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Tacuarembó, Uruguay, 3Sistema Ganadero Extensivo, INIA Las Brujas, Instituto Nacional de
Investigación Agropecuaria, Canelones, Uruguay
Feed intake is a challenging trait to measure due to the high costs associated with

labor, feeding, and facilities. Applying machine learning approaches, considering

traits as potential predictors, offers a cost-effective alternative to direct feed intake

measurement. By leveraging existing animal data, these models can optimize

resources and enable feed intake estimation across a larger population without

the need for labor-intensive trials. This research aimed to test combinations of

feature selection and prediction models to find the best feed intake (expressed as

metabolizable energy intake) prediction approach for a dataset comprising Australian

Merino, Corriedale, and Dohne Merino data. The study dataset with 1,708

observations included 920 Australian Merino, 215 Corriedale, and 337 Dohne

Merino sheep from 17 feed intake trials conducted between 2019 and 2022. The

dataset was randomly partitioned into two subsets: one for training (80%) the

algorithms and the other for direct validation (20%). Feature selection methods

included track analysis, stepwise model, and principal components analysis. The

prediction models were stepwise, linear regression, nonlinear regression, k-nearest

neighbor regression, random forest regression, and support vector machines. The

highest R2 valuewas found in the support vectormachines using the stepwisemodel

for feature selection, with a value of 0.91 in the cross-validation of the training

dataset, and Pearson and Spearman correlation coefficients of 0.95 and 0.93,

respectively. In direct validation, the k-nearest neighbor model with the stepwise

feature selection model presented the highest Pearson and Spearman correlation

coefficients, with values of 0.92 and 0.90, respectively. In the confusion matrix, the

support vector machines with stepwise feature selection showed the best

performance. The model correctly distinguished between high and low metabolic

energy intake in all cases, achieving an overall accuracy of 0.76. This indicates that

support vector machines effectively captures the underlying patterns of feed intake

distribution. The approaches that presented the best performance balance in both

cross-validation and direct validation were the k-nearest neighbor model and the

support vector machines using the stepwise model for feature selection.
KEYWORDS

k-nearest neighbor, enteric methane, carbon dioxide, random forest, support
vector machines
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1 Introduction

The great debate in the livestock sector revolves around the

challenges of mitigating greenhouse gas emissions while increasing

food production for a constantly growing global population. The

Paris Agreement aims to limit global warming to 1.5°C, with

greenhouse gas emissions reduced by 16% to 41% by 2050 relative

to 2010 levels (Leahy et al., 2020). Simultaneously, the global

population is projected to increase by 38% (Pew Research Center,

2014), with an expected meat consumption rise larger than 70% over

the same period levels (McLeod, 2011). This indicates that the

livestock system will need to become more efficient in land use to

increase production levels while reducing greenhouse gas emissions.

Although global environmental sustainability goals have been

defined, the identification of suitable and economically viable

alternatives for sustainable production requires further consideration.

This involves approaches to identifying animals that are more efficient,

capable of being productive while maintaining or reducing feed intake,

especially given that feed costs represent a significant expenditure in

production systems. For example, in New Zealand's pasture-based

system, feeding costs of sheep and beef accounted for approximately

56% of the total direct cost in the years 2019–2020 (Beef + Lamb New

Zealand, 2021). In Ireland, which utilizes both homegrown and

purchased feed, the National Farm Survey of Ireland published in

2020 that direct and indirect costs of sheep feeding can reach up to

73% of the total direct production cost (Dillon et al., 2021). These

examples highlight the economic importance of identifying and

selecting animals that consume less feed while maintaining optimal

production levels, regardless of the type of production system.

Selecting animals that consume less feed based on lower

residual feed intake (RFI) will not only reduce production costs

but it also has the potential to decrease greenhouse gas emissions

due to the linear relationship between feed intake and greenhouse

gas production (Charmley et al., 2016). However, the decrease in

methane emissions is not always observed in low RFI animals, due

to a higher digestibility of the dry matter in these animals and,

therefore, an increased methane yield (Cantalapiedra-Hijar et al.,

2018). The positive correlation between methane emissions and

feed intake is particularly relevant when direct measurement of feed

intake is impractical or costly. In such cases, gas measurements

using Portable Accumulation Chambers (PAC) would enable the

indirect acquisition of feed intake data, as these measurements are

feasible in the field (Dominik et al., 2017). Therefore, methane and

CO2 emissions measured with PACs, can assist as proxies for

predicting feed intake. This is supported by correlations ranging

from 0.86 to 0.95 between feed intake and methane emissions

reported by Robinson et al. (2020).

Unlike the relationship with methane emissions, productive

traits do not exhibit a strong relationship with feed intake. Safari

et al. (2007) found low genetic and phenotypic correlations between

growth traits and feed intake. The lack of strong genetic and

phenotypic relationships between feed intake and production

traits was identified by Fogarty et al. (2009) as a limitation for

their use as indirect selection criteria for feed intake. However,

Tortereau et al. (2020) found low to medium genetic and
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phenotypic correlations between feed intake and average daily

gain (0.59 and 0.78), initial weight (0.45 and 0.29), final weight

(0.60 and 0.78), final backfat thickness (0.31 and 0.28), and final

muscle depth (−0.12 and 0.18), suggesting these variables could

potentially serve as proxies for predicting feed intake.

As previously reported, measuring individual feed intake is

challenging and comes with high costs related to labor, feeding,

and facilities. Applying machine learning approaches that consider

traits (features) as potential predictors could optimize resources and

provide feed intake information for more animals at lower cost,

both directly and indirectly. By leveraging the advantages of

machine learning compared to common linear models, gas

emissions and production traits could serve as proxies for feed

intake prediction. These advantages are the learning relationships

from training data and generalizing them to unseen testing sets, and

overcoming non-linearity and interactions among features

(Shahinfar and Kahn, 2018). Several studies with sheep have

utilized machine learning approaches. For example, machine

learning has been used to accurately predict adult wool growth

and quality traits based on yearling wool, conformation and health

traits, along with pasture and climate data (Shahinfar and Kahn,

2018). Machine learning algorithms have also been employed to

detect basic behaviors in sheep, such as grazing, lying, standing, and

walking, as well as activity behaviors or body posture detection

(Fogarty et al., 2020). Moreover, these algorithms have been used to

classify lamb mortality into risk classes (Odevci et al., 2021). In a

study on Romney ewes, it was shown that ewe body condition could

be predicted with great accuracy using previous liveweight data with

machine learning algorithms (Semakula et al., 2021). However,

none of these studies have employed machine learning

approaches for feed intake prediction in sheep, highlighting an

important area for further research.

Currently, in Uruguay, the breeds with available feed intake

information are Australian Merino, Corriedale, Dohne Merino and

Texel (Giorello et al., 2021). The Australian Merino, Corriedale, and

Dohne Merino can be grouped as woolly breeds and represent more

than 91% of the animals with feed intake information. In the

Uruguayan genetic evaluation, their productive traits are

practically the same (Evaluaciones Genéticas Ovinas, 2025). The

Australian Merino breed database has the most extensive feed

intake information and could therefore be considered the main

input for the first study using this approach. Thus, it was

hypothesized that individual daily metabolizable energy intake in

Australian Merino, Corriedale, and Dohne Merino sheep could be

predicted using the multi-breed dataset with good accuracy using

machine learning approaches. The objective of the study was to test

combinations of feature selection and prediction models to find the

best approach for predicting individual daily metabolizable energy

intake in Australian Merino, Corriedale, and Dohne Merino sheep.
2 Materials and methods

The dataset was collected from 17 feed intake trials conducted

between 2019 and 2022, comprising nine trials with Australian
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Merino, five with Corriedale, and three with Dohne Merino breeds.

The experimental site, where the data was recorded, is located at La

Magnolia Experiment Unit of the National Agricultural Research

Institute of Uruguay, Tacuarembó, Uruguay. Records were collected

from 1,708 sheep (975 Australian Merino, 376 Corriedale, and 357

Dohne Merino), offspring of 48 rams (19 Australian Merino, 17

Corriedale, and 12 Dohne Merino).

All protocols applied were approved by the INIA Animal Ethics

Committee (INIA 2018.2).
2.1 Feed intake trials

The trial duration was 56 days, including a 14-day feed and

facilities adaptation period, resulting in 42 days of feed intake

evaluation. Animals were fed ad libitum with Lucerne haylage

(DM 64.5%; crude protein 21.7%; NDF 35.5%; ADF 27.9% and

ME 10,2 MJ/kg DM)). Each pen had five individual automated

feeders and two automatic weighing platforms equipped with an

electronic tag reader, precision scale, and connected to a central

computer, allowing for daily monitoring of body weight (BW) and

feed intake. After deworming, animals were allowed to enter

collective pens and were allocated to one of five automated

feeding systems (pens) according to body weight, sex, type of

birth, and sire.

Daily monitoring was performed using a software system that

identified the entry of animals into the feeder and body weighing

platform. The equipment and software were provided by Ponta

(Ponta®, Belo Horizonte, MG, Brazil). The RFID tags allowed the

identification of specific animals at the feed bin and, consequently,

their feed intake based on the difference in feed weight before and

after each visit. The body weighing platform was set in the water

bins, equipped with a sensor similar to the one in the feed bins

system. Each time an animal accessed the platform, its BW was

automatically recorded. After each visit to the feed bin and BW

platform, the system documented the events by recording the

animal's identification tag, bin number, and platform number.

Detailed information about data collection and the functioning of

the equipment can be found in Amarilho-Silveira et al. (2022).
2.2 Gas measurements

Methane emissions were estimated following the PAC protocol

described by Goopy et al. (2011, 2016), Paganoni et al. (2017), and

Robinson et al. (2014). In brief, two estimates per animal were

performed during the last two weeks of the feed intake test (with at

least one week between estimates), allowing for the determination

of feed intake and body weight of the animals on the day and

previous days of gas emission estimation. The traits evaluated were

methane emissions (CH4), carbon dioxide emissions (CO2), and

oxygen consumption (O2). During the measurement week, one pen

per day was measured in consecutive runs of 10 animals, resulting

in 20 animals measured per day and 100 animals by the end of the

week. If the feed intake test involved more than 100 animals, an
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extra run per day was performed if necessary. According to

Robinson et al. (2020), animals remained on feed until the

moment of measurement. Afterward, they were allocated to one

of 10 sealed chambers with a volume of 862 liters. Estimates of the

concentrations of CH4, CO2, and O2 were performed at 20 to 30

minutes and 40 to 50 minutes later. In parallel, estimates of

temperature, atmospheric pressure, and gas concentrations in the

air were conducted. Gas measurements were performed using Eagle

2® equipment (RKI Instruments, Union City, CA, USA). The Eagle

2® and PACs were checked between measurement weeks, and the

Eagle 2® was periodically calibrated in accordance with the

specifications provided by RKI Instruments.

Regarding calculations, first, the concentration of CH4, CO2,

and O2 were obtained in ppm from Eagle 2®, and these values are

converted into liters per day (l/d) as shown in Equations 1–3 (edited

from Goopy et al., 2011, 2016; Paganoni et al., 2017; Robinson et al.,

2014):

CH4(l=d) =
( DCH4
DPACtime

) �  (PACv −  BW �  1:01)

1:000:000
(1)

CO2(l=d) =
( DCO2
DPACtime

) �  (PACv −  BW �  1:01)

100
(2)

O2(l=d) =
( DO2
DPACtime

) �  (PACv −  BW �  1:01)

100
(3)

In a second step, the liters per day (l/d) are converted to grams

per day (g/d) at standard temperature and pressure, as shown by

Jonker et al. (2020) in Equations 4–6:

CH4(g=d) =  CH4  l=d�   STP �   16:043=22:4 (4)

CO2(g=d) =  CO2  l=d  �   STP �   44:009=22:4 (5)

O2   (g=d) =  O2  l=d�  STP � 31:998=22:4 (6)

Where 22.4 is the molar volume (l) of a gas at standard pressure

and temperature (STP), and 16.043, 44.009, and 31.998 are the molar

weights of CH4, CO2, and O2, respectively. STP = 273.15 K/(273.15 K +

temperature) × (pressure (kPa)/101.3), where 101.3 kPa is standard

atmospheric pressure at sea level, and 273.15 K is the equivalent of 1°C.

The data for each animal is the average of the two measurements taken

during the evaluation period of the consumption test.
2.3 Data edition and description

From the initial dataset of 1,708 records, animals lacking the

following data were excluded: average methane emissions, body

weight difference between the start and end of the trial, and rib eye

area, resulting in 1,478 remaining records. Additionally,

metabolizable energy intake observations that fell below or above

three standard deviations within breed, trial, and pen were deleted,

leaving 1,472 records (920 Australian Merino, 215 Corriedale, and

337 Dohne Merino).
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The dataset was split into two parts: training and testing sets.

The testing set comprised 20% of the database, containing animals

from the Australian Merino, Corriedale, and Dohne Merino breeds

in a balanced manner (n = 319; Australian Merino = 184, Corriedale

= 43, Dohne Merino = 68). The remaining data was used for the

training set (n = 1,177).

The data description is presented in Table 1, where the average

body weight at the start and end of the trial are, respectively: 36.24 ±

5.73 kg and 43.64 ± 6.82 kg for Australian Merino; 31.08 ± 4.29 kg

and 37.94 ± 4.95 kg for Corriedale; and 46.34 ± 5.24 kg and 53.34 ±

6.04 kg for Dohne Merino. The individual daily metabolizable

energy intake (MEI) was obtained by calculating the total feed

intake per day expressed in metabolizable energy as described by De

Barbieri et al. (2024). The average metabolizable energy intake over

42 days in the trials for Australian Merino, Corriedale, and Dohne

Merino were 3.23 ± 0.66, 2.97 ± 0.56, and 3.68 ± 0.71 kcal/day,

respectively. After data editing, only females were evaluated in the

Corriedale and DohneMerino breeds (215 and 336, respectively). In

the Australian Merino breed, 459 males and 461 females were

evaluated. Due to data limitations, specifically that feed intake tests

were conducted only on females, only females were retained for the
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Corriedale and Dohne Merino breeds. The average age at the start

of the trial was 295.50 ± 45.79 days for Australian Merino, 191.53 ±

12.01 days for Corriedale, and 419.61 ± 8.15 days for

Dohne Merino.
2.4 Feature selection

The feature selection aimed to identify the variables that best

explain the MEI in kcal/day. The methods used included track

analysis (TA), backward and forward stepwise models (Stepwise),

and principal components analysis (PCA). The considered variables

were: rib eye area (REA) in cm²; backfat thickness (FT) in mm;

average daily gain (ADG) in kg per day; body weight at the middle

of the trial (BWmT) in kg; metabolic body weight (MBW =

BWmT0.75) in kg; body weight at the start of the trial (BWsT) in

kg; body weight at the end of the trial (BWeT) in kg; average CH4

emissions in g/day; average CO2 emissions in g/day; average O2

consumption in g/day; body weight difference between the start and

end of the trial (BWdif) in kg; fiber diameter (DF) in microns;

greasy fleece weight (GFW) in kg; weaning body weight (YBW) in

kg; and staple length (SL) in cm. Wool traits were evaluated at first

shearing of each breed, approximately at 365 days of age, following

De Barbieri et al. (2024). The rib eye area (REA) and backfat

thickness (FT) were measured using ultrasound at the end of the

trial, at the level of the last floating rib, one centimeter from the

spine (between the 12th and 13th ribs). All variables were pre-

processed in order to standardize the variance considering the trial

and the pen, which comprised the contemporaneous group (CG),

with the aim of making comparisons between all CGs in the data

set, but preserving a data structure not regressed to zero, with values

varying only in one direction (positive values). This data processing

can be seen in Equation 7:

New _ value =  Original _ value=CG stander desviation (7)

For the training of algorithms and models, the variables selected

by the feature selection in the track analysis method, the stepwise

model, and principal component analysis (retaining 80% of the

cumulative variance) were used as input. All algorithms and models

were evaluated using each of these three feature selection approaches.
2.5 Statistics and machine learning
algorithms procedures

The dataset used for training the models consisted of 1,177

observations, corresponding to 80% of the initial database (1,472).

For cross-validation, this dataset was divided such that one part was

used for training and another for testing using the k-fold method.

Direct validation was performed on the testing dataset (295

observations), which was not known by the models and

corresponds to 20% of the initial database.

Three approaches were used for feature selection: the track

analysis method, which utilizes standardized partial regression

(Rojo Baio et al., 2019) for data with multicollinearity using the
TABLE 1 General data description presented as the mean ± standard
deviation for all traits.

Traits1
Australian
Merino

Corriedale
Dohne
Merino

MEI (kcal/day) 3.23 ± 0.66 2.97 ± 0.56 3.68 ± 0.71

AGE (days) 295.50 ± 45.79 191.53 ± 12.01 419.61 ± 8.15

REA (cm2) 7.40 ± 1.47 6.88 ± 1.38 10.03 ± 1.96

FT (mm) 2.00 ± 0.70 2.64 ± 1.15 2.49 ± 0.88

ADG (kg) 0.18 ± 0.07 0.17 ± 0.04 0.15 ± 0.06

BWmT (kg) 40.17 ± 6.13 34.49 ± 4.63 50.25 ± 5.48

MBW (kg) 15.92 ± 1.81 14.20 ± 1.43 18.85 ± 1.55

BWsT (kg) 36.24 ± 5.73 31.08 ± 4.29 46.34 ± 5.24

BWeT (kg) 43.64 ± 6.82 37.94 ± 4.95 53.34 ± 6.04

CH4 (g/day) 22.38 ± 5.62 16.41 ± 4.74 26.78 ± 5.73

CO2 (g/day) 1066.23 ± 234.38 178.64 ± 172.93 1426.21 ± 322.31

O2 (g/day) 979.95 ± 191.54 845.24 ± 160.47 1262.73 ± 91.57

BWdif (kg) 7.40 ± 2.95 6.85 ± 2.06 7.00 ± 2.62

DF (microns) 14.88 ± 0.92 23.02 ± 1.77 18.26 ± 1.22

GFW (kg) 4.12 ± 0.73 3.15 ± 0.44 2.76 ± 0.44

YBW (kg) 48.35 ± 12.13 36.20 ± 4.10 43.50 ± 4.99

SL (cm) 11.20 ± 1.38 12.87 ± 1.79 10.58 ± 1.49
1Average feed intake is based on metabolizable energy intake in kcal (MEI), age at the
beginning of the trial (AGE) in days, rib eye area (REA) in cm², backfat thickness (FT) in mm,
average daily gain (ADG) in kg per day, body weight at the middle of the trial (BWmT) in kg,
metabolic body weight (MBW = BWmT⁰·⁷⁵) in kg, body weight at the start of the trial (BWsT)
in kg, body weight at the end of the trial (BWeT) in kg, average methane emissions (CH4) in g/
day, average carbon dioxide emissions (CO2) in g/day, average oxygen consumption (O2) in g/
day, body weight difference between the start and end of the trial (BWdif) in kg, fiber diameter
(DF) in microns, greasy fleece weight (GFW) in kg, yearling body weight (YBW) in kg, and
staple length (SL) in cm.
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GENES software (Cruz, 2013); the backward and forward stepwise

methods of the "stats" R package (R Core Team, 2021); and

principal components analysis using the Rbio software

(Bhering, 2017).

For a better understanding of the feature selection using the

track analysis method, a correlation network was performed using

the Rbio software (Bhering, 2017). Afterward, the data underwent a

multicollinearity diagnosis, which confirmed a high level of

collinearity among the explanatory variables. Consequently, it was

particularly considered in the track analysis in GENES. The features

selected were those that presented Pearson correlation and direct

effect in the same directions, with a direct effect greater than or

equal to 0.05.

After running the stepwise feature selection to find the best

model, a dominance analysis was performed to investigate the

importance of each variable in the model using the "domin"

function from the R package "domir" (Luchman, 2023). In the

principal components analysis, the principal components (PCs)

selected were those that accumulated 80% of the total variance.

The prediction approaches used were the stepwise model, linear

regression model, nonlinear regression model, k-nearest neighbor

regression model, and random forest regression model from the

"mlr" R package (Bischl et al., 2016) as well as support vector

machines from the "e1071" R package (Meyer et al., 2023).

The stepwise and linear model (Linear Model) uses the equation

of a straight line. The nonlinear regression model employs

supervised learning of generalized additive models (Nonlinear

Model). The k-nearest neighbor regression model utilizes the k-

nearest neighbor's algorithm for regression (k-Nearest Neighbor

Model). The random forest regression model relies on tree-based

algorithms for regression (Random Forest Model). Lastly, support

vector machines (Support Vector Machine) search for a regression

function that minimizes the error between predictions, known as

support vector regression (Rhys, 2020).

For the k-Nearest Neighbor Model, the k hyperparameter was

tuned using cross-validation with k-fold resampling and 20 iterations.

To construct the parameter set, we created a description object for a

parameter where k ranged from 1 to approximately 34 (the square

root of the number of observations in the training set). For the search

ranges was used the R function "makeTuneControlGrid()" from "mlr"

R package (Bischl et al., 2016). The number of k-nearest neighbors was

presented according to the feature selection procedure. For the

Random Forest Model, the hyperparameters considered were the

number of individual trees in the forest (ranging from 50 to 1000),

the number of features to randomly sample at each node (ranging

from 100 to 1200), the minimum number of cases allowed in a leaf

(ranging from 1 to 20), the maximum number of leaves allowed

(ranging from 5 to 100), up to 500 iterations in the random search

method, and cross-validation with k-fold resampling and 20 iterations.

For the Support Vector Machine, the hyperparameters considered

were epsilon (ranging from 0 to 1, in 0.1 increments) and a cost that

ranged from 1 to 100. The R scripts for this hyperparameters turning

are available in the supplementary materials.

The model training was conducted using cross-validation with

k-fold resampling and 20 iterations. The k-fold cross-validation
Frontiers in Animal Science 05
method randomly splits the data into approximately equal-sized

subsets called folds. One of these folds is then kept as a test set, while

the remaining data is used as the training set. The test set is passed

through the model or learning algorithm, and performance metrics

– such as R2, root mean squared error (RMSE), and Pearson and

Spearman correlations – are recorded. Different folds of the data are

used as the test set in each iteration, ensuring that all folds have been

used once as the test set. The performance metrics reported are the

average of all test set runs.

Pearson and Spearman correlations were used as validation

metrics in the testing dataset, calculated with the "cor.test" function

from the "stats" R package (R Core Team, 2021).

For the confusion matrix calculation for the validation dataset,

the observed and predicted MEI were transformed into three classes

(low, medium and high MEI). Animals with MEI less than or equal

to the 25th percentile were classified as low (the 25% lowest MEI

values), those greater than or equal to the 75th percentile were

classified as high (the 25% highest MEI values), and those between

the 25th and 75th percentiles were classified as medium (values

about the average and median of MEI). This classification is

analogous to the classification for residual feed intake (Ellison

et al., 2019). The confusion matrix was plotted using the

"plot_confusion_matrix" function from the "cvms" R package

(Olsen, 2021).
3 Results

Pearson correlation and direct effect values obtained by the

feature selection using the TA are presented in Table 2. Figure 1

shows the Pearson correlations, highlighting strong and positive

relationships among body weight traits (BWsT, BWmT, MBW,

and BWeT), gain traits (BWd and ADG), and gases (CO2 and O2).

These groups exhibited moderate correlation coefficient values with

MEI, ranging from 0.41 to 0.59. After identifying these relationships,

a multicollinearity diagnosis was performed, and a track analysis

method for data with collinearity was used to select the best traits.

The variables that presented the same direction of the Pearson

correlation and direct effect, with direct effects greater than 0.05,

were FT, ADG, BWmT, BWeT, CO2, O2, and BWdif. The features

that presented the greatest direct effects were BWeT and CO2, with

values of 0.37 and 0.32, respectively, meaning they could explain

37% and 32% of the variation in MEI. The BWdif, BWmT, FT, O2,

and ADG had direct effects of 0.16, 0.12, 0.08, 0.07, and

0.05, respectively.

In the feature selection using the Stepwise model with backward

and forward methods, the variables that showed better explanatory

capacity were the REA, FT, BWmT, MBW, CH4, CO2, BWdif,

GFW, DF, and YBW (Table 3). The dominance analysis indicated

that the most important trait was CO2, with a general dominance of

0.156, explaining 15.6% of MEI variation (Rank 1 in Table 3). The

second most important trait was BWeT, with a general dominance

of 0.097. Other classifications can be seen in Table 3.

The PCA obtained a cumulative proportion of variance greater

than 0.80 in the top six principal components (PCs; Table 4). PC1
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had a total variance of 0.338 and only surpassed the 0.70 mark when

combined with PC2, PC3, PC4, and PC5. A total of six principal

components were needed to obtain a satisfactory proportion of

explanation of the total variance.

The prediction approaches that presented determination

coefficients (R2) greater than or equal to 0.70 were the Random

Forest Model using the TA as feature selection (R2 = 0.70), k-

Nearest Neighbor Model using the PCA as feature selection (R2 =

0.72), Random Forest Model using the Stepwise as feature selection

(R2 = 0.77), Support Vector Machine using the PCA as feature

selection (R2 = 0.80), Support Vector Machine using the TA as

feature selection (R2 = 0.82), k-Nearest Neighbor Model using the

Stepwise as feature selection (R2 = 0.83), and Support Vector

Machine using the Stepwise as feature selection (R2 = 0.91). The

Pearson and Spearman correlation coefficients in these models

ranged from 0.84 to 0.95 and 0.78 to 0.93, respectively. Other fit

values and hyperparameters can be seen in Table 5.

Pearson and Spearman correlation coefficients of all approaches

in the direct validation were greater than 0.60. However, the best

models were those that presented values greater than 0.80 for both
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correlation methods. These were the k-Nearest Neighbor Model

using Stepwise and PCA as feature selection with values of 0.92 and

0.90, and 0.86 and 0.81, respectively; the Random Forest Model

using TA and Stepwise as feature selection with values of 0.86 and

0.82, and 0.89 and 0.85, respectively; and the support vector using

Stepwise as feature selection with values of 0.91 and 0.87 (Table 6).

The prediction models using TA for feature selection (Figure 2)

presented accuracies (Acc) ranging from 0.62 to 0.70 in the

confusion matrices. However, only the Nonlinear (Acc = 0.63)

and Random Forest (Acc = 0.70) Models did not present confusion

between the High and Low MEI classifications. In the Stepwise

model for feature selection (Figure 3), the Acc ranged from 0.61 to

0.76, with no confusion between High and LowMEI classification in

only the k-nearest neighbor (Acc = 0.74) and support vector (Acc =

0.76) models. The accuracy ranged from 0.53 to 0.71 in PCA feature

selection (Figure 4), and the model without confusion between High

and LowMEI classification was the k-nearest neighbor (Acc = 0.68).
4 Discussion

In Uruguayan genetic evaluation, the Australian Merino dataset

provides more feed intake information. By aggregating the

Corriedale and Dohne Merino information, prediction models

can be developed and potentially applied in the future for animals

of these breeds. In this context, machine learning approaches can

offer valuable generalizations to utilize available information

effectively and obtain feed intake data.

The differences in feed intake and gas emissions observed in

Table 1 are dependent on several factors. The Corriedale breed

showed lower MEI and gas emissions but also had lower growth and

final weight because they were evaluated at a younger age (De

Barbieri et al., 2024). Although heavier animals had greater MEI,

age was the principal factor influencing it. Table 1 indicates that

Dohne Merino animals are older and, consequently, heavier with

greater gas emissions.
4.1 Feature selection

Feature selection can be understood as the process of choosing

variables that best help in understanding data, aiming to reduce

computation requirements and dimensionality while consequently

improving the performance of the predictors (Chandrashekar and

Sahin, 2014). When traits present a high level of redundancy,

different feature ranks can be produced in different training

samples, resulting in different models with the same prediction

accuracy (Piles et al., 2021). In the present study, 15 variables were

tested, and seven were selected for the TA, 11 for the Stepwise, and

six PCs for the PCA analysis.

The variables selected that could explain the variation in MEI

for feature selection reinforce the findings of Tortereau et al. (2020)

that productive variables can explain MEI, contradicting the results

of Safari et al. (2007) and Fogarty et al. (2009). Methane emissions,

which were identified by Donoghue et al. (2015), Robinson and
TABLE 2 Selected variables feature selection using the track analysis
method (TA)1,2.

Variables3
Average feed intake based onmetabolizable

energy intake in kcal (MEI)

Pearson correlation Direct effect Ranks

REA (cm2) 0.20 −0.14 −

FT (mm) 0.16 0.08 5

ADG (kg/day) 0.47 0.05 7

BWmT (kg) 0.42 0.12 4

MBW (kg) 0.41 0.04 −

BWsT (kg) 0.27 −0.12 −

BWeT (kg) 0.53 0.37 1

CH4 (g/day) 0.36 −0.01 −

CO2 (g/day) 0.59 0.32 2

O2 (g/day) 0.54 0.07 6

BWdif (kg) 0.47 0.16 3

DF (microns) −0.13 −0.04 −

GFW (kg) 0.24 −0.04 −

YBW (kg) 0.10 −0.10 −

SL (cm) 0.14 0.01 −
Bold indicates the variables selected in the feature selection.
1The multicollinearity diagnosis was performed using the GENES Software (Cruz, 2013). 2The
track analysis method for collinearity was also conducted using the GENES Software. 3The
variables included rib eye area (REA) in cm², backfat thickness (FT) in mm, average daily gain
(ADG) in kg per day, body weight at the middle of the trial (BWmT) in kg, metabolic body
weight (MBW = BWmT⁰·⁷⁵) in kg, body weight at the start of the trial (BWsT) in kg, body
weight at the end of the trial (BWeT) in kg, average methane emissions (CH4) in g/day,
average carbon dioxide emissions (CO2) in g/day, average oxygen consumption (O2) in g/day,
body weight difference between the start and end of the trial (BWdif) in kg, fiber diameter
(DF) in microns, greasy fleece weight (GFW) in kg, yearling body weight (YBW) in kg, and
staple length (SL) in cm. Variables with Pearson correlation and direct effect in the same
direction and a direct effect greater than or equal to 0.05 were selected.
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Oddy (2016), and Robinson et al. (2020) as a promising proxy, were

selected in the Stepwise feature selection in the present study as a

variable with moderate explanatory power of MEI. However, CO2

emissions were more significant in predicting MEI. This aligns with

Arthur et al. (2018), who found that increased feed consumption

leads to higher CO2 production. Renand et al. (2019) mention CO2

emissions as a potential variable for indirect selection of feed

efficiency along with CH4, when no daily feed intake

measurement is available. However, the correlations between CH4

and CO2 range from moderate to very strong in Robinson et al.

(2016), moderate to strong in Paganoni et al. (2017), and weak to

moderate in Jonker et al. (2018). This fact could explain why CO2
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was selected and CH4 was not in the TA, as one trait could exclude

the other due to high redundancy.

The physiological rationale for these observations may stem from

the distinct relationships of CO2 and CH4 to energy metabolism and

digestibility, respectively. Specifically, energy expenditure in animals,

driven by the oxidation of organic matter (consuming oxygen and

producing carbon dioxide; Arthur et al., 2018), often occurs at the

expense of heat production. Conversely, during methane formation,

CO2 acts as a hydrogen sink resulting from microbial fermentation,

potentially diverting energy away from the digestion of ingested food.

Consequently, a greater intake of substrates, whether in terms of feed

quantity or metabolizable energy, leads to increased oxidation of
FIGURE 1

Pearson Correlation Network between all variables in the dataset, using the software Rbio (Bhering, 2017). The green lines represent positive
correlations, while the red lines represent negative correlations. The thickness of the lines indicates the strength of the correlation coefficient,
ranging from transparent lines (values close to zero) to thick lines (values close to one). Variables included in the analysis are: average feed intake
based on metabolizable energy intake in kcal (MEI); age at the beginning of the trial (AGE) in days; rib eye area (REA) in cm²; fat thickness (FT) in mm;
average daily gain (ADG) in kg per day; body weight at the middle of the trial (BWmT) in kg; metabolic body weight (MBW = BWmT⁰·⁷⁵) in kg; body
weight at the start of the trial (BWsT) in kg; body weight at the end of the trial (BWeT) in kg; average methane emissions (CH4) in g/day; average
carbon dioxide emissions (CO2) in g/day; average oxygen consumption (O2) in g/day; body weight difference between the start and end of the trial
(BWd) in kg; fiber diameter (DF) in microns; greasy fleece weight (GFW) in kg; yearling body weight (YBW) in kg; and staple length (SL) in cm.
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organic matter and a concomitant rise in CO2 emissions. When this

increased substrate availability is coupled with a synchronized rate of

microbial degradation, CH4 emissions also increase. However, in

cases of asynchrony between substrate availability and microbial

degradat ion, the excess CO2 is primari ly el iminated

through respiration.

Thus, as previously mentioned the CO2 produced by both

ruminal fermentation and oxidation of substrates is proportional to

energy expenditure (Hegarty, 2013). CH4 emission is related to an

inefficient digestive process, representing an important loss of feed

gross energy (Olijhoek et al., 2018). Therefore, a reduction in gas

emissions, due to its relationship with improved digestibility, would

consequently also be observed as a decrease in feed intake

(Cantalapiedra-Hijar et al. , 2018) without necessarily

compromising the daily nutrient supply to the animal. Thus, low

apparent CO2 emission could be considered a potential proxy for low

feed intake in sheep (Hegarty, 2013), as this variable ranked second

and first in the TA and Stepwise feature selection, respectively.

In the study by Bond et al. (2023), a moderate correlation was

found between dry matter intake and CH4 (0.47), measured in
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respiratory chambers, and a weak correlation with average daily

gain (0.28). Similarly, Muir et al. (2020) found phenotypic

correlations between dry matter intake, growth rate, and CH4

emissions in maternal composite ewes of different ages (post-

weaning, hogget, and adult). The correlations tended to be greater

in post-weaning and adult animals compared to hoggets (0.40, 0.37,

and 0.20, respectively). The growth rate showed correlations with dry

matter intake in hoggets ranging from 0.17 to 0.42, while in post-

weaning and adults, the values were 0.35 and 0.37, respectively. These

results indicate that the variables have different relationships with feed

intake at various ages. Our study worked with animals of different ages

but without repeated measurements in different productive phases. It

would be valuable to obtain information related to the entire

production cycle and not just a specific phase. However, due to the

cost of trials, instead of measuring fewer animals with experimental

objectives, the current approach of using data from individuals

participating in genetic evaluation may compensate for the absence

of repetitions by providing a greater amount of information.

Variables measured during the feed intake test period typically

have a significant influence in explaining animal consumption, as
TABLE 3 Selected variables feature selection using stepwise model with backward and forward (Stepwise) and dominance analysis.

Model1
Regression
coefficient

General dominance
Standardized
dominance

Ranks

Intercept 3.469*** − − −

REA (cm2) −0.222*** 0.014 0.025 8

FT (mm) 0.119** 0.007 0.013 12

BWmT (kg) 0.965*** 0.049 0.090 4

MBW (kg) −0.676*** 0.046 0.084 5

BWsT (kg) −0.084*** 0.025 0.046 7

BWeT (kg) 0.257*** 0.097 0.176 2

CH4 (g/day) −0.096* 0.031 0.056 6

CO2 (g/day) 0.510*** 0.156 0.285 1

BWdif (kg) 0.236*** 0.095 0.174 3

GFW (kg) −0.076** 0.012 0.022 9

DF (microns) −0.036* 0.007 0.013 11

YBW (kg) −0.030*** 0.009 0.016 10

R-square 0.55
1Rib eye area (REA) in cm²; fat thickness (FT) in mm; average daily gain (ADG) in kg per day; body weight at the middle of the trial (BWmT) in kg; metabolic body weight (MBW = BWmT⁰·⁷⁵) in
kg; body weight at the start of the trial (BWsT) in kg; body weight at the end of the trial (BWeT) in kg; average methane emissions (CH4) in g/day; average carbon dioxide emissions (CO2) in g/
day; average oxygen consumption (O2) in g/day; body weight difference between the start and end of the trial (BWdif) in kg; fiber diameter (DF) in microns; greasy fleece weight (GFW) in kg;
yearling body weight (YBW) in kg; and staple length (SL) in cm.*p< 0.05; **p< 0.01; ***p< 0.001.
TABLE 4 Importance of components in the feature selection using the principal components analysis (PCA).

Importance of components PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 2.250 1.613 1.146 1.079 1.032 0.962

Proportion of variance 0.338 0.173 0.088 0.078 0.071 0.062

Cumulative Proportion 0.338 0.511 0.598 0.676 0.747 0.809
1PC1 at PC6 are the principal components that cumulative the 0.80 of the variances.
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observed by Rose et al. (2023), who found phenotypic correlations

between feed intake and growth and body weight of 0.52 and 0.46,

respectively, during the feed intake test period. This demonstrates

the importance of traits measured in this period for predicting

intake. Since the proposal by Koch et al. (1963), several studies have

analyzed feed intake records in a linear form, considering body

weight and body weight gain as covariates to estimate residual feed

intake. In Knott et al. (2008), feed intake was modeled using average

daily gain (ADG) and live weight in the mid-test. Similarly, studies

by Johnson et al. (2017), Zhang et al. (2017), Lima Montelli et al.

(2019) and Amarilho-Silveira et al. (2022) adjusted feed intake

using ADG and metabolic body weight. Based on these studies, for

the estimation of residual feed intake, body weight (or metabolic

body weight) and weight gain (BWdif and ADG) are necessary for
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feed intake prediction. Additionally, these results highlight the

importance of feed intake variables in prediction. Blake et al.

(2023), using machine learning approaches based on random

forest algorithms, identified body weight and average daily gain as

the principal proxies for feed intake prediction in beef cattle. In the

present study, these variables were selected in the feature selection

for TA and Stepwise methods, making them acceptable proxies for

MEI prediction.

The principal components (PCs) are the result of the multivariate

technique called principal component analysis (PCA). These PCs are

orthogonal vectors that point in the direction of the greatest data

variability. While the number of PCs is equal to the number of

variables, Table 4 only considers PCs that presented cumulative

variances of 0.80 or greater. In this way, we did not obtain
TABLE 5 Performance metrics: The performance metrics used in this study include R2, root mean squared error (RMSE), and Pearson and Spearman
correlation coefficients (r).

Method1 Feat selection
Algorithm/direction

Hyperparameters/variables of
GAM model

R2 RMSE r-Pearson r-Spearman

Stepwise Backward and forward - 0.55 1.724 0.74*** 0.70***

Linear Model TA – 0.49 1.840 0.70*** 0.65***

Linear Model Stepwise – 0.54 1.744 0.73*** 0.70***

Linear Model PCA – 0.46 1.883 0.68*** 0.64***

Nonlinear Model TA
Model with:2 BWmT, BWeT, CO2, FT, ADG,
O2 and BWdif.

0.57 1.697 0.75*** 0.69***

Nonlinear Model Stepwise
Model with: BWsT, BWeT, YBW, CO2,
MBW, GFW, BWdif and DF.

0.61 1.599 0.78*** 0.75***

Nonlinear Model PCA
Model with: PC1, PC2, PC3, PC5, PC4
and PC6.

0.52 1.768 0.73*** 0.66***

k-Nearest
Neighbor Model

TA k=11 0.69 1.446 0.83*** 0.76***

k-Nearest
Neighbor Model

Stepwise k=11 0.83 1.045 0.91*** 0.88***

k-Nearest
Neighbor Model

PCA k=10 0.72 1.353 0.85*** 0.79***

Random
Forest Model

TA
ntree=570; mtry=163; nodesize=19
and maxnodes=100

0.70 1.427 0.84*** 0.78***

Random
Forest Model

Stepwise
ntree=658; mtry=118; nodesize=19
and maxnodes=97

0.77 1.284 0.87*** 0.82***

Random
Forest Model

PCA
ntree=822; mtry=1015; nodesize=11
and maxnodes=99

0.67 1.473 0.81*** 0.76***

Support
Vector Machine

TA
epsilon = 0.3; cost = 24 and best performance
= 1.986

0.82 1.107 0.90*** 0.86***

Support
Vector Machine

Stepwise
epsilon = 0.2; cost = 6 and best performance
= 1.232

0.91 0.779 0.95*** 0.93***

Support
Vector Machine

PCA
epsilon = 0.3; cost = 7 and best performance
= 2.029

0.80 1.145 0.89*** 0.85***
These metrics were applied to cross-validation (observed vs. predicted MEI) using the training dataset (n = 1,177) to evaluate the predictive algorithms for metabolizable energy intake (MEI).
1Linear Model: linear regression; Nonlinear Model: nonlinear regression uses generalized additive models; k-Nearest Neighbor Model: k-nearest neighbor regression uses the k-nearest neighbor
algorithm for regression; Random Forest Model: random forest regression uses tree-based algorithms for regression; Support Vector Machine: support vector machines search for a regression
function that minimizes the error between the predictions, known as Support Vector Regression. 2Rib eye area (REA), in cm²; fat thickness (FT), in mm; average daily gain (ADG), in kg per day;
body weight at the middle of the trial (BWmT), in kg; metabolic body weight (MBW = BWmT⁰·⁷⁵), in kg; body weight at the start of the trial (BWsT), in kg; body weight at the end of the trial
(BWeT), in kg; average methane emissions (CH4), in g/day; average carbon dioxide emissions (CO2), in g/day; average oxygen consumption (O2), in g/day; body weight difference between the
start and end of the trial (BWdif), in kg; fiber diameter (DF), in microns; greasy fleece weight (GFW), in kg; yearling body weight (YBW), in kg; and staple length (SL), in cm. ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fanim.2025.1579974
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Amarilho-Silveira et al. 10.3389/fanim.2025.1579974
information on which individual variables contribute to explaining

the MEI variation, but the linear combination of these PCs formed

new, uncorrelated variables used in the prediction models.
4.2 Metabolizable energy intake prediction

The MEI in the training dataset was predicted using k-fold

cross-validation with metrics that enabled predictions with relative

confidence. To date, no study has been found using the machine

learning approach to predict MEI in sheep. However, linear models

for predicting feed intake were used in several studies with R2

ranging from 0.33 to 0.84 (Knott et al., 2008; Redden et al., 2011;

Cockrum et al., 2013; Johnson et al., 2015; Redden et al., 2014;

Johnson et al., 2016; Zhang et al., 2017; Lima Montelli et al., 2019;

Tortereau et al., 2020; Amarilho-Silveira et al., 2022; Supplementary
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Table). Although the approach used in these studies did not include

machine learning, their results provide very informative baseline

values for prediction models of feed intake. Thus, the results of the

present study for the better approaches (Table 5) are between 0.30

and 0.41 points above the recommendation by Johnson et al. (2017)

for a model with good explanatory power (R2 ≥ 0.70).

In the validation datasets, the greatest Pearson and Spearman

correlation coefficients were found using the k-Nearest Neighbor

Model, with values of 0.92 and 0.90, respectively. In a study on

predicting feed intake of cows, Pearson's correlation coefficients using

mixed and machine learning models showed values ranging from 0.71

to 0.76 between actual and predicted feed intake in the test dataset, with

lower correlations coefficients in machine learningmodels when applied

on the training dataset (Kamphuis et al., 2017). In the present study, the

correlation coefficients were similar in the validation (test) compared to

the training dataset. However, only the Linear Model using PCA as

feature selection in both the train and test datasets presented Pearson

and Spearman correlation coefficients lower than 0.70.

The high coefficient of determination achieved by the SVM using

stepwise modeling for feature selection raises a potential risk of

overfitting. However, this risk was mitigated in the present study, as

evidenced by the consistently high Pearson and Spearman correlation

coefficients observed in the validation set. This robust validation

performance likely resulted from the implementation of cross-

validation, which systematically utilizes distinct subsets of the training

data for evaluation. This strategy provides more stable and reliable

estimates of model generalization, suggesting good performance on

unseen datasets. Had overfitting been detected, further investigations,

such as adjusting hyperparameters, the number of k-folds, and

repetitions (Rhys, 2020), would have been necessary.

For classifying animals by their Metabolic Efficiency Index (MEI),

both the k-Nearest Neighbor Model and Support Vector Machine with

stepwise feature selection provide more reliable results. In this context,

the use of the confusion matrix, as presented subsequently, can

demonstrate this improved performance more reliably within the

direct validation dataset (test).
4.3 Confusion matrices

The R2 and correlation metrics provided a good indication of the

performance of different models. However, to visualize how the

animals could be classified and thus extrapolate to practical

application, it was proposed to present the results using a confusion

matrix. A confusion matrix presents information about how often a

given behavior (in the present study, the MEI) is correctly detected and

how often it is classified as another behavior (Ruuska et al., 2018).

The confusion matrices for the TA feature selection presented an

accuracy greater than or equal to 0.62 for all models, with an emphasis

on the Random Forest Model, which presented an accuracy of 0.70

without confusion in the High and Low classifications. In the Stepwise

feature selection, the highest accuracy was achieved by the support

vector (0.76), followed by the k-nearest neighbor with an accuracy of

0.74, both without confusion betweenHigh and Low classifications. For

the PCA feature selection, the lowest accuracy was for the LinearModel
TABLE 6 Pearson and Spearman correlations coefficients for observed
and predict metabolizable energy intakes for testing dataset (n = 295).

Method1
Feat selection
algorithm/
direction

Pearson2 Spearman2

Stepwise Backward and forward 0.74*** 0.68***

Linear Model TA 0.71*** 0.67***

Linear Model Stepwise 0.74*** 0.68***

Linear Model PCA 0.67*** 0.60***

Nonlinear Model TA 0.78*** 0.74***

Nonlinear Model Stepwise 0.78*** 0.71***

Nonlinear Model PCA 0.73*** 0.64***

k-Nearest
Neighbor Model

TA 0.82*** 0.76***

k-Nearest
Neighbor Model

Stepwise 0.92*** 0.90***

k-Nearest
Neighbor Model

PCA 0.86*** 0.81***

Random
Forest Model

TA 0.86*** 0.82***

Random
Forest Model

Stepwise 0.89*** 0.85***

Random
Forest Model

PCA 0.84*** 0.77***

Support
Vector Machine

TA 0.82*** 0.76***

Support
Vector Machine

Stepwise 0.91*** 0.87***

Support
Vector Machine

PCA 0.84*** 0.77***
1Linear Model: linear regression; Nonlinear Model: nonlinear regression uses generalized
additive models; k-Nearest Neighbor Model: k-nearest neighbor regression uses the k-nearest
neighbor algorithm for regression; Random Forest Model: random forest regression uses tree-
based algorithms for regression; Support Vector Machine: support vector machines, which
search for a regression function that minimizes the error between predictions, known as
Support Vector Regression. ***p< 0.001.
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(0.53), while the highest accuracy was for the support vector (0.71),

although there was one observation predicted as HighMEI when it was

Low. The best performance in the confusion matrix for this feature

selection was the k-Nearest Neighbor Model, with an accuracy of 0.68

and no confusion between High and Low classifications.
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In the study by Mansbridge et al. (2018) using the Random Forest

Model, k-Nearest Neighbor Model, and Support Vector Machine to

classify grazing and ruminating behavior in sheep, accuracy ranged

from 0.91 to 0.92 for random forest, from 0.79 to 0.87 for k-nearest

neighbor, and from 0.67 to 0.73 for support vector machines. The
FIGURE 2

Confusion matrix between observed and predicted metabolizable energy intake (MEI) classifications in the testing dataset (n = 295) for feature
selection using the track analysis method. Linear Model: linear regression; Nonlinear Model: nonlinear regression uses generalized additive models;
k-Nearest Neighbor Model: k-nearest neighbor regression uses the k-nearest neighbor algorithm for regression; Random Forest Model: random
forest regression uses tree-based algorithms for regression; Support Vector: support vector machines search for a regression function that
minimizes the error between predictions, known as Support Vector Regression.
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Random Forest Model has shown good potential for predicting feed

intake in grazing dairy cattle in the study by Leso et al. (2019). In a

lamb survival study, the random forest performed very well in

classifying mothering ability with an accuracy of 0.83 (Odevci and

Emsen, 2019). In the study by Odevci et al. (2021), the accuracy of the

Random Forest Model was 0.83 and 0.93 for mothering ability and
Frontiers in Animal Science 12
lamb survival rate, respectively. In Romney ewes, the body condition

score was predicted with an accuracy above 0.88 for pre-breeding,

pregnancy diagnosis, pre-lambing, and weaning using the Random

Forest Model (Semakula et al., 2021). Therefore, when there is

relatively large variation between the training and validation dataset,

the Random Forest Model may produce unstable results (Leso et al.,
FIGURE 3

Confusion matrix between observed and predicted metabolizable energy intake (MEI) classifications in the testing dataset (n = 295) for feature
selection using the backward and forward stepwise model. Linear Model: linear regression; Nonlinear Model: nonlinear regression uses generalized
additive models; k-Nearest Neighbor Model: k-nearest neighbor regression uses the k-nearest neighbor algorithm for regression; Random Forest
Model: random forest regression uses tree-based algorithms for regression; Support Vector: support vector machines search for a regression
function that minimizes the error between predictions, known as Support Vector Regression.
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2019). Thus, only in the feature selection with the TA did random

forest perform better. However, in the other feature selections, despite

high accuracies, this model presented misclassification problems.

The feature selection and cross-validation algorithm

combinations that yielded superior direct validation performance
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on the test set also exhibited higher accuracies in their respective

confusion matrices. However, this relationship was not strictly

proportional. For instance, despite achieving high Pearson and

Spearman correlation coefficients of 0.92 and 0.90 for k-Nearest

Neighbors with stepwise feature selection, and 0.91 and 0.87 for
FIGURE 4

Confusion matrix between observed and predicted metabolizable energy intake (MEI) classifications in the testing dataset (n = 295) for feature
selection using principal components analysis. Linear Model: linear regression; Nonlinear Model: nonlinear regression uses generalized additive
models; k-Nearest Neighbor Model: k-nearest neighbor regression uses the k-nearest neighbor algorithm for regression; Random Forest Model:
random forest regression uses tree-based algorithms for regression; Support Vector: support vector machines search for a regression function that
minimizes the error between predictions, known as Support Vector Regression.
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support vector with stepwise feature selection, the corresponding

accuracies were only 0.74 and 0.76, respectively. This discrepancy

likely arose from the unbalanced definition of the low, medium, and

high MEI classes, with the medium class alone comprising 50% of

the total observations.

The Linear Model exhibited the lowest performance across all

feature selection methods. The Nonlinear Model showed high

performance with the TA method, average performance with the

Stepwise method, and low performance (comparable to the Linear

Model) with the PCA method. This fact slightly differs from what is

reported in the bibliography, which states that generalized additive

models (Nonlinear Model) are sufficiently flexible to capture trends

without making strong assumptions about their shapes.

Additionally, using substantially fewer parameters, they can adjust

a wide variety of shapes of underlying data trends (Borchers et al.,

1997). However, the weakness of generalized additive models is that

they have a propensity to overfit the training dataset and perform

poorly when the validation dataset is outside the range of the training

dataset values (Rhys, 2020). Both situations were not observed in the

present study.
4.4 Finals comments

The application of cross-validation procedures, both in

statistical models and in models based on algorithms that

intelligently learn patterns to predict MEI, may also increase the

number of animals with this information. For example, if structures

for daily feed intake and weight collections are available that allow

the collection of a specific number of animals per evaluation period,

simple structures with collective feeders and drinkers, where the

animals have ad libitum access to feed and water, would be sufficient

to phenotype them. In these structures, it would only be necessary

to obtain information from the animals such as ultrasonography

(rib eye area and fat thickness), weights during the trial period

(initial and end weight, weight in the middle trial, and the

differences between end and final weight), gas measurements

using portable accumulation chambers (CO2 and CH4), and

genetic evaluation traits (greasy fleece weight, fiber diameter, and

yearling body weight). Thus, it would be possible to have a feed

intake evaluation center and dispersed test locations where the

animals would have access to the same feed as the central test

station, with predictor traits independently collected. This setup

would enable the evaluation of double the number of animals with

feed intake information in each evaluation period.

Even though practically all approaches present excellent R2 in

cross-validation and correlation coefficients in direct validation, a

comprehensive assessment must include the confusion matrix.

Therefore, it can be said that the best predictors so far are the k-

Nearest Neighbor Model and Support Vector Machine using

Stepwise as feature selection. Nevertheless, it is important to note

the possibility of overfitting that may have occurred in the support

vector, which showed an R2 of 0.91 in cross-validation (Table 4).

However, according to Montesinos López et al. (2022), when

overfitting occurs, the model learns the training data set so well
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that it performs poorly on unseen data sets, a fact not observed here

given the high Pearson and Spearman correlation coefficients in the

direct validation dataset.
5 Conclusion

In conclusion, the individual daily metabolizable energy intake

(MEI) in AustralianMerino, Corriedale, and DohneMerino sheep can

be predicted using the multi-breed dataset with good accuracy using

machine learning approaches. The best models for predicting MEI

were the k-Nearest Neighbor Model and Support Vector Machine

using Stepwise for feature selection. This is supported by the high

coefficients of determination in the training database and the strong

performance in the validation sets, as evidenced by high correlation

coefficients and accuracies in the confusion matrices. These models

accurately identify the MEI predictors, enabling the expansion of the

number of animals with this characteristic within the same test period.
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experimental e em genética quantitativa. Acta Sci. Agron. 35, 271–276. doi: 10.4025/
actasciagron.v35i3.21251

De Barbieri, I., Navajas, E. A., Ramos, Z., Ferreira, G., Velazco, J., and Ciappesoni, G.
(2024). Feed conversion efficiency does not negatively affect young sheep and ewe
performance. Front. Anim. Sci. 5, 1480928. doi: 10.3389/fanim.2024.1480928

Dillon, E., Moran, B., and Donnellan, T. (2021). Teagasc national farm survey 2020:
preliminary results. ed. Agricultural Economics and Farm Surveys Department. Carlow:
Teagasc.

Dominik, S., Robinson, D. L., Donaldson, A. J., Cameron, M., Austin, K. L., and
Oddy, V. H. (2017). Relationship between feed intake, energy expenditure and methane
emissions: implications for genetic evaluation. Proc. Assoc. Advmt. Anim. Breed. Genet.
22, 65–68.

Donoghue, K. A., Bird-Gardiner, T. L., Arthur, P. F., Herd, R. M., and Hegarty, R. F.
(2015). Genetic parameters for methane production and relationships with production
traits in Australian beef cattle. Proc. Assoc. Advmt. Breed. Genet. 21, 114–117.

Ellison, M. J., Conant, G. C., Lamberson, W. R., Austin, K. J., Van Kirk, E.,
Cunningham, H. C., et al. (2019). Predicting residual feed intake status using rumen
microbial profiles in ewe lambs. J. Anim. Sci. 97, 2878–2888. doi: 10.1093/jas/skz170
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