016). Unlike traditional

breeding methods, which depend on natural variation, CRISPR

enables targeted genome manipulation, introducing beneficial alleles

that may be rare or absent in the population (Scheben et al., 2017).

One of the most prospective implementations of CRISPR in

livestock is the development of disease-resistant animals (Lamas-

Toranzo et al., 2018). Scientists used CRISPR to produce pigs

resistant to PRRS by editing the gene encoding the CD163

receptor, which the virus uses in the host cells (Burkard et al.,

2017) and exhibits resistance to PRRS. CRISPR has improved

chickens’ resistance to avian influenza and cattle’s resistance to

bovine tuberculosis, providing new avenues for strengthening

animals (Pal and Chakravarty, 2019; Gao et al., 2023). CRISPR

has also been used to improve production in cattle by editing the

myostatin gene (MSTN) to make animals with better muscle mass,

resulting in higher meat yield (Kalds et al., 2023). In pigs, CRISPR

has been used to modify genes linked with growth performance and

feed efficiency, leading to animals that are highly productive and

environmentally sustaining (Wu and Bazer, 2019). CRISPR has

been used in dairy cattle to present enhanced milk production and

composition alleles, offering new opportunities to strengthen dairy

production (Yang, 2024).

The role of gene-edited animals in the food supply focused on

strict regulatory consent and people’s perception of genetically

modified organisms (GMOs) may upset the acceptance of this

technology (Brookes and Smyth, 2024). We must also address

ethical apprehensions regarding animal welfare, biodiversity, and

food safety. Moreover, the potential for unplanned off-target effects,

where CRISPR introduces changes in unintentional genome regions,

requires careful checking to ensure the safety and efficacy of gene-

edited animals (Cook et al., 2017; Wienert and Cromer, 2022).
2.4 Transcriptomics for enhancing
production traits

Transcriptomics is a tool for understanding the gene expression

patterns related to production traits in livestock (Salleh et al., 2017).

In dairy cattle, transcriptomic analyses have recognized key genes

involved in milk production associated with milk-protein synthesis,

fat metabolism, and immune response (Zhou et al., 2019). These

results have delivered valuable information for improving milk

quality and productivity through selective breeding (Wang et al.,

2018). In beef cattle, transcriptomics has been used to identify
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muscle development and meat quality. By analyzing gene

expression in muscle tissues, we recognized genes linked with

muscle growth, fat deposition, and meat tenderness (Wang et al.,

2009). These understandings have knowledgeable breeding

strategies to increase carcass quality and meat yield (Guo and

Dalrymple, 2022).
2.5 Gene expression profiling in livestock

Gene expression describes accompaniments transcriptomics to

allow a more focused examination of gene activity under different

biological circumstances (Wolf, 2013; Kumar et al., 2016). Through

techniques like RNA sequencing (RNA-Seq) and microarrays, the

expression levels of thousands of genes advance a deeper

understanding of the molecular networks for phenotypic traits

(Singh and Singh, 2024). In livestock production, gene expression

profiling has helped identify regulatory pathways for essential traits

like growth, reproduction, and immune function (Loor et al., 2005).

For example, gene expression profiling has elucidated key genes

intricate in skeletal muscle development in cattle and pigs,

enhancing meat quality and yield through targeted breeding

(Karisa, 2013; Zeng and Du, 2023). The dynamic nature of the

transcriptome challenges livestock production, as gene expression

patterns can be affected by several environmental factors such as

diet, stress, and disease (Parreira and de Sousa Araújo, 2018). While

gene expression profiling offers valuable insights into trait variation,

it must be taken within the broader context of other molecular data,

such as epigenomics and proteomics, to recognize its full effect on

livestock traits (Triantaphyllopoulos et al., 2016).
2.6 Role of non-coding RNAs

Non-coding RNAs (ncRNAs), including microRNAs (miRNAs),

long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs),

have emerged as crucial regulators of gene expression in livestock (Do

and Suravajhala, 2023; Suravajhala, 2023). ncRNAs do not encode

proteins but regulate gene expression at the transcriptional and post-

transcriptional (Szymanski et al., 2003) and are associated with

diverse biological processes, including development, metabolism,

and immune response located ncRNAs as key players in

determining complex traits in livestock (Huang et al., 2021).

New studies have implicated the ncRNAs in regulating traits

like muscle growth, fat deposition, and reproductive performance

(Yang et al., 2023). miRNAs have been shown to regulate muscle

development by targeting genes in muscle hypertrophy (Horak

et al., 2016). The lncRNAs have been linked with fat metabolism,

inducing traits such as fatty tissue development (Cheng et al., 2021).

ncRNAs have also been associated with milk production and

composition in cattle (Lu et al., 2021). For example, specific

miRNAs regulate genes related to milk protein synthesis, and

others are related to lactation and immune function in the

mammary gland (Hue-Beauvais et al., 2021). By modulating the

expression of key genes through ncRNA-based involvements,
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production traits such as muscle growth, milk yield, and

reproductive efficiency may be improved (Hu et al., 2022).

Despite the developing interest in ncRNAs, little is known about

their functions in livestock. The ncRNA-mediated regulation and

the trouble of precisely measuring ncRNA expression levels present

challenges for integration in the breeding programs (Ramesh,

2013). However, progress in RNA sequencing technologies and

bioinformatics techniques is expected to enable the finding of new

ncRNAs and their roles in livestock production.
2.7 Applications in muscle growth, milk
production, and fat deposition

Muscle growth is a significant characteristic of livestock

production, mainly for meat-producing animals such as cattle,

pigs, and poultry (Wang et al., 2024). Genomic tools have

determined numerous genes and regulatory pathways intricate in

muscle development, with myogenesis, muscle hypertrophy, and

protein synthesis (Yang et al., 2024). The myostatin gene (MSTN)

has been specified as an essential regulator of muscle growth in

cattle and pigs (Aiello et al., 2018). Animals with mutations in

MSTN show better muscle mass and reduced fat deposition,

enhancing carcass quantity and meat quality (Ceccobelli et al.,

2022). Gene editing technologies, like CRISPR-Cas9, have been

utilized to have mutations in MSTN and other muscle-related

genes, causing significant muscle growth and feed efficiency in

animals (Zhao et al., 2022).

Milk production is a complicated trait involving multiple genes

in lactation, metabolism, and immune function (Golan and Assaraf,

2020). Genomic technologies have identified various QTLs and

SNPs related to milk yield, fat and protein content, and lactation

(Ma et al., 2021). The DGAT1 gene, which signifies a potential role

in milk fat synthesis, has been recognized as a major contributor to

milk composition in dairy cattle (Khan et al., 2021; Tian et al.,

2022). MAS and genomic selection have been adopted in dairy

breeding programs to improve milk production and traits like

somatic cell count and mastitis resistance (Brito et al., 2021).

Transcriptomics and gene expression profiling have also delivered

valuable understandings of the molecular mechanisms for lactation,

leading to new approaches for improving milk quality and

production efficiency (Sikka et al., 2023).

Fat deposition is significant in livestock production, influencing

meat quality and reproductive performance (Schumacher et al.,

2022). Genomic studies have discovered several genes intricate in

fat metabolism, including those related to adipogenesis, lipogenesis,

and fatty acid oxidation (Ladeira et al., 2016). The FTO gene has

been linked with fat deposition in cattle and pigs, giving

opportunities to influence body composition for better meat

quality and reproductive efficiency (Dvor ̌áková et al., 2012;

Jevsinek Skok et al., 2016). Transcriptomics and gene expression

profiling have identified livestock fat deposition regulatory

networks (Huang et al., 2017). Studies have shown that miRNAs

and lncRNAs have critical roles in regulating adipogenesis and
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lipid metabolism, offering new targets for genetic progress

(Lorente-Cebrián et al., 2019).
3 Proteomics in livestock productivity

Developments in molecular biology have delivered powerful

techniques to attain these goals, with proteomics developing as one

of the most transformative methodologies (Misra et al., 2019).

Proteomics, the large-scale study of proteins and their role, offers

an extraordinary prospect to comprehend the molecular tools

causing important physiological and productive traits in livestock

(Gao et al., 2024). It complements genomic and transcriptomic

approaches by focusing on proteins that indicate cellular functions

(Sobti et al., 2022). This is important because proteins are the

functional products of genes, and their expression, modification,

and interactions are significant to cellular processes, with

metabolism, growth, reproduction, and immune responses

(Udenwobele et al., 2017).
3.1 Protein profiling and post-translational
modifications

In livestock, protein describing maps the proteome, or the

complete set of proteins, having different tissues, phases of

development, and physiological conditions (Jamwal et al., 2023).

This method delivers insights into the molecular mechanisms of

heavy growth, reproduction, and disease resistance (Ribeiro et al.,

2020). Protein profiling has been functional extensively in livestock

species, including cattle, pigs, sheep, goats, and poultry (Almeida

et al., 2015). In cattle, proteomic analyses of muscle tissues have

recognized proteins intricate in muscle growth, energy metabolism,

and meat quality (Picard et al., 2010). In dairy cows, protein

profiling of milk and mammary tissues has shown key proteins

complicated in milk production, fat synthesis, and immune

responses (Dai et al., 2018). Poultry protein profiling has

provided insights into muscle development, egg production, and

disease resistance (Kanakachari et al., 2022).

Mass spectrometry (MS) is an extensive livestock protein

profiling technique (Soler et al., 2020). MS-based proteomics

identifies and quantifies thousands of proteins in a single

experiment (Taverna and Gaspari, 2021). MS can map protein

interactions and pathways, providing a systems-level understanding

of cellular processes (Richards et al., 2021). Other tools, such as two-

dimensional gel electrophoresis (2D-GE) and protein microarrays,

are also applied for protein profiling (Meleady, 2018), although they

are less extensive than MS.

PTMs are chemical modifications that follow proteins after

synthesis (Barber and Rinehart, 2018). These modifications can

change protein function, stability, localization, and relations and are

essential for regulating cellular processes (Karve and Cheema,

2011). PTMs regulate animal growth, reproduction, metabolism,

and immune responses (Fan et al., 2024). In dairy cows, PTMs have
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been associated with mastitis resistance, with phosphorylated

proteins identified as critical regulators of the immune response

in the mammary gland (Adnane et al., 2024). The study of PTMs in

livestock is still in its initial stages, but advances in proteomics

technologies enable the identification of PTMs on a larger scale

(Almeida et al., 2021). MS-based approaches help study PTMs, as

they can identify modifications at specific amino acid residues and

quantify changes in PTMs in response to different situations (Doll

and Burlingame, 2015). The role of post-translational modifications

(PTMs) in livestock productivity presents a promising avenue for

identifying novel genetic targets. By elucidating how PTMs regulate

key biological processes, researchers can enhance breeding

strategies to improve traits such as growth efficiency, reproductive

performance, and disease resistance.
3.2 Biomarkers for disease and health

Proteomics biomarkers are crucial as they offer real-time

insights into an animal’s physiological state and response to

environmental and biological challenges (Raposo de Magalhães

et al., 2020). Proteomic technologies are compatible with

biomarker discovery because they enable the inclusive analysis of

proteins and their modifications through tissues and biofluids

(Dayon et al., 2022). These biomarkers can be used to identify

diseases initially, expect disease susceptibility, monitor the

effectiveness of treatments, and assess animal health (Xu and

Veenstra, 2008; Reinhart et al., 2012). Biomarkers have been

identified for various livestock conditions, including metabolic

disorders, infectious diseases and reproductive (Zachut et al., 2020).

Proteomics is a robust approach for identifying biomarkers related

to infectious diseases in livestock, such as bovine tuberculosis, mastitis,

foot-and-mouth disease, and avian influenza, enabling early diagnosis

and optimizing disease control strategies (Suminda et al., 2022). In

dairy cows, milk proteomic analyses have known key protein

biomarkers related to mastitis, an inflammatory condition of the

mammary gland that badly impacts milk production and quality

(Giagu et al., 2022). These biomarkers contain acute-phase proteins,

enzymes, and immune-related proteins upregulated due to infection

(Bathla et al., 2020). Monitoring these biomarkers allows early mastitis

detection, enabling timely interventions to mitigate damage to the

mammary gland. Proteomics has also been used in pigs to find

biomarkers for porcine reproductive and respiratory syndrome

(PRRS), a viral disease associated with reproductive failure in sows

and respiratory distress in piglets, aiding disease management (Genini

et al., 2012). Proteomic studies have specified proteins intricate in the

immune response to PRRS, which could be used to improve diagnostic

tests and vaccines (Wu et al., 2022).

Besides infectious diseases, metabolic disorders like ketosis and

fatty liver disease are common in high-producing livestock,

particularly dairy cows (Wu, 2020). Proteomics has been used to

find protein biomarkers for metabolic health in livestock, allowing

primary detection and intervention (Abdelnour et al., 2019). In dairy

cows, proteomic analyses of blood and milk have known biomarkers

for ketosis, a metabolic disorder that occurs when cows mobilize
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excess fat during early lactation (Ceciliani et al., 2018). These

biomarkers contain enzymes intricate in lipid metabolism, such as

acyl-CoA syntheses and fatty acid-binding proteins, raised in cows

with ketosis (Soares et al., 2021). Proteomics has also been used to

find biomarkers for reproductive performance in livestock. For

example, in cattle, proteomic studies of follicular fluid and uterine

secretions have known proteins involved in ovarian function,

fertilization, and early embryo development (Ferrazza et al., 2017).

These biomarkers could predict fertility and develop reproductive

management in dairy and beef herds (Fu et al., 2016). While

proteomics has an outstanding prospective for biomarker discovery

in livestock, several tasks must be addressed. One of the main tasks is

the complexity of the proteome, as protein expression can differ

extensively between tissues, developmental stages, and environmental

conditions (Kumar et al., 2016). Another task is the need for large-

scale validation of biomarkers in varied populations and

environments (Trapp et al., 2014). Therefore, comprehensive

validation is required before biomarkers can be implemented in

routine diagnostic tests or management practices. Developing high-

throughput proteomics platforms, like targeted MS and multiple

reaction monitoring (MRM), facilitates the validation of biomarkers

in large-scale research (Colangelo et al., 2013). As these tools develop,

protein biomarkers in livestock management will likely increase,

improving disease detection, animal welfare, and productivity.
3.3 Applications in meat and dairy quality
development

Meat quality is a key factor in livestock production, determining

market value. The biochemical composition of muscle tissues

initially identifies characteristics such as tenderness, flavor,

juiciness, and color (Clinquart et al., 2022). Proteomics offers

valuable insights into the molecular mechanisms essential to these

attributes, allowing the identification of proteins and pathways that

influence meat quality (Wu et al., 2015). Postmortem muscle

glycolysis expressively affects meat quality by pH, water-holding

capacity, and tenderness (Stajkovic et al., 2019). Proteomic studies

have known key enolase and creatine kinase proteins related to

glycolysis and muscle contraction, which affect meat quality traits in

cattle, pigs, and poultry (Picard et al., 2010). Proteomics has also

been used to study the effect of stress on meat quality (Xing et al.,

2019). Stress during transport and slaughter can yield pale, soft, and

exudative (PSE) meat that is less desired by consumers. Proteomic

investigations of muscle tissues have identified stress-associated

proteins, like heat shock proteins and enzymes involved in oxidative

stress, that are upregulated in animals related to stress (Kim et al.,

2010). These proteins could be utilized as stress-resistant

biomarkers, allowing us to less susceptible animals to stress and

produce higher-quality meat (Gagaoua et al., 2021).

Milk quality is an essential feature of livestock productivity,

with proteomics having a prospect of understanding the molecular

factors that affect milk composition and yield. Proteomic analyses of

milk and mammary gland tissues have recognized proteins involved

in milk production, secretion, and immune function, regulating
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milk production and quality (Bhat et al., 2020). The proteomic

studies have identified caseins, whey proteins, and enzymes intricate

in fat and lactose synthesis as key contributors to milk composition

(Bhat et al., 2020). Proteomics has been used to study mastitis’s

effects on milk quality (Reinhardt and Lippolis, 2020). Proteomic

analyses of milk from mastitis cows have known proteins involved

in the immune response, such as lactoferrin and serum albumin,

which are raised during infection (Abdelmegid et al., 2017). These

proteins may serve as biomarkers for early mastitis discovery,

allowing timely treatment to inhibit impacts on milk productivity

(Libera et al., 2021).
4 Metabolomics and nutritional
efficiency in livestock

Metabolomics, the inclusive study of small molecules, is a

powerful tool for revealing metabolic pathways that govern

livestock growth, health, and productivity. Metabolic profiling

contains the detailed analysis of metabolites in biological samples

such as blood, urine, tissues, and ruminal fluid, providing insights

into physiological and pathological states (Saleem et al., 2013). This

allows the identification of key metabolites and pathways that affect

feed efficiency, growth performance, and animal health (Kaur et al.,

2023). In livestock, feed efficiency is a key factor of productivity and

sustainability. Animals having to convert feed into body mass

efficiently reduces production costs and minimizes environmental

effects, thus improving the sustainability of livestock production

(Taiwo, 2023). Several factors affect feed efficiency, including

genetics, gut microbiota, nutrient absorption, and metabolic

activity (Li et al., 2019). Metabolomics studies have helped

unravel these complexities by identifying metabolic pathways that

differentiate efficient from inefficient animals (Singh et al., 2023).

Studies on cattle, pigs, and poultry have confirmed that

metabolic pathways associated with energy, amino acid, and lipid

metabolism are key in determining feed efficiency (Zampiga et al.,

2021). Healthy animals tend to have lower nitrogenous waste

metabolites and higher metabolites related to better energy

utilization (Ferket et al., 2002). These results deliver potential

biomarkers that can be used for the genetic selection of animals

with superior feed conversion ratios (FCR). Metabolomics also

allows the monitoring of nutrient absorption and utilization,

providing information on how different feeds affect metabolic

processes (Roques et al., 2020). We can improve feed efficiency

and reduce waste by optimizing feed composition based on

metabolomics data.
4.1 Identifying metabolic biomarkers for
growth and health

Metabolomics has allowed the identification of biomarkers

correlating substantial growth and health traits in livestock
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(Wang and Kadarmideen, 2019). Biomarkers are signs that reveal

physiological states and can be used to monitor growth rates,

disease susceptibility, immune responses, and animal welfare

(Staley et al., 2018). In beef cattle, metabolites such as plasma

glucose, creatinine, and urea have been associated with faster

growth rates and better feed efficiency (Gómez et al., 2022). These

biomarkers could find animals with superior growth potential early,

enabling precision breeding and management (Karisa et al., 2014).

In dairy cattle, metabolites related to energy balance and lactation

performance, like ketone bodies, have been known as potential

biomarkers for milk production and health status (Gross and

Bruckmaier, 2019).

The detection of health-related biomarkers has also progressive

disease resistance research. In poultry, metabolic biomarkers

associated with oxidative stress and immune function have allied

to resistance against coccidiosis (Ducatelle et al., 2018). By

identifying animals with better metabolic profiles, we can breed

for better disease resistance, reducing antibiotic dependence and

improving animal welfare (Pal and Chakravarty, 2019).

Additionally, metabolic biomarkers can support the early

diagnosis of subclinical diseases, which are frequently hard to

detect through traditional clinical methods (Martins et al., 2021).

For example, metabolomics analyses have shown distinct metabolic

signatures with mastitis in dairy cows, allowing earlier intervention

and more efficient treatment (Haxhiaj et al., 2022).
4.2 Role in animal nutrition and disease
resistance

The application of metabolomics in livestock nutrition delivers

a comprehensive understanding of how dietary mechanisms

influence animal metabolism and productivity (Fontanesi, 2016).

By evaluating different diets’ metabolic changes, metabolomics can

help improve feed formulations to increase performance and health

(Roques et al., 2020). Diets supplemented with omega-3 fatty acids

have increased livestock’s metabolic profile, leading to healthier

growth rates and better meat quality (Alagawany et al., 2019).

Metabolomics also offers insights into how animals respond to

dietary challenges, such as nutrient deficiencies (Jones et al., 2012).

By understanding the metabolic variations in response to these

challenges, we can modify nutritional involvements to moderate

their effects (Verma et al., 2018). Metabolomics also shows that

animals suffering from heat stress have altered carbohydrate and

lipid metabolism (Sammad et al., 2020).

Metabolomics permits finding metabolic pathways that

contribute to immune function and pathogen resistance. Elevated

systemic antioxidant metabolite profiles correlate with enhanced

immunological resilience, reducing susceptibility to pathogenic

defies, with mastitis in bovine and respiratory infections in swine

(Castro-Moretti et al., 2020). These findings show that controlling

dietary antioxidant interventions may improve host immune

resilience and pathogen resistance.
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4.3 Epigenomics in reproductive efficiency

Epigenomics studies have revealed that environmental factors,

such as nutrition, stress, and disease, can induce epigenetic

alterations that affect reproductive performance (Ho et al., 2017).

Maternal nutrition in gestation can alter the DNA methylation

patterns in offspring, leading to modifications in growth, metabolism,

and reproductive performance (Zheng et al., 2014). These results

significantly affect breeding and management practices, as they

advocate optimizing the maternal environment, which might develop

reproductive efficiency in livestock (Greenwood and Bell, 2014).

Moreover, epigenomics modifications show a crucial role in embryo

development and the formation of pregnancy. Epigenetic alterations of

vital reproductive genes regulate embryonic implantation, placental

morphogenesis, and fetal development, contributing to reproductive

success (Palini et al., 2011; Choux et al., 2015). Elucidating epigenetic

modulators of reproductive initiation allows strategic interventions to

optimize fertility and reproduction.
4.4 Metabolic profiling and feed efficiency

Current advances in metabolomics have developed our

understanding of feed efficiency in livestock production through

inclusive metabolic profiling approaches (Artegoitia et al., 2019).

Incorporating high-throughput metabolomics technologies with

traditional phenotypic extents has explained the complex

biochemical networks underlying feed conversion efficiency (Alfaro

and Young, 2018). Metabolic profiling, mainly through mass

spectrometry and nuclear magnetic resonance spectroscopy,

discloses significant relations between specific metabolic signs and

feed efficiency phenotypes, with residual feed intake (RFI) and feed

conversion ratio (FCR) (Taiwo, 2023). High-yield animals show

unique metabolic features that reveal variations in energy

metabolism, protein conversion, and lipid utilization pathways

(Cantalapiedra-Hijar et al., 2018). These metabolic traits indicate

the physiological adaptations of these proficient animals and suggest

potential biomarkers for finding superior genetics (Gaughan et al.,

2019; Nawaz et al., 2024). Additionally, applying metabolomics in

livestock production has added to our understanding of the

interaction between host metabolism, rumen microbiota, and feed

efficiency, enabling the development of targeted nutritional

involvements to enhance production efficiency while minimizing

environmental influence (Rawal et al., 2024).
5 DNA methylation and histone
modifications in reproduction

5.1 Epigenetic regulation of fertility and
embryo development

Epigenetic modifications, mainly DNAmethylation and histone

modifications, modulate reproductive proficiency, with abnormal
Frontiers in Animal Science 12
epigenetic signs in gametogenesis associated with low fertility and

embryonic development (Jambhekar et al., 2019; Zhang et al., 2023).

Histone modifications regulate key genes intricate in early embryo

development, such as cell differentiation and organogenesis

(Brunmeir et al., 2009). Epigenetic alterations of reproductive

developments critically underpin the efficacy of assisted

reproductive technologies, with in vitro fertilization and

embryonic transfer strategies (Canovas et al., 2017). ART

techniques can induce epigenetic changes in embryos, leading to

altered gene expression and reduced developmental potential

(DeAngelis et al., 2018). By understanding the epigenetic

mechanisms that control fertility and embryo development, we

can improve strategies to optimize ART results and increase

reproductive efficiency in livestock.
5.2 Environmental and nutritional
influences on epigenetic modifications

Heat stress has been revealed to change DNA methylation

patterns in sperm, resulting in low fertility and reduced embryo

development (Rahman et al., 2018). Maternal nutrition during

gestation can increase epigenetic modifications in offspring that

affect their growth, metabolism, and reproduction (Gu et al., 2015).

Nutritional values can also affect epigenetic modifications in

livestock. Diets rich in methyl donors, such as folate and

methionine, can expand DNA methylation and enhance

reproductive efficacy (Diniz et al., 2024). Likewise, diets with

antioxidants can lower oxidative stress and protect against

epigenetic damage, increasing fertility and embryo development

(Torres-Arce et al., 2021). Understanding the environmental and

nutritional influences on epigenetic modifications is key for

regulating breeding and management practices in livestock.
5.3 Integrating multi-omics for precision
livestock farming

Multi-omics integration allows the inclusive analysis of biological

processes, providing insights into the complicated interactions

between genes, proteins, metabolites, and environmental factors

that influence livestock productivity (Fonseca et al., 2018). Using

genomic with metabolomics data, we can identify genetic variants

regulating metabolic pathways and contribute to traits like feed

efficiency, growth, and disease resistance (Suravajhala et al., 2016).

Integrating transcriptomic with proteomic data can deliver insights

into how gene expression is transformed into protein function,

allowing the identification of key regulatory networks (Kumar

et al., 2016). Integrating multi-omics data also has essential

applications in reproductive biotechnology, such as embryo

selection and artificial insemination, by linking epigenomics with

genomic data to find epigenetic markers that indicate embryo

viability and reproductive values (Hernández-Vargas et al., 2020;

Zhu et al., 2021; Wadood and Zhang, 2024).
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6 Multi-omics data integration
strategies

6.1 Systems biology approaches in
livestock

Systems biology approaches have been employed to model the

regulatory networks governing feed efficiency in cattle (Woelders

et al., 2011). Integrating multi-omics data allows us to find the

genetic and molecular aspects causing disease susceptibility and

resistance (Hasin et al., 2017). These findings are used to develop

targeted interventions, such as vaccines and nutritional

supplements, that improve disease resistance and increase animal

welfare (Colditz, 2002).
6.2 Enhancing precision breeding and
management

Integrating multi-omics data can enable precision breeding and

management practices in livestock production (Suravajhala et al.,

2016; Gao et al., 2024). These results are applied to improve more

accurate selection standards for breeding programs, leading to

better productivity and sustainability. Using genomic and

metabolomics data allows us to find genetic variants affecting

metabolic pathways and serve traits such as feed efficiency,

growth, and disease resistance (de Almeida Santana et al., 2016).

Integrating the transcriptomic and proteomic data can deliver

insights into how gene expression is interpreted into protein

function, allowing the identification of key regulatory networks

that regulate important traits (Haider and Pal, 2013). Integrating

multi-omics data also has applications in reproductive

biotechnology, such as embryo selection and artificial

insemination (Rabaglino et al., 2021). Combining epigenomics

and genomic data can reveal epigenetic markers that predict

embryo viability and reproductive performance (Hernández-

Vargas et al., 2020; Wu and Sirard, 2020).
6.3 Applications of omics in reproductive
biotechnology

The omics techniques in reproductive biotechnology can

revolutionize livestock breeding and management practices.

Genomic selection assists precise identification of breeding

individuals showing enhanced reproductive potential, including

fertility, embryonic viability, and reproductive proficiency (Das

et al., 2021). Epigenomics data can find epigenetic markers that

expect reproductive values, permitting a more precise selection of

animals for breeding programs (Wang et al., 2023). Transcriptomic

and proteomic data can identify key genes and proteins’ roles in

reproductive processes, such as oocyte maturation, embryo

development, and placental function (Zhang et al., 2009b).
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7 Improving fertility of livestock
production through genomics and
transcriptomics

7.1 Assisted reproductive technologies and
omics integration

Assisted reproductive techniques have been used in livestock

production to improve reproductive performance and accelerate

genetics. These techniques include artificial insemination (AI), in

vitro fertilization (IVF), embryo transfer (ET), and somatic cell

nuclear transfer (SCNT) (Bertolini and Bertolini, 2009). With

genomic and transcriptomic insights, ART can enhance fertility

and reproductive rates (Ducreux et al., 2024). Genomic selection

has allowed us to find animals with superior reproduction, such as

early puberty, higher conception rates, and shorter calving intervals

(Granleese et al., 2015). Genome-wide association studies (GWAS)

have identified loci associated with fertility traits, allowing the

selection of animals with required genetics (Wu et al., 2014; Ma

et al., 2019). Transcriptomics delivers valued information about

gene expression dynamics during key stages of reproduction, with

oocyte maturation, embryo development, and implantation (Sirard,

2012). Transcriptomic profiling of reproductive tissues discloses key

molecular pathways of uterine receptivity, embryo implantation,

and assisted reproductive technology efficiency (He et al., 2021).
7.2 Impacts on embryo development and
success rates

Embryogenesis arises from complicated molecular processes

involving transcriptional regulators, involved signaling pathways,

and dynamic epigenetic modulation (Chan et al., 2011). Integrative

omics analyses reveal molecular mechanisms of heavy embryogenesis,

optimizing assisted reproductive technology practices (Feuer et al.,

2013; Ducreux et al., 2024). Preimplantation genetic screening (PGS)

and preimplantation genetic diagnosis (PGD) permit the

identification of embryos with the best genetics, lowering the

possibility of miscarriage and improving implantation rates

(Chen et al., 2014). Transcriptomic profiling tells embryonic

developmental proficiency, enabling precision embryo selection

(Labrecque and Sirard, 2014). The integration of epigenomics with

ART has shown the significance of epigenetic regulation during

embryo development (Shi and Wu, 2009). Epigenetic changes, such

as DNAmethylation and histone modifications, are key in controlling

gene expression in early development (Lim and Maher, 2010).

Abnormal epigenetic patterns can lead to developmental

abnormalities and decrease fertility rates (Boissonnas et al., 2013).
7.3 Challenges and future directions

Despite considerable developments in omics technologies and

their integration with Assisted Reproductive Technologies (ART),
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various key challenges still need to be discussed. A primary problem

lies in these methodologies’ complications and the high perspective

of the data generated. Genomic, transcriptomic, proteomic, and

epigenomic datasets are enormous and need advanced

computational and bioinformatics techniques for practical

analysis, understanding, and integration (Kaur et al., 2021).

Regulating the computational capacity and expertise required to

manage such complex data is possible, mainly for various livestock

breeding programs (Berry et al., 2011; Ahmed, 2024). Moreover, the

high expenses related to omics technologies present a critical barrier

to their routine application on a broad scale.

Another task is rooted in the genetic architecture of fertility

traits, which are polygenic and frequently modified by complex

relations between genetic and environmental influences. This

polygenic nature confuses the identification of pivotal genetic

variants linked with fertility, as these traits are usually affected by

many small-effect loci rather than single, efficiently identifiable

genes (Montgomery et al., 2014). In species with long generation

intervals and low reproductive rates, such as cattle, the ability to

accurately map and validate fertility-related loci is further

constrained by limited generational turnover, making longitudinal

studies challenging (Li, 2017). Addressing these challenges is

essential for advancing the application of omics-driven insights to

improve reproductive efficiency in livestock.
8 Single-cell omics: a cutting-edge
approach in livestock biotechnology

The most commonly used single-cell technologies include

single-cell RNA sequencing (scRNA-seq), single-cell DNA

sequencing (scDNA-seq), single-cell epigenomics (such as single-

cell ATAC-seq and methylation profiling), and single-cell

proteomics (Evrony et al., 2021). These methods allow for the

high-throughput analysis of gene expression, genetic mutations,

chromatin accessibility, and protein abundance at the resolution of

individual cells (Lee et al., 2020). The ability to capture molecular

heterogeneity within tissues is critical in livestock, where biological

systems are complex and heterogeneous at the cellular level. The

application of single-cell omics in livestock biotechnology enables

the identification of rare cell populations, studying dynamic cellular

processes, and unravelling cellular mechanisms that underpin

key traits.
8.1 Muscle biology and meat quality

Single-cell RNA sequencing has been used to explore the

molecular landscape of muscle tissues in livestock species,

revealing a greater cellular diversity than previously appreciated

(Liu et al., 2019). Studies have identified distinct muscle fiber types

and characterized gene expression patterns associated with muscle

growth, fiber composition, and hypertrophy. By investigating gene

expression in individual muscle cells, researchers can pinpoint
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molecular pathways responsible for traits like meat tenderness,

marbling, and muscle size, which are crucial for improving meat

quality (Wu et al., 2023). Furthermore, single-cell technologies

a l low examining muscle t i ssue responses to var ious

environmental and genetic factors (De Micheli et al., 2020). For

example, muscle cells can be studied under different stress

conditions, such as disease or extreme temperatures, to identify

key genes influencing stress responses and growth patterns

(Potter, 2018).
8.2 Immune system and disease resistance

Immune responses in livestock, such as those to infections or

vaccinations, are complex and involve various types of immune cells

that interact in a highly coordinated manner. Single-cell RNA

sequencing identifies and characterizes different immune cell

populations in tissues like blood, spleen, and lymph nodes (Zhao

et al., 2020). Single-cell sequencing has been applied to study the

immune response to infectious diseases such as mastitis in dairy

cattle, avian influenza in poultry, and PRRS in pigs (Taxis and

Casas, 2017). Single-cell level, scientists can uncover the molecular

mechanisms behind immune activation, memory, and cellular

plasticity, leading to a better understanding of how livestock

animals defend against pathogens (Stubbington et al., 2017). This

knowledge is critical for developing more effective vaccines,

improving disease resistance, and implementing precision

medicine strategies in livestock populations. Additionally, single-

cell technologies facilitate the discovery of rare immune cell subsets

involved in pathogen recognition and immune regulation, offering

new therapeutic targets for enhancing disease resistance in livestock

(Yan et al., 2024).
8.3 Reproductive efficiency and fertility

Single-cell omics have proven helpful in examining the

molecular mechanisms regulating gametogenesis, embryonic

development, and fertility. Using single-cell RNA sequencing,

researchers can analyze the gene expression profiles of individual

cells within the ovary and testis, identifying key regulators of oocyte

maturation, sperm development, and follicular growth (Gong et al.,

2022; Dong et al., 2023). Single-cell technologies have investigated

how specific gene networks control fertility in livestock species like

cattle, pigs, and sheep. Single-cell RNA sequencing has provided

insights into regulating follicular development, luteal function, and

oocyte quality, all influencing fertility outcomes (Zhao et al., 2023).

These studies have led to a better understanding of how hormonal

signaling and cell-to-cell interactions govern reproductive success,

which can help identify genetic and molecular markers for fertility

traits. Moreover, single-cell approaches have been employed to

study the early stages of embryonic development, identifying

cellular pathways involved in blastocyst formation and

implantation (Liu et al., 2022). This information is crucial for
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improving reproductive technologies such as in vitro fertilization

(IVF) and embryo transfer, which are integral to modern livestock

breeding programs.
8.4 Milk production and lactation biology

Single-cell RNA sequencing has been applied to study the

mammary gland at the single-cell level, revealing the complex

cellular architecture and molecular pathways that regulate milk

production. Scientists have identified specific gene sets involved in

milk synthesis, secretion, and composition by profiling gene

expression in lactating mammary epithelial cells (Martin Carli

et al., 2020). Single-cell technologies have also been used to study

the effects of environmental factors, such as diet, stress, and disease,

on the mammary gland’s function. Single-cell RNA sequencing has

revealed how the mammary epithelium responds to changes in

nutritional intake and how metabolic stress affects milk production

(Becker et al., 2021). This information is crucial for developing

strategies to optimize lactation performance, improve milk yield,

and enhance the nutritional quality of milk.
8.5 Adipose tissue biology and fat
deposition

Single-cell omics have enabled researchers to explore the

molecular underpinnings of adipogenesis, fat distribution, and

metabolic regulation at the level of individual adipocytes. By

analyzing gene expression in single adipose cells, researchers have

uncovered molecular pathways that control the differentiation of

preadipocytes into mature adipocytes and the regulation of fat

storage (Audano et al., 2022). Single-cell RNA sequencing has

been used in species like cattle and pigs to study adipose tissue

from different depots identifying genes associated with fat

deposition and metabolic rate (Ford et al., 2023). This knowledge

is essential for developing breeding programs to improve feed

efficiency, reduce fat accumulation, and enhance the quality of

meat products, such as lean cuts and marbling.
8.6 Genetic selection and precision
breeding

Single-cell RNA sequencing allows identifying gene networks

and regulatory pathways associated with these traits, providing

more precise targets for genetic selection (Jackson et al., 2020).

Single-cell technologies enable the identification of cellular markers

for desirable traits, which can be used to inform selection decisions

in breeding programs (Dumitrascu et al., 2021). Integrating single-

cell omics with gene editing technologies such as CRISPR/Cas9,

precision breeding strategies can be developed to enhance specific

traits in livestock populations with minimal unintended

consequences (Sindelar, 2024). By providing high-resolution

insights into cellular diversity, gene expression, and functional
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dynamics, single-cell technologies enable researchers to uncover

novel molecular mechanisms that underpin key traits in livestock

production and reproduction (Lyons et al., 2024). The applications

of single-cell omics in livestock biotechnology, from muscle

development and disease resistance to reproductive efficiency and

milk production, pave the way for more efficient, sustainable, and

resilient livestock farming systems. As these technologies evolve,

their integration into breeding programs and biotechnology

applications will be crucial for improving livestock productivity,

health, and welfare.
9 Data analysis and integration
complexities

The application of omics technologies in livestock breeding

presents several ethical and regulatory challenges that require

careful consideration. One prominent concern is the potential for

unintended consequences, such as a reduction in genetic diversity

or the inadvertent propagation of deleterious alleles (Singer et al.,

2021). These possibilities highlight the need for approaches to

observe and accomplish genetic variation in breeding populations

to evade compromising overall herd resistance and suitability.

Moreover, introducing gene-editing tools raises ethical questions

about animal welfare and genetic variations’ broader ecological

influences. The long-term effects of gene editing in livestock remain

unclear, particularly concerning animal health, behavior, and

welfare in generations.

In addition to ethical concerns, regulatory challenges present

significant hurdles to integrating gene editing and Assisted

Reproductive Technologies (ART) in commercial livestock

breeding (Soini et al., 2006). Regulatory frameworks governing

these technologies vary widely among countries, with many

imposing strict guidelines or outright prohibitions on using gene-

editing tools in animals. Navigating these complex regulatory

landscapes can impede the approval and application of these

innovations in commercial breeding programs. Furthermore, the

risk of public conflict with genetically modified animals has an

additional hurdle, as public opinions about genetic modification

may affect consumer approval and market capability. These ethical,

regulatory, and social challenges will be vital for the responsible and

maintainable progression of omics-based methodologies in

livestock breeding.
10 Future innovations and potential
impacts on the global livestock
industry

There is creative potential for the future of livestock production

due to the ongoing advancements in omics tools and their use in

Assisted Reproductive Technologies (ART). These novelties have

the potency to considerably strengthen reproductive efficiency,

intensify genetic improvement, and assist in the overall
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persistence of livestock systems. By application of genomic

selection, we can find and transmit animals with better feed

efficiency, thus reducing resource intake and minimizing the

environmental factors related to livestock farming. Additionally,

omics-based approaches allow a more comprehensive knowledge of

the genetic aspects of health and disease resistance. This ability

permits finding genetic markers associated with improved immune

responses, supporting animals less vulnerable to disease. By

decreasing the rate of illness in livestock populations, these

policies reduce the dependency on antibiotics and other tonic

procedures, thus contributing to global efforts to mitigate

antimicrobial resistance.

Integrating multi-omics data, with genomics, transcriptomics,

proteomics, and metabolomics, into livestock breeding programs

also helps the introduction of precision livestock farming. This

innovative approach allows the management of individual animals

according to their exclusive genetic, physiological, and metabolic

prominence, allowing for additional targeted and effective

production rehearses. Precision-based management can improve

key production characteristics, such as growth rates, reproductive

efficiency, and product quality , alongside minimizing

environmental influences. Integrating multi-omics in livestock

breeding provides a data-driven, precision-oriented approach for

assessment production with ecological viability, hopefully a new

standard in global livestock management.
11 Summary of key findings

The application of omics technologies has significantly advanced

livestock production by providing deep insights into the molecular

mechanisms governing fertility, growth, and disease resistance.

Genomic selection and transcriptomic profiling have played a

crucial role in improving the success rates of assisted reproductive

technologies (ART), allowing for more precise and data-driven

breeding decisions. The integration of multi-omics approaches

encompassing genomics, transcriptomics, proteomics, and

metabolomics holds immense potential for further advancements

in livestock reproduction. These approaches enhance reproductive

efficiency, improve disease resistance, and boost overall productivity.

By leveraging comprehensive molecular data, researchers can better

understand the biological pathways influencing key traits, leading to

more effective breeding strategies. Future advancements in livestock

reproduction are expected to focus on refining precision breeding

technologies. This includes the continued integration of genomic

selection, transcriptomic profiling, and ART to optimize reproductive

outcomes. Additionally, the development and application of gene-

editing technologies, particularly CRISPR/Cas9, offer promising

possibilities for directly modifying genetic traits associated with

enhanced fertility, superior disease resistance, and greater resilience

to environmental stressors. These innovations will contribute to more

sustainable and efficient livestock production systems, ensuring long-

term improvements in animal health and productivity. Furthermore,
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bioinformatics, data integration, and machine learning inventions

will support the creation of analytical models that can improve ART

protocols and guide breeding policies. These models will improve

reproductive management’s precision, productivity, and

sustainability of livestock systems. The extensive implementation of

omics technologies in livestock production has the potential to play a

significant role in global food security and the environment. By

enhancing reproductive efficacy and decreasing the ecological

footprint of livestock farming, these methodologies offer pathways

to more resistant and sustainable livestock production systems,

resolving the growing targets for food in an ecologically

responsible manner.
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MicroRNAs and other non-coding RNAs in adipose tissue and obesity: emerging roles
as biomarkers and therapeutic targets. Clin. Sci. 133, 23–40. doi: 10.1042/CS20180890

Lowe, R., Shirley, N., Bleackley, M., Dolan, S., and Shafee, T. (2017). Transcriptomics
technologies. PloS Comput. Biol. 13, e1005457. doi: 10.1371/journal.pcbi.1005457

Lu, Q., Chen, Z., Ji, D., Mao, Y., Jiang, Q., Yang, Z., et al. (2021). Progress on the
regulation of ruminant milk fat by noncoding RNAs and ceRNAs. Front. Genet. 12,
733925. doi: 10.3389/fgene.2021.733925

Lunney, J. K., and Chen, H. (2010). Genetic control of host resistance to porcine
reproductive and respiratory syndrome virus (PRRSV) infection. Virus Res. 154, 161–
169. doi: 10.1016/j.virusres.2010.08.004

Lyons, A., Brown, J., and Davenport, K. M. (2024). Single-cell sequencing technology
in ruminant livestock: challenges and opportunities. Curr. Issues Mol. Biol. 46, 5291–
5306. doi: 10.3390/cimb46060316

Ma, L., Cole, J., Da, Y., and Vanraden, P. (2019). Symposium review: Genetics,
genome-wide association study, and genetic improvement of dairy fertility traits. J.
dairy Sci. 102, 3735–3743. doi: 10.3168/jds.2018-15269

Ma, Y., Khan, M. Z., Xiao, J., Alugongo, G. M., Chen, X., Chen, T., et al. (2021).
Genetic markers associated with milk production traits in dairy cattle. Agriculture 11,
1018. doi: 10.3390/agriculture11101018
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