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Introduction: Heat stress impairs broiler performance and exacerbates oxidative

stress. Hemp (Cannabis sativa L.) contains cannabidiol (CBD) and other bioactive

compounds with antioxidant, anti-inflammatory, and immunomodulatory

properties, which may enhance health status and overall performance in

broilers. This study aimed to investigate the effects of dietary micronized hemp

fiber (MHF) supplementation on in vitro nutrient digestibility, cecal fermentation,

antioxidant enzyme activity, lysosomal function, and productivity in finisher

broilers reared under a thermal environment.

Methods: At 21 days of age, 210 broilers with uniform body weight were

randomly allocated to three dietary treatments: a basal diet (CON), and diets

supplemented with MHF at 0.75% (L-MHF) or 1.50% (H-MHF). Birds had ad libitum

access to diets until 42 days of age.

Results: Compared with the CON, there was no effect (p > 0.05) of MHF

supplementation on in vitro true digestibility of dry matter, organic matter,

crude protein, ether extract, or gross energy. Similarly, gas production at

various incubation times and the rate and extent of gas production from cecal

fermentation did not differ (p > 0.05). However, cecal fermentation analysis

revealed that total volatile fatty acid (VFA) concentrations, including acetic,

propionic, and butyric acids, were significantly higher (p < 0.01) in the L-MHF
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and H-MHF groups. Microbiological analysis revealed increased (p < 0.01) total

bacterial counts, lactic acid bacteria, and Enterococcus sp. populations, coupled

with reduced E. coli counts in the L-MHF and H-MHF groups. There was a

significant (p < 0.001) improvement in final body weight and average daily gain in

the H-MHF group compared with the CON and L-MHF groups. Feed conversion

ratio was lowest (p < 0.001) in the H-MHF group across all measured periods,

while average daily feed intake remained unaffected (p > 0.05). Except for

increased (p < 0.05) wing weight in the H-MHF group, dressing percentage or

weight of major cuts did not differ (p > 0.05). Antioxidant enzyme activity was

enhanced in the MHF-groups, with higher (p < 0.001) catalase, superoxide

dismutase, and glutathione peroxidase activities observed in the H-MHF and L-

MHF groups. However, lysozyme activity was reduced (p < 0.05) in the H-

MHF group.

Conclusion: Dietary supplementation with MHF improved in vitro cecal

fermentation profiles, antioxidant capacity, and productivity metrics in finisher

broilers under thermal stress. These findings underscore the potential of MHF as a

functional feed additive in broiler production.
KEYWORDS

micronized hemp fiber, broiler productivity, in vitro nutrient digestibility, cecal
fermentation, antioxidant enzyme activity, thermal stress
1 Introduction

Heat stress in poultry, caused by elevated ambient temperatures,

significantly impairs feed intake, nutrient utilization, and growth

performance while exacerbating oxidative stress (Kpomasse et al.,

2021; Goel, 2021). Oxidative stress is a critical factor leading to

compromised growth and productivity in broilers. Nutritional

strategies, particularly the incorporation of plant-derived bioactive

compounds, have shown potential in alleviating the adverse effects

of heat stress by enhancing intestinal health, improving nutrient

digestibility, and supporting overall performance (Ivanova et al.,

2024; Oni et al., 2024). Hemp (Cannabis sativa L.), a plant with a

rich history of medicinal use, has garnered attention in animal

nutrition due to its nutraceutical properties. It contains

cannabinoids, including cannabidiol (CBD), and other bioactive

compounds (Adesina et al., 2020; Ostapczuk et al., 2021). CBD is a

key phytocannabinoid derived from various parts of the hemp plant

such as flowers, leaves, and stems (Fallahi et al., 2022). Its

pharmacological properties include antioxidant, anti-

inflammatory, anxiolytic, and immunomodulatory effects (Atalay

et al., 2019; Wright et al., 2020). Konieczka et al. (2022) noted that

CBD derived from hemp has garnered significant attention due to

its ability to positively influence gut health and functionality.

According to the findings of Kleinhenz et al. (2022), including

hemp in the diets (5.5 mg/kg cannabidiolic acid) of male Holstein

cattle resulted in a decrease in biomarkers related to inflammation and

stress. The administration of hemp-CBD resulted in the upregulation

of gene expression associated with gut barrier function and increased
02
the activity of gut bacterial enzymes in broilers in response to a

challenge with C. perfringens (Konieczka et al., 2020).

Hemp’s economic value has risen significantly due to its

potential biomedical applications (Adesina et al., 2020). Hemp

products, especially hemp seed oil, have gained popularity due to

their high content of fatty acids and proteins, offering considerable

benefits for human dietary applications and antimicrobial

properties effective against bacterial and fungal pathogens

(Ostapczuk et al., 2021; Meffo Kemda et al., 2024). The demand

for hemp-based food has increased by 500% since 2017, driving

more intensive agricultural practices and higher resource

consumption across the supply chain (Sorrentino, 2021; Meffo

Kemda et al., 2024). Typically, hemp seeds are harvested upon

maturity, indicated by flower desiccation and seed head development.

However, the by-products such as roots, leaves, desiccated seeds, and

floral inflorescences are also collected, aligning with bio-green-circular

economy principles to promote sustainable agricultural practices

(Sopian et al., 2024; Meffo Kemda et al., 2024).

Recent advancements in hemp processing have enhanced the

bioavailability of CBD and other cannabinoids by converting

inactive cannabinoid acids into their active forms such as CBD,

optimizing their physiological effects (Wang et al., 2016; Lima et al.,

2022). Lima et al. (2022) reported that activated cannabinoids, such

as CBD, may aid in regulating metabolism, alleviating stress, and

potentially enhancing immune function, promoting improved

health and growth in animals. These advancements support the

inclusion of hemp by-products as sustainable feed ingredients or

supplement for livestock (Tufarelli et al., 2023; Sopian et al., 2024).
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In addition, by promoting gut health and microbial balance, dietary

fibers derived from hemp by-products may play an essential role in

poultry nutrition. Fiber-rich diets improve intestinal morphology,

enhance nutrient absorption, and support overall growth,

particularly during the latter stages of broiler production (Jha and

Mishra, 2021; Zhang et al., 2023). Soluble dietary fibers are rapidly

fermented by gut microbiota, producing short-chain fatty acids

(SCFAs) that contribute to gut integrity and immune function

(McRorie and McKeown, 2017; Guan et al., 2021). Such attributes

may position hemp by-products as an optimal supplement in the

formulation of sustainable feed solutions.

This study explored the potential to upcycle and add value to

hemp by-products by manufacturing micronized hemp fiber

(MHF) by reducing particle size and enhancing phytochemical

compositions. Additionally, given the increasing demand for

sustainable feeding, evaluating the efficacy of the MHF as a

functional supplement under thermal stress conditions is crucial

for improving broiler welfare and productivity. We hypothesized

that dietary supplementation with MHF would enhance in vitro

nutrient digestibility and cecal fermentation, and antioxidant

activity, leading to improved growth performance in finisher

broilers under thermal stress conditions. This research aimed to

provide insights into the application of MHF in modern poultry

feeding strategies, contributing to sustainable and efficient broiler

management practices.
2 Materials and methods

2.1 Feed supplements and
chemical analysis

The hemp by-product consisting of leaves, inflorescences,

shriveled seeds and stalks was obtained during the post-harvest

processing stage and supplied by Hemp Pro Co. Ltd., Thailand.The

materials were processed using a rotary grinder, passed through a

2.0 mm sieve, and classified as unmicronized hemp fiber (UHF).

Subsequently, the UHF underwent a two-stage mechanical grinding

process, with the first stage involving grinding through a 200-

micrometer sieve, followed by a second stage using a 100-mesh

(150-micron) screen. The sample was then heated in a hot air oven

at 145°C for 10 minutes to induce decarboxylation reactions, which

involve breaking a pro-carboxylic acid chain to activate the
Frontiers in Animal Science 03
naturally occurring acid forms of the cannabinoids (Wang et al.,

2016). Ultimately, the samples were then collected, stored in zip-

lock plastic bags, and designated as MHF. Particle characteristics of

the MHF were measured by stereo microscope (Figure 1A), light

microscope (Figure 1B), and scanning electron microscope

(Figure 1C). Quantitative contents of macronutrients and

cannabinoids in the MHF are presented in Table 1.
2.2 Study on in vitro nutrient digestibility
and cecal fermentation

2.2.1 Experimental design
The experiment was carried out in a completely randomized

design with three dietary treatments, each consisting of five

replicates using triplicates for each replication. The treatments

consisted of a basal diet supplemented with MHF at levels of 0%

(CON), 0.75% (Low level of micronized hemp fiber: L-MHF), and

1.50% (High level of micronized hemp fiber: H-MHF).

2.2.2 In vitro true nutrient digestibility
The experimental diets were standardized to deliver 19% crude

protein (CP) and 3,000 kcal/kg metabolizable energy (ME). The

dietary formulations were based on analyzed nutrient content in

compliance with NRC (1994) specifications, as detailed in Table 2.

The in vitro prediction of true nutrient digestibility involved a two-

step process using enzymatic digestion. A series of feed samples of

approximately 0.5 g of finely ground material (1 mm) were mixed

with a pepsin solution containing 0.1 g porcine pepsin per 10 ml of a

0.2M HCl solution (pH 2.0). The pH was adjusted to 6.8 using

either a 1M HCl or 1M NaOH solution. Subsequently, 1 mL of a

freshly prepared pancreatin solution was added, consisting of 0.5

mg of pancreatin dissolved in 10 mL of a 0.2M phosphate buffer

(pH 6.8). The nutritional composition (dry matter, organic matter,

crude protein, crude fiber, ether extract, and gross energy) of broiler

diets and digesta samples was analyzed according to AOAC (2016)

methodologies. The in vitro prediction of true nutrient digestibility

was calculated using the equation according to AOAC (2016). The

in vitro digestibility coefficients were determined by calculating the

difference between the initial sample values and the undigested

residue values, with adjustments made for dry matter (DM) content

based on a blank sample included in each experimental series

according to Jezierny et al. (2010).
FIGURE 1

Particle characteristics of the MHF were measured by stereo microscope (A), light microscope (B), and scanning electron microscope (C).
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2.2.3 In vitro cecal degradability
The in vitro fermentations were set up in 100 mL serum bottles

with rubber stoppers filled with 0.3 g of digesta after a two-step

process using enzymatic digestion. Cecal samples were diluted at a

ratio of 1:10 (w/w) in anaerobic phosphate-buffered saline (PBS; 0.1

mol/L, pH 7.4) before analysis. The Vian Levure (VL) sterile

medium was prepared following a modified method adapted from

Prayoonthien et al. (2018). All fermentation bottles were inoculated

with 5 mL of cecal inoculum solution using a 5-mL syringe.

Subsequently, 45 mL of VL sterile medium was added to each

bottle to facilitate the fermentation process. For the ileum

fermentation bottles, the pH was adjusted to between 5.60 and

5.83 (Gabriel et al., 2006). The media were flushed with carbon

dioxide gas, and the in vitro fermentations were conducted at 42°C

for 24 hours in an anaerobic chamber. Gas production content was

collected after incubation for 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,

and 24 h. Cumulative gas production data were calculated
Frontiers in Animal Science 04
according to the equation of Ørskov and McDonald (1979).

P=a+b(1−eð−ctÞ)

where:

a = gas production from upper gut digestible fraction,

b = gas production from cecal fermentation fraction,

c = gas production rate constant for cecal fermentation

fraction (b),

t = incubation time,

|a+b| = potential extent of gas production,

P = gas produced at time ‘t’.

2.2.4 Lactic acid, volatile fatty acid, and
microbiological populations

Lactic acid and volatile fatty acids were analyzed after 24 hours

of in vitro fermentation. A 1 mL sample was centrifuged at 10,000 ×

g for 10 minutes at 4°C. The supernatant was collected and stored

at -20°C for subsequent analysis of short-chain fatty acids (SCFAs)

and lactic acid. The concentrations of SCFAs, including acetate,

propionate, and butyrate, as well as lactic acid, were analyzed using
TABLE 2 Ingredients and calculated chemical composition of a basal
diet (% as-fed basis unless stated otherwise).

Item %, as-fed basis

Ingredients

Corn 55.00

Rice bran 10.00

Soybean meal (46%CP) 25.00

Extruded soybean 3.40

Fish meal (55%CP) 5.00

Calcium carbonate 0.06

Salt 0.03

Vitamin-mineral premix1 0.05

Mycotoxin adsorbents 2 0.02

Total 100.00

Calculated chemical composition

Crude protein 19.00

Ether extract 4.50

Crude fiber 4.00

Calcium 0.90

Available phosphorus 0.65

Metabolizable energy (kcal/kg) 3200.00
1Vitamin-mineral premix provided per ton of diet: vitamin A (trans-retinyl acetate), 12,000
IU; vitamin D3 (cholecalciferol), 2,400 IU; vitamin E (all-rac-tocopherol-acetate), 19.98 mg;
vitamin K3 (bisulphate menadione complex), 1.15 mg; vitamin B1, 2.00 mg; vitamin B2, 6.00
mg; vitamin B6, 3.00 mg; vitamin B12 (cyanocobalamin), 0.02 mg; nicotinic acid, 30.00 mg;
pantothenic acid (D-calcium pantothenate), 10.00 mg; folic acid, 0.96 mg; biotin, 0.12 mg;
choline chloride, 210.00 mg; selenium, 0.30 mg; cobalt, 0.40 mg; iodine, 0.85 mg; zinc, 40.00
mg; iron, 80.00 mg; manganese, 61.00 g; copper, 8.00 mg. 2Mycotoxin adsorbents is a mixture
of bentonites, illites, and kaolites, which chemically contain as follows: 63.90% SiO2; 16.20%
Al2O3; 1.95% CaO; 3.32% Fe2O3; 2.90% MgO; 3.90% Na2O; and 0.80% K2O.
TABLE 1 Quantitative content of macronutrients and cannabinoids in
the MHF.

Item
Micronized hemp

fiber (MHF)

Nutrient composition (%)

Dry matter 88.99

Moisture 11.11

Organic matter 76.51

Ash 23.49

Crude protein 17.56

Ether extract 7.05

Crude fiber 8.55

Dietary fiber 36.36

Soluble dietary fiber (SDF) 4.75

Insoluble dietary fiber (IDF) 31.61

SDF: IDF ratio 0.15

Gross energy (kcal/kg) 2,972.50

Cannabinoids (mg/g)

Cannabidiol (CBD) 1.518

Cannabinol (CBN) 0.231

Cannabichromene (CBC) 0.209

Cannabidiolic acid (CBDA) 0.370

Cannabigerolic acid (CBGA) -

Cannabidivarin (CBDV) 0.251

D8-Tetrahydrocannabinol (D8-THC) -

D9-Tetrahydrocannabinol (D9-THC) -

D9-Tetrahydrocannabivarinic
acid (THCA)

-

Tetrahydrocannabivarin (THCV) -
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gas chromatography (GC; Agilent 7890B). A CP-Sil 5 CB column

(0.32 mm × 25 m fused silica capillary column) and a flame-

ionization detector (FID) were employed for the detection. Internal

standards, 4-methylvaleric acid (Alfa Aesar, United Kingdom) for

SCFAs and fumaric acid (Alfa Aesar, United Kingdom) for lactic

acid, was used following the method described by Mookiah et al.

(2014). The final concentrations of SCFAs and lactic acid were

calculated using the modified method of Donalson et al. (2008).

The microbiological content was assessed simultaneously

following in vitro fermentation, 5 mL solution samples were

collected from the glass bottle with rubber seal cap and

transferred into 45 mL of 0.85% NaCl solution. The samples were

prepared for analysis using a ten-fold dilution method described by

Gava et al. (2015). Microorganisms in the laboratory samples were

quantified using culture techniques to measure total bacteria, lactic

acid bacteria, Enterococcus, and E. coli, following the methods

described by McDonald et al. (1983); Horn et al. (1996), and

Schillinger and Holzapfel (2003). The microbial counts were then

log-transformed (base 10) following the procedure described by

Cengiz et al. (2015).
2.3 In vivo experimental design and
husbandry management

Three hundred one-day-old male Ross 308 broiler chicks were

acquired from a local hatchery (Charoen Pokphand Foods PCL.,

Lamphun, Thailand), and transported to the research site via a

controlled-environment truck. These chicks were immediately

placed in a brooding zone with sterilized rice hull bedding.

Throughout the pre-experimental phase, broilers had ad libitum

access to a commercial starter diet containing 21% crude protein

(CP) and 3,000 kcal/kg of metabolizable energy (ME), and clean

drinking water. At 21 days old, a total of 210 birds with uniform

weight was randomly separated into a completely randomized

design with 3 dietary treatments, each with 10 replicates of 7

birds. The treatments were a basal diet (Table 2) supplemented

with MHF at levels of 0% (CON), 0.75% (L-MHF), and 1.50% (H-

MHF). Birds had ad libitum access to each experimental diet

through 42 days of age. Animals’ health and biosecurity followed

the standard recommendation based on Ross 308 management

guidelines. Broilers were housed in a wire pen floored with

disinfected rich hull as litter. Each pen was 120 × 60 cm2 and

equipped with a nipple drinker and bulk feeder. All experimental

birds were reared in the same tunnel-ventilated facility under daily

cycling heat stress conditions over a 24 h period of 35 ± 4°C for 12 h,

and 31 ± 4°C for 12 h. Relative humidity was held at approximately

70 ± 5% during the whole experimental period.

2.3.1 Determination of growth performance and
carcass yield

Body weights and residual feed in each pen were recorded

weekly, and then calculations were performed to determine average

daily gain (ADG), average daily feed intake (ADFI), and feed

conversion ratio (FCR). At the completion of the feeding period,
Frontiers in Animal Science 05
one bird was selected from each replication based on its average

body weight from each group (n=10). Subsequently, the selected

birds were subjected to an 8-hour fast, and the live body weight was

individually measured using a commercial digital balance. Each bird

was slaughtered by neck cutting, and its feathers were removed by

an automatic plucking machine. Eviscerated carcasses were

individually weighed and represented as carcass yield (g/100 g

BW). Retailed meat cuts (breast, wings, and thighs + drumsticks)

and edible visceral organs (liver without gall bladder,

proventriculus, gizzard, and heart) were harvested and reported

as g/100 g BW.
2.3.2 Antioxidant and lysosomal activity
At 42 days old, 5 birds with uniform weight were selected from

each treatment group for hematological analysis. A puncture was

performed on each bird via the wing vein using sterile needles and

syringes, and the blood was kept in blood collection tubes without

anticoagulant solution. Subsequently, these samples were transferred

to a centrifuge at 3,600 × g for 10 min at 4°C. The serum was taken

and kept at -20°C until use. The activities of superoxide dismutase

(SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in

plasma were determined using colorimetric methods with a

spectrophotometer. A modified approach was used to measure SOD

activities using a commercial kit (ab65354; Abcam, Cambridge, UK),

and the enzymatic activity was represented as the percent inhibition

rate. The activity of GSH-Px (EC.1.11.1.9) was determined using assay

kits (ab102530; Abcam, Cambridge, UK). The CAT activity

(EC1.11.1.6) was analyzed using a commercial spectrophotometric

kit (ab83464; Abcam, Cambridge, UK). All samples were measured in

triplicate according to the manufacturer’s standard protocols.

Lysosomal activity was conducted using a method previously

described by Likittrakulwong et al. (2022) with slight modifications.

A standard curve demonstrating the degree of lysis of the Gram-

positive bacteria Micrococcus lysodeikticus by a known concentration

of lysozyme standard was used to test lysosomal activity.
2.4 Statistical analysis

Data were analyzed using one-way analysis of variance (ANOVA)

with a completely randomized design. The statistical model for in vitro

nutrient digestibility and cecal fermentation was: yij = m + Ti + eij,
where yij = the observation (i = 1-3, j = 1-5), m = the overall mean, Ti =

the effect of treatment (i= MHF supplementation at levels of 0, 0.75

and 1.50%, and eij = the random error. While, the statistical model for

in vivo experiment was: yij = m + Ti + eij, where yij = the observation

(i = 1-3, j = 1-10), m = the overall mean, Ti = the effect of treatment

(i= MHF supplementation at levels of 0, 0.75 and 1.50%, and eij = the

random error. Statistical tests were performed using the Statistical

Package for the Social Sciences (SPSS) version 17.0 (SPSS Inc.,

Chicago, USA). The data are reported as group means with the

standard error of the means (SEM). Duncan’s multiple range test

was implemented to identify differences between the treatments. A

significant effect of treatment was declared at p < 0.05.
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3 Results

3.1 In vitro true nutrient digestibility of
dietary MHF

Table 3 shows the in vitro true nutrient digestibility of a basal

diet supplemented with MHF. The experimental results indicated

that when compared with the CON diet, supplementation of MHF

at both levels had no significant effect (p >0.05) on true nutrient

digestibility of dry matter, organic matter, crude protein, ether

extract, and gross energy.
3.2 In vitro cecal degradability of
dietary MHF

Table 4 summarizes gas production and kinetic degradation of a

basal diet supplemented with MHF derived from in vitro cecal

fermentation by broiler microbiota. The data showed that gas

production at various incubation times (4, 8, 12, 16, 20, and 24

hours) did not differ (p > 0.05) significantly among the dietary

treatment groups L-MHF, H-MHF, and CON (Table 4; Figure 2).

Furthermore, the experimental results indicated that supplementing

the broiler diet with L-MHF and H-MHF had no significant impact

on gas production at time ‘t’ or gas production from the upper gut

digestible fraction. Similarly, when compared with the CON diet, no

significant differences (p > 0.05) were observed in the gas

production rate constant for the cecal fermentation fraction (b) or

the potential extent of gas production.
3.3 Lactic acid, volatile fatty acid, and cecal
microbiological populations

Table 5 displays concentrations of lactic acid, volatile fatty acids,

and microbial counts from in vitro cecal fermentation by broiler

microbiota of a basal diet supplemented withMHF. The levels of total

lactic acid, acetic acid, propionic acid, and butyric acid among the

treatments were significantly different (p < 0.01), with the L-MHF

and H-MHF groups showing higher values compared with the CON

group. Moreover, the H-MHF group had the highest total volatile

fatty acid (VFA) levels when compared with the L-MHF and CON
Frontiers in Animal Science 06
groups (p < 0.01). The results frommicrobiological analysis of in vitro

cecal fermentation by broiler microbiota revealed that the H-MHF

group had a higher (p < 0.01) total bacterial count compared with the

CON group. Additionally, lactic acid bacteria and Enterococcus sp.

counts in the L-MHF andH-MHF groups were significantly higher (p

< 0.01) than those in the CON group, which positively contributed to

inhibiting harmful microorganisms. The data clearly showed that

compared with the CON group the E. coli counts in the L-MHF and

H-MHF groups were significantly lower (p < 0.01).
3.4 Growth performance and
carcass characteristics

Table 6 presents the growth performance and economic benefit

return of broilers fed a basal diet supplemented with the MHF

during 21 to 42 days of age. At 21 days old, the initial body weight

was not statistically significant among the groups. However, the

final body weight among the treatments was significant (p < 0.001),

with the H-MHF group having the highest weight gain compared

with CON and L-MHF birds. The average daily gain during the

overall period was significantly increased (p < 0.001) in the H-MHF

group compared with other treatments. Conversely, there was no

significant difference (p > 0.05) in average daily feed intake among

the treatments. Despite this, the feed conversion ratio was lowest

(p < 0.001) in the H-MHF group during 21 to 28 d, 29 to 35 d, or

when calculated throughout the whole experimental period.

The carcass characteristics of broilers fed a basal diet with

MHF during 21 to 42 days of age are shown in Table 7.
TABLE 3 The in vitro true nutrient digestibility of a basal diet
supplemented with MHF.

Item (%) CON L-MHF H-MHF SEM P-value

Dry matter 81.047 82.830 82.497 0.451 0.251

Organic matter 86.702 86.699 86.494 0.485 0.985

Crude protein 84.713 84.830 84.497 0.410 0.586

Ether extract 88.380 90.163 90.497 0.583 0.317

Gross energy 86.830 87.347 88.163 0.283 0.147
CON, control; L-MHF, low level of micronized hemp fiber; H-MHF, high level of micronized
hemp fiber; SEM, the standard error of the means.
TABLE 4 Gas production and kinetic degradation of a basal diet
supplemented with MHF derived from in vitro cecal fermentation by
broiler microbiota.

Item CON L-MHF H-MHF SEM P-value

Cumulative gas production (mL)

4 hours 9.613 8.156 8.943 0.351 0.505

8 hours 20.439 18.159 19.684 0.535 0.481

12 hours 29.840 27.236 29.277 0.652 0.511

16 hours 37.846 35.473 38.011 0.726 0.557

20 hours 45.119 42.947 45.502 0.778 0.610

24 hours 52.342 49.731 51.307 0.830 0.652

Kinetic of degradations

P (mL) 49.060 50.094 51.597 0.902 0.569

a (mL) -2.533 -3.302 -3.085 0.148 0.260

b (mL) 97.960 119.431 113.684 4.572 0.131

c (mL/hour) 0.035 0.024 0.028 0.002 0.161

d (mL) 100.502 122.733 116.769 4.648 0.121
fr
CON, control; L-MHF, low level of micronized hemp fiber; H-MHF, high level of micronized
hemp fiber; SEM, the standard error of the means; P, gas produced at a time ‘t’; a, gas
production from upper gut digestible fraction; b, gas production from cecal fermentation
fraction; c, gas production rate constant for cecal fermentation fraction (b); d, |a+b| potential
extent of gas production.
ontiersin.org

https://doi.org/10.3389/fanim.2025.1553829
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Incharoen et al. 10.3389/fanim.2025.1553829
Therewas no significant different difference in dressing, wings, and

thighs+drumsticks (p > 0.05). However, the wing was significantly

larger and heavier (p < 0.05) in the diet supplemented with the H-

MHF. The edible visceral organs in the treatment groups did not

differ significantly (p > 0.05). Surprisingly, the weight of the

proventriculus, gizzard, and heart were lower (p > 0.05) in the

diet supplemented with H-MHF. Thus, overall, the results indicated

only modest difference in carcass weight with supplemental MHF.
3.5 Antioxidant and lysosomal activity

Figure 3 shows the antioxidant activities of SOD, GSH-Px, and

CAT of broilers fed a basal diet supplemented with MHF during 21

to 42 days of age. The CAT activity was significantly different

between diets supplemented with MHF and control (p < 0.001). The

highest (p < 0.001) CAT and SOD activities were observed in the

diet supplemented with H-MHF followed by L-MHF and the lowest
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in the control. The GSH-Px activity was significantly different with

the MHF supplemented diets with highest (p < 0.001) activity in the

L-MHF followed by H-MHF diet, and the lowest activity in the

control. In addition, the lysozyme activity was lowest (p < 0.05) in

the H-MHF and highest in the control (Figure 4). Thus, these

results indicate important benefits of supplementation with MHF.

Although MHF decreased lysozyme activity and may impact

immunity, this effect could be counteracted by the increase in the

other antioxidant enzymes.
4 Discussion

Although the supplementation of MHF did not significantly

influence the in vitro true nutrient digestibility, incorporating MHF

into the diet has the potential to enhance in vitro cecal fermentation

activity by broiler microbiota. Its impact on cecal fermentation

suggests a potential prebiotic effect. Additionally, the increase in
TABLE 5 Concentrations of lactic acid, volatile fatty acids, and microbial counts of a basal diet supplemented with MHF derived from in vitro cecal
fermentation by broiler microbiota.

Item CON L-MHF H-MHF SEM P-value

Lactic acid (mmol/mL) 5.6b 6.4a 6.7a 0.12 0.006

Volatile fatty acids (mmol/mL)

Acetic acid 26.6b 28.1a 31.9a 1.45 0.002

Propionic acid 4.8b 5.9a 5.9a 0.27 0.001

Butyric acid 0.7b 0.9a 1.0a 0.04 0.001

Total VFA 29.2c 32.8b 37.5a 1.25 0.004

Microbial counts (Log CFU/mL)

Total bacteria 9.1b 9.2ab 9.3a 0.02 0.005

Lactic bacteria 8.1b 8.5a 8.6a 0.08 0.001

Enterococcus 7.2b 7.8a 7.9a 0.11 0.001

E. coli 5.3a 4.5b 4.5b 0.16 0.001
a,b,cDifferent superscripts in the same row express as significant value at P<0.01.
CON, control; L-MHF, low level of micronized hemp fiber; H-MHF, high level of micronized hemp fiber; SEM, the standard error of the means.
FIGURE 2

In vitro cecal gas production in different incubation times of a basal diet supplemented with MHF (CON, control; L-MHF, low level of micronized
hemp fiber; H-MHF, high level of micronized hemp fiber).
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lactic acid bacteria and Enterococcus spp., coupled with a reduction

in E. coli counts, suggests that MHF fosters a more favorable gut

microbial balance. This could be due to the soluble fiber fraction in

MHF, which serves as a fermentable substrate for beneficial

bacteria, promoting competitive exclusion of harmful pathogens.

Furthermore, the acidic environment created by VFAs inhibits the

growth of harmful pathogens, such as Salmonella and E. coli, while
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promoting the growth of beneficial bacteria (Walugembe et al.,

2015; Palamidi et al., 2023). As a result, a significant increasing in

lactic acid, acetic acid, propionic acid, butyric acid, and total VFA

production was observed in MHF-fed birds. These metabolites are

known to improve gut health by lowering pH and inhibiting

pathogenic bacteria. Regarding to short-chain fatty acids (SCFAs),

particularly butyrate, are known to enhance intestinal integrity,

reduce inflammation, and provide an energy source for epithelial

cells, thereby promoting efficient nutrient absorption (Singh and

Kim, 2021; Chandrasekaran et al., 2024). Similarly, Li et al. (2022)

observed that dietary fiber supplementation led to promoting acid-

producing bacteria and SCFAs, which positively activated AMPK

pathway-related genes through the gut-liver axis.

The role of fiber in modulating intestinal morphology, nutrient

absorption, and the gut microbiota in broilers has been highlighted

in studies by Tejeda and Kim (2021). On the other hand,

Walugembe et al. (2015) reported that an increase in dietary fiber

led to an elevation in the cecal levels of SCFA, which in turn

influenced positively the use of nutrients and general intestinal

health in fattening chickens. Similarly, Okrathok et al. (2023)

reported that modified dietary fiber in the form of cassava pulp

improved cecal microbial populations and the production of SCFA.

Ali et al. (2022) observed that the microbial fermentation of dietary

fibers leads to the production of SCFA, promoting a healthy

intestinal environment in the animal. In this study, the analysis of

the nutritive value of MHF revealed that it contained 36.36% dietary

fiber, comprising 4.75% soluble dietary fiber and 31.61% insoluble

dietary fiber. Because modern broiler feed formulations are

deliberately designed with a restricted crude fiber content, the

incorporation of MHF into these diets could help achieve an

optimal fiber composition. The recommended ratio of soluble to

insoluble fiber should range from 30:70 to 40:60 (soluble:insoluble)

(Amerah et al., 2009). The present findings suggest that

incorporating MHF into broiler diets could serve as a functional

strategy to improve cecal fermentation, microbial population, and

in consequence growth performance. Additionally, previous studies

have demonstrated that dietary fiber supplementation, when
TABLE 7 Carcass characteristic of broilers fed a basal diet supplemented with the MHF during 21 to 42 days of age.

Item CON L-MHF H-MHF SEM P-value

Carcass yield, %BW

Dressing percentage 72.8 72.0 72.3 0.55 0.818

Breast 19.1b 18.8b 22.0a 0.50 0.011

Wings 9.1 8.8 8.6 0.12 0.232

Thighs+drumsticks 24.5 24.0 23.0 0.30 0.105

Edible visceral organs, %BW

Liver 2.3 2.6 2.5 0.10 0.530

Proventriculus 0.5 0.5 0.5 0.03 0.602

Gizzard 1.4 1.5 1.1 0.07 0.061

Heart 0.7 0.7 0.6 0.04 0.391
a,bDifferent superscripts in the same row express as significant value at P<0.05.
CON, control; L-MHF, low level of micronized hemp fiber; H-MHF, high level of micronized hemp fiber; SEM, the standard error of the means; BW, body weight.
TABLE 6 Growth performance of broilers fed a basal diet supplemented
with the MHF during 21 to 42 days of age.

Item CON L-MHF H-MHF SEM P-value

Initial weight (g) 581.9 581.9 581.8 1.81 1.000

Final weight (g) 1970.0b 1963.6b 2238.9a 26.93 < 0.001

Average daily gain (g/day)

21 to 28 d 50.0b 48.9b 66.4a 1.60 < 0.001

28 to 35 d 67.5b 66.0b 81.8a 1.59 < 0.001

35 to 42 d 80.9b 82.4b 88.6a 1.21 0.017

Overall period 66.0b 65.8b 78.9a 1.28 < 0.001

Average daily feed intake (g/day)

21 to 28 d 93.7 95.7 99.9 1.16 0.078

28 to 35 d 147.8 156.9 146.1 2.65 0.205

35 to 42 d 176.4 169.7 181.9 2.22 0.076

Overall period 139.3 140.7 142.7 1.47 0.653

Feed conversion ratio

21 to 28 d 1.9a 2.0a 1.5b 0.04 < 0.001

28 to 35 d 2.2a 2.4a 1.8b 0.06 < 0.001

35 to 42 d 2.2b 2.1b 2.1 0.03 0.121

Overall period 2.1a 2.1a 1.8b 0.04 < 0.001
a,bDifferent superscripts in the same row express as significant value at P<0.01.
CON, control; L-MHF, low level of micronized hemp fiber; H-MHF, high level of micronized
hemp fiber; SEM, the standard error of the means.
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optimally balanced between soluble and insoluble fractions,

enhances feed efficiency and weight gain in broilers (Jiménez-

Moreno et al., 2016; Sabour et al., 2019). Sadeghi et al. (2015)

reported that dietary fiber sources with a balanced combination in

broiler diet resulted in enhanced immunological function.

Lactobacillus populations were significantly elevated in broilers

consuming fiber-supplemented diets, which corresponded with

superior growth performance and enhanced humoral immune

responses (Sabour et al., 2019). In addition, the inclusion of

organic acids and fiber sources can improve intestinal

performance and health (Adewole et al., 2021). Dietary

supplementation with moderate quantities of insoluble fiber,

specifically the incorporation of oat or sunflower hulls into low-

fiber formulations, resulted in enhanced growth performance

parameters in broiler chickens (Jiménez-Moreno et al., 2016).

Dietary inclusion of insoluble fiber up to 4% maintains the

performance, nutrient metabolism and improves the development

of the proventriculus and gizzard in slow-growing broilers (Oliveira
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et al., 2024). Furthermore, Incharoen et al. (2010) stated that dietary

fiber derived from ginger by-product stimulated the intestinal

development and function resulting in enhanced growth

performance of broiler chickens.

Antioxidant enzyme activities such as GSH-Px, SOD, and CAT,

serve as crucial biomarkers for assessing redox reactions and

oxidative stress (Gusti et al., 2021). Oke et al. (2024) found that

the antioxidant enzymes GPX, SOD, and CAT play a protective role

in alleviating oxidative stress caused by environmental challenges

such as high temperatures in broilers. Based on our experimental

results, the supplementation of the MHF in broiler feed

formulations demonstrated significant potential as an approach to

upregulate antioxidant enzyme activity. Additionally, it was

observed that MHF supplementation led to a reduction in

lysosomal activity levels in the serum of broilers. These findings

indicated that the observed antioxidant effects may be linked to the

bioactive compounds present in MHF, particularly cannabinoids.

Several previous studies have described the potential of hemp CBD
FIGURE 4

Lysosomal activity of broilers fed a basal diet supplemented with the MHF during 21 to 42 days of age (CON, control; L-MHF, low level of
micronized hemp fiber; H-MHF, high level of micronized hemp fiber). The data represent the means ± SE of 5 replicates. a,bEach bar with different
letters denotes a significant difference (P < 0.05).
FIGURE 3

Antioxidant enzyme activities (CAT, catalase; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase) of broilers fed a basal diet supplemented
with the MHF during 21 to 42 days of age (CON, control; L-MHF, low level of micronized hemp fiber; H-MHF, high level of micronized hemp fiber).
The data represent the means ± SE of 5 replicates. a,bEach bar with different letters denotes a significant difference (P < 0.001).
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to significantly influence redox reactions and oxidative stress in

broiler chickens, owing to its bioactive properties, particularly its

antioxidant and anti-inflammatory effects (Sopian et al., 2024;

Hassan et al., 2023). The CBD antioxidant properties can be

attributed to their ability to modulate oxidative stress in chickens.

Bień et al. (2024) reported a reduction in oxidative stress markers

after CBD supplementation during a lipopolysaccharide challenge,

which illustrated the potential of CBD to combat oxidative damage

in chickens. In addition, the immunostimulatory and antibacterial

effects observed by Balenović et al. (2024) and Hassan et al. (2023)

further support the idea that CBD can improve general health in

poultry, especially by enhancing the immune response. The CBD

can influence several biochemical pathways in experimental birds.

Szkopek et al. (2024) reported an interaction between receptors

activated by peroxisome proliferator-activated receptors (PPAR)

and CBD in the intestine, which could significantly contribute to

improving intestinal health and nutrient absorption. In addition,

Konieczka et al. (2022) observed that the combination of CBD and

nano-selenium reduced degenerative changes in the muscle of

animals infected with C. perfringens, which underlines the

potential of cannabinoids to improve health and muscle

performance. Regarding our study, the results obtained indicated

that it is likely the improved growth performance of the broilers

reared under thermal stress was due to the bioactive compounds

present in the micronized hemp fiber, with an emphasis on the

cannabinoids (as presented in Table 1).
5 Conclusion

In conclusion, our investigation revealed that dietary MHF

supplementation enhances in vitro cecal fermentation dynamics of

broiler microbiota. Supplementation of MHF at a 1.5% inclusion rate

can enhance overall growth performance parameters. Collectively,

these findings indicate that dietary incorporation of 1.5% MHF

benefits overall productivity, potentially through the stimulation of

antioxidant mechanisms. The observed beneficial effects may have

arisen from the synergistic interaction between the fiber components

and phytochemical constituents of MHF. However, while MHF

enhanced antioxidant activity, its long-term effects on immune

function and gut health require further investigation. Future

research should explore its practical application in large-scale

poultry production and assess regulatory considerations.
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