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Mitigation strategies for methane
emissions in ruminant livestock:
a comprehensive review of
current approaches and
future perspectives
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in Brno, Brno, Czechia, 2Agrovyzkum Rapotin Ltd., Zemedelska, Sumperk, Czechia
Enteric methane emissions from ruminant livestock represent a major

contributor to agricultural greenhouse gases and reflect an energetic

inefficiency in ruminant metabolism. This review critically evaluates current

mitigation strategies aimed at reducing CH4 production in ruminants, with an

emphasis on practical applicability, biological mechanisms, and integration into

sustainable dairy production systems. Nutritional interventions—including

tannins, saponins, essential oils, garlic compounds, seaweed (e.g.,

Asparagopsis), probiotics, and chemical inhibitors such as 3-nitrooxypropanol

(3-NOP)—are discussed in the context of their effects on rumen microbiota,

fermentation patterns, and animal productivity. Biological strategies such as

archaeal-targeted vaccines, bacteriophage therapy, and microbiome

engineering remain largely experimental but represent promising future

directions. Genetic selection for low-emission phenotypes and improved

manure management are also explored as complementary approaches to

reduce emissions. Although some additives have achieved CH4 reductions of

30–50% in vivo, results vary depending on diet, dose, delivery matrix, and

duration. Notably, the long-term effects on productivity, nutrient utilization,

and product quality remain underexplored. Integrated strategies combining

dietary, genetic, and management interventions tailored to specific production

systems are likely necessary to achieve meaningful, sustained reductions in

ruminant CH4 emissions.
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1 Introduction

Due to its role as a potent greenhouse gas (GHG), methane (CH4)

production in ruminants is an increasingly critical topic in scientific

literature, particularly in intensive dairy farming (Króliczewska et al.,

2023). Atmospheric concentrations of CH4, a potent GHG, have risen

dramatically since pre-industrial times, increasing by approximately

150% since the year 1750 (Pachauri et al., 2014). Methane is a colorless,

odorless, and flammable gas that constitutes the primary component of

natural gas (Candelaresi and Spazzafumo, 2021). Although it naturally

occurs in the atmosphere at low concentrations, enteric CH4—mainly

produced via microbial fermentation in the gastrointestinal tract of

ruminants (i.e., cattle, sheep, and goats)—represents a significant

source of agricultural GHG emissions (Thacharodi et al., 2024). This

biologically produced CH4 is mostly released via eructation (belching)

(Morgavi et al., 2023) and contributes both to global warming and to

energy inefficiency, as it accounts for a 6–10% loss of gross dietary

energy (Castelán-Ortega et al., 2014). Globally, the livestock sector

contributes approximately 14.5% of total anthropogenic GHG

emissions, with enteric fermentation alone accounting for nearly 40%

of agricultural GHG (FAO, 2017). Among livestock-related emissions,

enteric CH4 represents the dominant source, contributing up to 88% of

CH4 emissions from the sector (Arndt et al., 2022). Since CH4 has a

significantly higher global warming potential than carbon dioxide

(CO2) (Mar et al., 2022), the livestock farming sector presents a key

opportunity for reducing emissions while also improving

production efficiency.

Within the rumen, a complex and diverse microbiome—

including bacteria, protozoa, and fungi—ferments ingested feed to

produce volatile fatty acids (VFA) such as acetate, propionate, and

butyrate, which are primary energy sources for the host animal

(Matthews et al., 2019). During fermentation, metabolic cofactors

like NADH, NADPH, and FADH are re-oxidized, resulting in the

production of molecular hydrogen (H2). Methanogenic archaea

then utilize this H2 to reduce CO2 to CH4, thereby preventing the

accumulation of metabolic H2 but at the cost of significant energy
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loss—energy that could otherwise contribute to productive

functions such as milk synthesis (Castelán-Ortega et al., 2014).

Methane production in the rumen is influenced by several factors,

including feed composition, chewing behavior, salivation, and

gastrointestinal motility (Snelling and John, 2017).

Microbial CH4 emissions of anthropogenic origin are

predominantly associated with three primary sources: livestock

production (115 Tg CH4 yr−1), landfills and waste management

(68 Tg CH4 yr
−1), and rice cultivation (30 Tg CH4 yr

−1). Within the

livestock sector, enteric fermentation represents the principal

emission pathway, contributing approximately 85% of total CH4

emissions from this category, equivalent to 98 Tg CH4 yr
−1 (Saunois

et al., 2019). Cattle are the leading source of enteric CH4 emissions

globally, a consequence of their substantial global population (~1.5

billion animals), extensive rumen volume, and specific digestive

physiology (Malik et al., 2021).

Estimated CH4 emissions vary widely among livestock species

and production stages (Starsmore et al., 2024b). Among dairy

breeds, Holsteins generate more CH4 than crossbreds, while

heifers on fertilized pastures produce more methane (around 223

g CH4/day) than those grazing on unfertilized pastures (around 179

g CH4/day). Various factors, including fecal consistency, digestible

material content, climate, and exposure duration, influence CH4

emissions from manure. On dairy farms, annual CH4 emissions

frommanure storage and pens can reach 120 kg per cow (Kide et al.,

2017; Cezimbra et al., 2021).

Table 1 summarizes typical daily and annual CH4 emissions for

dairy cows, sheep, beef cattle, and other ruminants, highlighting

differences based on physiological status, breed, and

management system.

A recent study by Evangelista et al. (2024) examining trends in

livestock-related methane emissions reported that cattle contribute

the largest share, accounting for approximately 62% of total

emissions. This is followed by buffaloes (8%), goats (4%), sheep

(3%), and monogastric species such as pigs and poultry, which

together account for 23% of emissions (Figure 1).
TABLE 1 Daily and annual enteric methane emissions by animal type and breed.

Animal type
Methane emission

(g CH4/day)
Methane emission

(kg CH4/animal/year)
References

Lactating Holstein cow 426 – 463 155 – 163 (Rojas De Oliveira et al., 2024b, Castillo et al.)

Crossbreed dairy cow 264 NP (Broucek, 2014)

Dry dairy cow 269 NP (Pedreira et al., 2009; Broucek, 2014)

Heifers 223 NP (Broucek, 2014)

Dairy ewe 26.3 8.4 (Quail et al., 2025; Broucek, 2014)

Dairy goat 19.4 15 – 17 (Robertson et al., 2015; Quail et al., 2025)

Suffolk sheep 22 – 25 NP (Broucek, 2014)

Beef cattle 161 – 323 NP (Broucek, 2014)

Mature beef cow 240 – 396 NP (Broucek, 2014)

Bison NP 72 (Broucek, 2014)
NP, not published.
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Mitigating methane production in dairy cows presents a dual

opportunity: reducing environmental impact while enhancing milk

production, yield, and composition. This synergistic effect

underscores the importance of advancing research on effective

mitigation strategies in dairy farming. The development of CH4

mitigation strategies is crucial, considering increasing regulatory

pressures to reduce agriculture’s contribution to climate change

(Reisinger et al., 2021).

Various strategies have been proposed, including feed additives

that inhibit methane-producing microbes, breeding programs

selected for low-methane cattle (Króliczewska et al., 2023), and

precision monitoring systems that enable individualized

intervention. Studies highlight the potential of biologically active

compounds such as algae extracts, tannin preparations, and 3-

Nitrooxypropanol (3-NOP) (Pepeta et al., 2024), and essential oils

(EOs) in modifying the rumen microbiome and reducing enteric

CH4 production (Belanche et al., 2025).

The goal of this review is to evaluate current research findings and

present viable strategies that balance enteric CH4 reduction with

economic feasibility and productive efficiency in dairy systems.

Specifically, the review aims to (i) synthesize current evidence on the

magnitude and variability of CH4 emissions across dairy production

contexts; (ii) assess the efficacy of leading mitigation strategies—

including dietary interventions such as macroalgae (e.g., Asparagopsis

taxiformis), tannin-rich extracts, essential oils, probiotics, and synthetic

inhibitors like 3-nitrooxypropanol (3-NOP); and (iii) evaluate the

potential trade-offs and co-benefits of these approaches in relation to

rumen fermentation, nitrogen metabolism, animal performance, and

environmental sustainability. Special emphasis is placed on the impact

of these compounds on microbial activity and fermentation dynamics.

Mitigation techniques are categorized based on mode of action, active
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ingredient, dosage, application period, observable effects, and

supporting literature. By integrating and critically appraising recent

findings, this review provides a comprehensive framework to inform

future research priorities, evidence-based policymaking, and practical

implementation of CH4 mitigation strategies in modern

dairy production.
2 Animal management and breeding
strategies

Effective management strategies are essential for reducing GHG

emissions from livestock systems. Such reductions are not only

critical for improving the environmental sustainability of farming

but also provide a benchmark for comparing and evaluating the

relative effectiveness of different mitigation practices. By

quantifying GHG reductions under alternative management

strategies, researchers and policymakers can identify the most

impactful interventions and prioritize their implementation at

both farm and national levels (Zhang et al., 2024b). Additionally,

from an economic perspective, management adjustments represent

a cost-effective approach that not only mitigates direct enteric CH4

emissions from cattle but also enhances soil quality and grassland

biodiversity, thereby improving the overall CH4 balance and

sustainability of the production system (FAO, 2016).

An overview of the principal animal management and breeding

strategies to mitigate enteric CH4 emissions, together with their

mechanisms, evidence maturity, and limitations, is summarized

in Table 2.

Grazing management offers considerable potential. Zubieta

et al. (2021) demonstrated that optimizing herbage intake and
FIGURE 1

Global enteric methane emissions in the livestock sector.
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live weight (LW) gain under light-to-moderate grazing intensities

can reduce CH4 intensity to approximately 0.2 kg CH4/kg LW gain,

representing a 55% mitigation potential for pasture-based systems.

Holistic cattle management strategies, such as increasing stocking

density, may replicate historic grazing patterns of large wild

herbivores , thereby restor ing grass lands , prevent ing

desertification, and indirectly lowering GHG emissions (Wyffels

et al., 2013; Hawkins et al., 2022).

Grasslands also act as carbon sinks. Average sequestration rates

of 5 ± 30 g C/m² annually have been reported, though values vary
Frontiers in Animal Science 04
widely depending on soil type, grazing system, and management

(Soussana et al., 2010; Bārdule et al., 2024).

Several management practices can reduce carbon losses and

enhance sequestration, including: (i) minimizing soil disturbances

such as tillage and grassland-to-cropland conversion, (ii) improving

nutrient-poor permanent grasslands, (iii) adopting light rather than

heavy grazing, (iv) extending the duration of grass leys, and (v)

incorporating grass-legume mixtures or converting grass leys into

permanent grasslands (Soussana, 2008). Additionally, manure

management is a critical area of mitigation.
TABLE 2 Animal management and breeding strategies for reducing enteric methane production in ruminants.

Management
practice/

breeding option

Trait/metric
used

Effect on CH4 Mechanism
Implementation
consideration

Reference

Genetic selection:
direct CH4 traits

Daily CH4, yield,
intensity

Heritable (h²≈0.16–0.27);
cumulative reduction

Select low emitters
Needs standardized

phenotyping

(Lassen and Løvendahl,
2016) (Kamalanathan

et al., 2023)

Genomic selection
(MIR−predicted CH4)

Methane efficiency
index

20–30% herd-level reduction
by 2050

Proxy traits enable scalable
selection

Prediction accuracy
varies

(Rojas De Oliveira
et al., 2024a)

Residual methane
emissions (RME)

Observed – expected
CH4

Reduction without
penalizing productivity

Captures inherent animal
differences

Requires validated
intake and size data

(Uemoto et al., 2024)

Residual feed intake
(RFI)

Feed efficiency index
≈27% lower CH4 in low

−RFI animals
Improved efficiency reduces

methanogenesis

System-level effects
depend on feed

utilization

(Da Silva Soares et al.,
2025) (Dini et al.,

2019)

Reproductive
management

Earlier age at first
calving, shorter calving

≈10% reduction in CH4

intensity
Less unproductive time and

fewer replacements

Requires balanced
heifer growth and

fertility
(Clasen et al., 2024)

Health & welfare
Disease prevention,
lameness control

≈4-8% lower GHG intensity
per unit of milk/meat

production

Restored intake and
production

Requires monitoring
and biosecurity

(Džermeikaitė et al.,
2024)

Heat abatement
Cooling, shade,
thermotolerance

Prevents 0.8–6.6% increase
in CH4 intensity

Maintains intake and
productivity

Resource-intensive
(energy, water)

(Chen et al., 2025)

Feeding management
Forage quality, harvest

timing
Lower CH4 yield; intensity

reduced
Improves digestibility to shift

fermentation
Absolute CH4 may rise
with higher intake

(Beauchemin et al.,
2022)

Advanced methane
prediction models

ML-based prediction
integrating empirical
+mechanistic data

Improved accuracy and
scalability of CH4

phenotyping

Combines the flexibility of
empirical models with
mechanistic accuracy

Requires large, diverse
datasets and validation

(Ross et al., 2024)

Host genetics & rumen
microbiome effects

Host heritability ~21%;
microbiability ~13%

Dual-target strategies for
CH4 mitigation

Genome and microbiome
explain additive variance

components

Requires integrated
genetic and microbial

datasets
(Difford et al., 2018)

Grazing management
optimization

Light–moderate grazing
intensity; LW gain

thresholds

CH4 intensity reduced to
~0.2 kg CH4/kg LW gain

(~55% mitigation)

Optimizes forage intake and
performance per unit gain

Requires adaptive
stocking and pasture

monitoring
(Zubieta et al., 2021)

Holistic cattle
management &

grassland restoration

Increased stocking
density mimicking
natural grazing

Indirect CH4/GHG
mitigation; ecosystem

restoration

Stimulates plant regrowth
and carbon sequestration

Effects vary with
ecosystem; requires

monitoring
(Hawkins et al., 2022)

Grassland carbon
sequestration practices

SOC sequestration (e.g.,
129 g C/m² in grazed

systems)

Indirect GHG reduction via
soil carbon sinks

Improves SOC through
grazing, ley duration, and

legumes

Variable across soil
types; long-term

benefits

(Soussana, 2008)
(Soussana et al., 2010)

Manure management
(anaerobic digestion,

composting)

CH4 captured from
manure; improved

storage

Significant reduction in
manure-derived CH4

Biogas recovery and reduced
anaerobic methanogenesis

Requires infrastructure;
potential energy offset

(Symeon et al., 2025)

Genetic selection
(advanced tools)

GWAS, genomic
selection for low-CH4

genotypes

Reduced CH4 per unit
intake while maintaining

yield

Identifies and propagates
low-emission genotypes

Needs long-term
monitoring and
integration

(Pickering et al., 2015)
(De Haas et al., 2011)
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Technologies such as anaerobic digestion capture CH4 from

manure and convert it into biogas, while composting and improved

storage (e.g., frequent removal and aeration) reduce CH4 release

during storage (Montes et al., 2013). Breeding and genetic selection

present long-term, cumulative opportunities for CH4 mitigation.

Selecting cattle with lower residual feed intake (RFI) enhances feed

efficiency and is associated with reduced CH4 emissions per unit of

feed consumed (Manzanilla-Pech et al., 2021). Studies have

confirmed a strong association between RFI and methane

production: efficient animals with low RFI typically consume less

feed than expected for their body weight and growth rate, resulting

in lower CH4 output (Nkrumah et al., 2006; Hegarty et al., 2007).

However, in dairy cattle, early lactation physiology complicates

the use of RFI because cows in negative energy balance require high

feed intake to prevent metabolic and fertility problems, which may

increase herd-level CH4 intensity if not properly managed

(Garnsworthy, 2004).

Evidence from quantitative genetics confirms that methane-

related traits are heritable (h² = 0.12–0.3), enabling genetic

improvement (Lassen and Løvendahl, 2016; Pszczola et al., 2019;

Kamalanathan et al., 2023). Traditional measurement methods,

such as respiration chambers, are accurate but impractical at

scale. In contrast, GreenFeed systems, in-parlor sniffers, and milk

mid-infrared (MIR) prediction models now enable scalable

phenotyping, paving the way for genomic selection (Lassen and

Løvendahl, 2016; Rojas De Oliveira et al., 2024b). For example,

research on Canadian Holsteins has led to the development of a

national genomic evaluation for CH4 efficiency using MIR-

predicted data, which is expected to reduce herd-level methane

emissions by 20–30% by 2050 without compromising milk yield

(Rojas De Oliveira et al., 2024a). In another research, the sniffer

method has been reported as a reliable approach for identifying

Holstein cows with lower CH4 emissions. It can therefore serve as

an indicator trait for genetic selection (Uemoto et al., 2024).

Residual methane emissions (RME), defined as the deviation

between observed and expected methane output after adjusting for

intake and body size, have emerged as promising breeding

objectives because they capture inherent animal variation

independent of productivity (Starsmore et al., 2024a). Smith et al.

(2022) reported that RME is strongly associated with rumen

microbiota composition, supporting its use as a robust phenotype

for identifying inherently low-emission animals. Complementary

host–microbiome studies indicate that both host genetics and

microbial composition independently explain CH4 variation,

suggesting synergistic opportunities for genetic and microbial

interventions (Wallace et al., 2002; Difford et al., 2018). These

findings further emphasize the potential of manipulating the rumen

microbiota as a strategy to mitigate enteric CH4 production.

Emerging approaches include machine learning models, which

integrate empirical and mechanistic data to improve CH4

prediction and phenotyping (Ross et al., 2024). Advanced genetic

tools, such as genome-wide association studies (GWAS) and

genomic selection, are being applied to identify low-emission

genotypes, with the potential to breed animals that maintain

production while reducing CH4 emissions (Pickering et al., 2015;
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Manzanilla-Pech et al., 2021). However, the realization of genetic

gain is inherently slow, often requiring decades, and possible trade-

offs with other traits (e.g., fertility, robustness, or feed efficiency)

must be carefully monitored to ensure long-term sustainability (De

Haas et al., 2011; Pickering et al., 2015; Gatenby, 2021). Given these

limitations, genetic strategies should not be viewed in isolation but

rather as part of an integrated mitigation framework. While genetic

improvement provides permanent, cumulative reductions in CH4

emissions, the rate of progress is slow and dependent on long-term

breeding programs. In contrast, management interventions—such

as dietary modification, manure treatment, and optimized grazing

—offer more immediate reductions in GHG. A combined approach,

aligning rapid management-based gains with sustained genetic

progress, is therefore essential to achieve both short-term

emission reduction targets and long-term climate goals

(Beauchemin et al., 2022).
3 Biological strategies

3.1 Bioaugmentation with homoacetogenic
bacteria

One of the promising biological approaches is bioaugmentation

with homoacetogenic bacteria (homoacetogens), which compete

with methanogens for H2 in the rumen, thereby reducing CH4

emissions (Ungerfeld, 2020).

During ruminal fermentation, H2 and CO2 serve as the primary

substrates for methanogens; methanogenesis acts as the main H2

sink, keeping dissolved H2 levels low (1–10 Pa), which is essential

for maintaining efficient fermentation pathways (Kohn and Boston,

2000; Mackie et al., 2023; Fregulia et al., 2024).

Homoacetogens convert H2 and CO2 into acetate via the

Wood–Ljungdahl pathway, offering an alternative electron sink to

methanogenesis (Danielsson et al., 2012). However, the

effectiveness of this approach depends on several factors,

including rumen pH, substrate availability, and the ability of

homoacetogens to establish and outcompete methanogens in the

complex rumen ecosystem (Gagen et al., 2010).

According to Karekar et al. (2022) homoacetogens exhibit a

versatile metabolism that is suitable for diverse substrates and can

act as a carbon sink by converting CO2 into bioproducts, potentially

improving efficiency by diverting H2 away from methanogenesis.

However, their competitive advantage in mature rumen systems

appears limited, as methanogens overwhelmingly dominate H2

utilization and suppress homoacetogenic activity. Experimental

approaches that integrate methanogenesis inhibition—such as the

use of 2-bromoethanesulfonic acid (BES)—with microbial

bioaugmentation strategies have demonstrated promising potential

for mitigating enteric CH4 production. For instance, in the study by

Murali et al. (2021) BES treatment increased headspace H2 and

reduced acetate; subsequent bioaugmentation with Acetitomaculum

ruminis and Acetobacterium woodii restored acetate levels by 45%

and 70%, respectively. Similarly, Stefanini Lopes and Ahring (2023)

demonstrated that combining a kangaroo-derived homoacetogenic
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consortium with almond-shell biochar improved acetic acid

production in vitro, albeit temporarily, highlighting transient

benefits and the need for stabilization strategies.

Although homoacetogenesis is energetically less favorable than

methanogenesis (Conrad, 2023) its competitiveness can be

enhanced through strategies such as supplementing substrates like

glucose, glycerol, and xylose, along with H2 and CO2, to leverage its

mixotrophic advantages (Tsapekos et al., 2022). To enhance the

viabi l i ty of homoacetogenesis , strategies such as co-

supplementation with acetogenesis stimulants (e.g., fumarate,

malate, or nitrate) and optimizing feeding regimens have been

explored (Morgavi et al., 2010). Additionally, genetic screening of

ruminant microbiomes has identified novel homoacetogenic strains

with greater resilience to rumen conditions, offering potential for

further development (Henderson et al., 2015).

Additional measures include the introduction of acetogenesis

stimulants, such as yeast cultures, maintaining a lower ruminal pH,

and identifying novel acetogen strains capable of thriving at low H2

thresholds and increasing their densities in the rumen (Yang

et al., 2015).

Propionate-producing bacteria, along with nitrate- and nitrite-

reducing, and sulfate-reducing bacteria, have thermodynamic

advantages over methanogens in utilizing H2 as an electron donor

(Lan and Yang, 2019). However, their low abundance or the absence of

necessary substrates in the rumen limits their activity (Choudhury

et al., 2022). Enhancing the propionate-producing pathway can be

achieved by supplementing animals with propionate precursors such as

fumarate and malate or introducing functionally complementary

propionate-producing bacterial consortia as additives (Jeong et al.,

2024). Given the low natural concentrations of nitrate and sulfate in the

rumen, using these compounds as additives could stimulate the growth

of nitrate- and sulfate-reducing bacteria. However, toxic by-products

such as nitrite and hydrogen sulfide (H2S) must be carefully managed

(Latham et al., 2016). Strategies to mitigate toxicity risks include

combining sulfate-reducing bacteria (SRB) with nitrate-reducing,

sulfur-oxidizing bacteria or employing SRB strains capable of

utilizing H2S or nitrite (Greene et al., 2003).

Exploring microbes that compete with methanogens and redirect

H2 away from methanogenesis presents a promising strategy for

reducing CH4 emissions in the rumen (Lan and Yang, 2019).

Despite its potential, bioaugmentation with homoacetogenic bacteria

faces challenges, including the need for long-term microbial stability in

the rumen and variations in host responses across different animal

species. Large-scale field trials are necessary to evaluate the long-term

feasibility and effectiveness of this approach under commercial farming

conditions (Wallace, 2004). Future research should focus on strain

selection, microbial adaptation strategies, and possible synergies with

other methane mitigation technologies to improve implementation

(Martin et al., 2010).
3.2 The use of bacteriophages

Bacteriophages (phages), traditionally applied in phage therapy

to treat bacterial infections such as enteric diseases, sepsis, and
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chronic infections (Lin et al., 2017), are gaining attention for

broader roles, including food preservation, microbiome

modulation, and even environmental applications like climate

change mitigation (Elois et al., 2023). Recently, phage therapy has

been proposed as a novel strategy to target methanogenic archaea in

the rumen to reduce enteric CH4 production (Lobo and Faciola,

2021). By selectively lysing methanogens, phages may suppress

methane formation without significantly disturbing other rumen

microbial populations (Morkhade et al., 2020).

The conceptual appeal of phage-based CH4 mitigation lies in its

specificity, ecological safety, and potential to bypass some of the

limitations associated with chemical inhibitors or vaccines.

However, this strategy remains in its infancy, and several critical

challenges must be addressed.

To date, only a limited number of studies have investigated the

isolation and characterization of archaeal phages that target rumen

methanogens. For example, Ouwerkerk et al. (2011) initiated the

development of a phage library specifically targeting the dominant

methanogenic archaea in Australian livestock systems. However,

experimental evidence on the in vivo efficacy of such phages

remains limited. The effectiveness of archaeaphage therapy

mainly relies on the ability to identify highly specific phages that

can infect predominant methanogenic species—such as

Methanobrevibacter ruminantium and Methanobacterium spp.—

without disrupting beneficial rumen microbial functions (Lobo and

Faciola, 2021). Despite their potential, the identification of archaeal

phages remains limited, underscoring a substantial knowledge gap

in our understanding of phage-host interactions within

methanogenic communities. Among fully sequenced microbial

genomes, six archaeal phages have been described, including

Methanobacterium phage psi M1, Methanobacterium phage psi

M2 (a variant of M1), and Methanobacterium phage psi M100, all

of which belong to the Siphoviridae phage family. These phages

demonstrate the capacity to infect key rumen methanogens such as

Methanobacterium spp., a dominant archaeal genus in the rumen.

Moreover, members of the Siphoviridae family have shown

infectivity toward Methanobacterium, Methanobrevibacter, and

Methanococcus species (Mcallister and Newbold, 2008). Leahy

et al. (2013) presented the complete genome sequence of the

rumen methanogen Methanobrevibacter ruminantium M1,

offering critical insights into its metabolic and cellular pathways.

A prophage identified inM. ruminantium encodes 69 phage-related

proteins, including the lytic enzyme PeiR from prophage jMru,

which shows potential as a biocontrol agent against ruminal

methanogens. A novel approach was proposed, utilizing viral

enzyme-loaded nanoparticles that effectively lyse not only the

original methanogen host strain but also a diverse range of

ruminal methanogen species in pure in vitro cultures, resulting in

significant CH4 reductions of up to 97% (Altermann et al., 2018).

However, this broad-spectrum activity raises concerns about

potential disruption to the natural rumen microbial ecosystem.

Rumen phage populat ions are highly diverse and

individualized, with concentrations ranging from 107 to 109

particles per milliliter (Swain et al., 1996). This high diversity,

coupled with host-specific microbial interactions, raises concerns
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about the stability, persistence, and consistent efficacy of introduced

phages within the rumen ecosystem. To date, no study has

comprehensively identified the phage taxa present in the rumen

and their specific archaeal hosts, nor has it assessed their

interactions with the methanogen community at a large scale.

These knowledge gaps underscore a critical barrier to the

development of phage-based CH4 mitigation strategies in

ruminants, highlighting the need for advanced metagenomic and

host-linkage studies to inform future applications.
3.3 Use of antimethanogenic vaccines

One proposed strategy to mitigate CH4 emissions is the

development of vaccines targeting methanogenic archaea in the

rumen. These vaccines aim to elicit an immune response that

reduces methanogen populations, thereby lowering methane

production without adversely affecting essential microbial

communities in the rumen (Wedlock et al., 2013). Developing an

effective methane-reducing vaccine requires identifying immunogenic

proteins unique to methanogens to ensure a robust immune response

while maintaining overall gut health (Baca-González et al., 2020).

Research indicates that vaccines targeting key methanogen species

can significantly alter rumen archaeal populations, leading to a

measurable reduction in methane emissions (Williams et al., 2009).

However, long-term efficacy remains a critical challenge, as the rumen

microbiome is highly dynamic and capable of adapting to immune

pressures over time (Wedlock et al., 2010).

In vivo (Wright et al., 2004; Zhang et al., 2015), and in vitro

(Cook et al., 2008) studies evaluating antimethanogenic vaccines

have reported variable and often time-dependent effects on enteric

CH4 production. Notably, the lack of a consistent reduction in CH4

emissions—despite increased methanogen-specific antibody titers

and observed shifts in archaeal community composition—suggests

that vaccine formulations may lack broad-spectrum efficacy against

the diverse rumen methanogen populations (Williams et al., 2009).

Moreover, population-level differences in immune responses across

species and breeds introduce high inter-animal variability,

complicating the predictability and scalability of vaccine

interventions (Buddle et al., 2011). One of the major limitations

in the development of antimethanogenic vaccines is the challenge of

identifying antigens that are both conserved and immunogenic

across the diverse array of methanogenic archaea present in the

rumen. Methanogens exhibit high variability in surface structures

and protein epitopes (Reeve, 1992), which complicates the

formulation of a broadly protective vaccine. In addition, variation

in host immune response—driven by genetic background,

physiological status, and rumen microbiota composition—leads to

inconsistent antibody production and limited uniformity in

microbial suppression. Some animals exhibit high antibody titers

with negligible impact on archaeal populations or methane output,

while others respond poorly to vaccination protocols. These issues

have been reported in both dairy and sheep trials and represent key

barriers to reliable implementation (Wedlock et al., 2013; Subharat

et al., 2016). Another source of variation is animal age, as it is well-
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diseases than adults (Watson et al., 1994). Moreover, the

durability of the immune response and the potential for microbial

adaptation or vaccine escape remain unresolved. Further research is

needed to identify robust antigen targets and optimize delivery

systems that can consistently elicit long-term methane mitigation

across diverse ruminant populations.

Despite these constraints, vaccination remains a promising and

potentially cost-effective approach for mitigating methane

emissions. It offers practical advantages, particularly for grazing

systems with limited access to feed additives. However, successful

implementation will require optimized antigen discovery, improved

delivery systems (e.g., oral or slow-release formulations), and robust

field trials to assess long-term impacts on CH4 emissions, animal

performance, and microbial ecology (Baca-González et al., 2020).

The advantages and challenges of biological strategies for

reducing methane emissions from ruminants are presented

through a SWOT analysis, which is presented in Table 3.
4 Nutritional strategies

Enteric methane (CH4) represents both an energetic loss and a

significant contributor to agricultural greenhouse gas emissions,

produced predominantly via ruminal microbial fermentation and

closely associated with dry matter intake (DMI) (Hornbuckle and

Tennant, 1997; Dressler et al., 2024).

Nutritional strategies to mitigate CH4 emissions primarily focus

on redirecting hydrogen (H2) toward alternative sinks and

improving carbohydrate fermentability. Increasing the digestibility

of non-structural carbohydrates (starch, sugars) shifts rumen

fermentation toward propionate—the main competing H2 sink—

thereby lowering CH4 yield, whereas structural carbohydrates favor

acetate production and methanogenesis (Morgavi et al., 2010;

Beauchemin et al., 2022). Key interventions include starch

processing (e.g., steam-flaking, fine grinding), which enhances

ruminal starch availability and reduces CH4 emissions relative to

whole grain; controlled use of rapidly fermentable sugars, with

variable effects; and improvements in fiber digestibility through

particle size reduction or exogenous fibrolytic enzymes (Johnson

et al., 1994; Tavendale et al., 2005; Beauchemin and Mcginn, 2006;

Mcallister and Newbold, 2008; Benchaar et al., 2014).

Forage selection also plays a critical role: replacing grass or

legume silages with corn silage, which has higher non-fiber

carbohydrate (NFC) content, consistently reduces CH4 yield and

intensity. Similarly, high-sugar grasses and energy-dense roughages

can further mitigate emissions (Soteriades et al., 2018; Sun et al.,

2022). Research by Hristov (2024) suggests that the type of

roughage in the diet influences CH4 production. When

comparing corn silage with legume silage, methane emissions

were either unchanged or slightly reduced with corn silage.

Furthermore, replacing grass silages with corn silage resulted in a

9–16% reduction in CH4 yield and a 6% decrease in CH4 intensity.

In total mixed rations (TMR) with a higher proportion of grass

silage, methane reductions were more modest, typically reaching up
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to 4%. These findings highlight the potential of corn silage as a

viable approach for reducing CH4 emissions in ruminant diets.

Complementary feed additives such as 3−nitrooxypropanol (3

−NOP) and bromoform−rich red seaweed extracts have

demonstrated enteric CH4 reductions in the range of ~30–50%,

with red seaweed (e.g., Asparagopsis spp.) occasionally delivering up

to ~80% in experimental settings (3−NOP: ~30–45%; Asparagopsis

average ~37%, maxima ~98%) (De Bhowmick and Hayes, 2023;

Romero et al., 2023; Hristov, 2024; Meo-Filho et al., 2024). While

integrated nutritional strategies, especially when combined with

manure-management technologies, hold theoretical potential for

aggregate reductions approaching ~60%, empirical data from

combined enteric-plus-manure mitigation rarely reach this level

under current commercial conditions (Hristov, 2024).

These cumulative findings underscore the critical role of diet

composition and additive strategies in reducing enteric methane

emissions, setting the stage for emerging approaches—such as algal

supplementation—that offer targeted biochemical mechanisms and

potentially greater mitigation efficacy under specific production contexts.
4.1 Algae

Algal biomass is increasingly positioned as a sustainable, circular

feed ingredient with the potential to lower the carbon footprint of

ruminant production. Beyond serving as a high-quality nutrient source,

specific macro- and microalgal taxa contain bioactive compounds that

modulate rumen microbiology and hydrogen sinks, thereby holding
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high potential for enteric CH4 mitigation. Recent reviews highlight

both the promise and the practical constraints (supply, processing

costs, and standardization) associated with scaling algae for livestock

systems (De Bhowmick and Hayes, 2023; Wanapat et al., 2024).

The summary report of the literature analysis on the effects of

supplementing ruminant diets with probiotic bacteria is presented

in Table 4.

Among seaweeds, red macroalgae of the genus Asparagopsis remain

the most potent enteric CH4 mitigation option in vivo. Multiple trials in

beef cattle have demonstrated substantial reductions when A. taxiformis

is included at low dietary levels, with reported decreases often exceeding

50% and, in some cases, approaching 80%, depending on the diet

composition and inclusion rate. The primary mechanism involves the

inhibition of the methyl-coenzyme M reductase (MCR) pathway by

halogenated methane analogs—especially bromoform (CHBr3)—which

suppresses the terminal step of methanogenesis (Thorsteinsson et al.,

2023; Kelly et al., 2025).

Efficacy varies with species, dose, basal diet, and type of supplement

used in the study (freeze-dried biomass vs. stabilized actives) (Alvarez-

Hess et al., 2024). In a finishing-diet research study, a proprietary

bromoform-containing algae product (“Alga 1.0”) fed at 69 or 103 g/d

reduced methane yield by 39% and 64%, respectively, without affecting

digestibility but decreasing DMI by ~10–13%. These data underscore

the trade-off between mitigation and intake that may emerge at higher

effective doses (Colin et al., 2024).

Safety and residue outcomes are an active area of research.

Transfer of CHBr3 to milk and urine has been detected under

certain conditions in dairy cows fed Asparagopsis. However, tissue
TABLE 3 SWOT analysis of biological strategies for reducing methane emissions in ruminant livestock.

Strengths Weaknesses

Effectiveness in Methane Reduction – These strategies have shown

potential in reducing CH4 by 20-50%.

Sustainability – Many biological methods are eco-friendly, utilizing

natural feed additives and microbial interventions rather than chemical
solutions.

Animal Health Benefits – Improvement of feed efficiency by reducing

energy loss from methane production; enhancing nutrient absorption and
overall productivity; can enhance energy metabolism by converting
hydrogen into acetate, providing an alternative energy source for the
animal.

Consumer and Market Demand – Increasing global pressure for

sustainable agriculture creates incentives and support for adopting these
strategies.

Variability in Efficacy – The effectiveness of biological interventions can vary based on

diet, livestock species, and environmental factors, which may limit broad application.

Long-Term Sustainability Questions – Effectiveness may decline over time as

methanogenic archaea evolve resistance or adapt to vaccine-induced changes. Requires
regular booster doses for sustained impact, increasing logistical challenges and costs. Large-
scale production and delivery systems for phages need optimization for commercial viability.

Potential Impact on Productivity – strategies might inadvertently affect digestion, leading

to reduced growth rates or milk yields in some cases.

Cost and Adoption Barriers – Many of these strategies require investment, research, and

farmer education, which can slow adoption.

Opportunities Threats

Advancements in Biotechnology – Genetically modified microbes,

precision fermentation, and genome editing may further enhance
methane reduction.

Policy Support and Funding – Governments and organizations are

increasingly offering subsidies and incentives for sustainable livestock
farming.

Carbon Markets and Sustainability Labeling – Farmers who reduce

methane emissions may gain financial benefits from carbon credits or
eco-labeling for climate-conscious consumers.

Integration with Holistic Farming Practices – Combining biological

strategies with regenerative grazing, agroforestry, and manure
management could maximize sustainability.

Regulatory Hurdles – Some biological strategies, such as genetically modified microbes,

may face strict regulatory approval processes.

Resistance from Traditional Farmers – Adoption of new practices may be slow due to a

lack of awareness, resistance to change, or cultural factors.

Unintended Ecological Impacts – Altering the gut microbiome may have unforeseen

effects on animal health and ecosystems, e.g., vaccine-induced changes can persist in manure
or the environment and could impact soil microbial communities, or persistence of
homoacetogenic bacteria in manure and soil may lead to altering of C and N cycles in
unintended ways.

Market Volatility and Supply Chain Issues – The availability and cost of specific feed

additives (e.g., seaweed) may fluctuate, affecting long-term viability.
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TABLE 4 Summary of algal-based interventions for enteric methane mitigation in ruminants.

Algal Species/Product
Type
of

study

Inclusion/
dose

Animal
type

CH4 effect Toxicity/side effects Reference

Asparagopsis taxiformis
(freeze-dried)

In vivo
0.25, 0.50% on OM

basis
Beef cattle

~50–80% ↓ (diet-
dependent)

No adverse impact on production and
feed efficacy. No CHBr3 residues in the

product.

(Roque et al.,
2021)

Asparagopsis armata In vivo
0.5–1.0% on OM

basis
Dairy cattle

↓CH4 yield by 20.3
and 42.7%

↓DMI, FE, MY
(Roque et al.,

2019)

Product Alga 1.0
(Alga Biosciences)

In vivo 69 and 103 g/d Jersey cows
↓CH4 by 39 (for 69
g/d) and 64% (for

103 g/d)

↓DMI by 10.1% (for 69 g/d) and 13.3%
(for 103 g/d)

(Colin et al.,
2024)

Asparagopsis taxiformis
(freeze-dried)

In vivo 5 g/kg on DM basis
Murciano-
Granadina
female goats

↓CH4 yield by
31.4%

NR
(Pedro et al.,

2022)

Asparagopsis taxiformis
(freeze-dried)

In vivo
0.15–0.3% on OM

basis
Nordic Red
dairy cows

↓CH4 at a dosage of
0.3% OM (only

during the 8 weeks
of the experiment)

↓DMI and ECM yield. Due to the
temporary mitigating effect, further
long-term studies are warranted.

(Angellotti
et al., 2025)

Asparagopsis steeped in canola
oil (ASP-oil)

In vivo
132, 267, 409, 467
mg CHBr3/cow/day

Holstein-
Friesian cows

↓CH4 production up
to 38% (dose-

dependent effect)

No adverse impact on FI, but presence
of CHBr3 in milk. ↓MY with ↑CHBr3 in

ASP-oil

(Alvarez-Hess
et al., 2024)

Asparagopsis taxiformis
(freeze-dried)

In vivo
0.05%, 0.10%, and
0.20% on an OM

basis
Beef steers

↓CH4 yield by 9%
(for 0.05%), 38%
(for 0.10%), and
98% (for 0.20%).

No adverse impact on DMI. ↑ADG.
(Kinley et al.,

2020)

Asparagopsis taxiformis
(freeze-dried)

In vivo
0.25 and 0.50% on

an OM basis
Holstein
cows

↓CH4 yield by
29.4% (for 0.05%)

↓DMI, ECM, MY. ↑Iodine and bromine
in milk without adverse impact on milk

organoleptic traits.

(Stefenoni
et al., 2021)

Asparagopsis taxiformis
(freeze-dried)

In vivo
0.50% on an OM

basis
Nordic Red

cows
↓CH4 yield by 54% ↓FI. Altered milk production.

(Krizsan et al.,
2023)

Asparagopsis taxiformis
(freeze-dried)

In vivo
0.50, 1.00, 2.00,
3.00% on an OM

basis

Merino
sheep

reduce CH4
emissions by 50–
80% over a 72-day

feeding .

No adverse impact on animal health
(Li Xixi et al.,

2018)

brown and green seaweeds
(Pelvetia canaliculata, Cystoseira

tamariscifolia, Bifurcaria
bifurcate, Fucus vesiculosus,
Himanthalia elongata, Ulva

intestinalis)

In vitro
10 g/kg DM (for all
seaweed species)

Rumen
simulation
technique
system

(RUSITEC)

No effect on CH4
no adverse effects on diet digestibility or

fermentation patterns
(Roskam et al.,

2022)

Asparagopsis taxiformis In vitro 10–20 g/kg OM
In vitro
rumen

incubation
↓CH4

Strong dose-dependent CH4 mitigating
effect. No adverse impact on RF profile.

(Chagas et al.,
2019)

Red Asparagopsis taxiformis and
brown Zonaria farlowii

seaweeds
In vitro 5% on DM basis

In vitro
rumen

incubation
(ANKOM)

↓CH4 by 74% NR
(Brooke et al.,

2020)

Mix of macroalgae (Furcellaria,
Laminaria, and Fucus spp.) and

Irish moss
In vitro

0.14, 0.28, and 0.56
g DM/day were
supplemented to
the donor Holstein

cows

In vitro
incubation in
anaerobic

CCF
fermentors

↓CH4 by 12–16% NR
(Kinley and

Fredeen, 2015)

Nannochloropsis oceanica,
Chlorella vulgaris, Tetraselmis

sp.
In vitro

2.5, 5, and 10% on
DM basis

In vitro
incubation

↓CH4 yield with N.
oceanica, but ↑CH4

yield with C.
vulgaris (at 10%

inclusion)

Efficacy and safety are species-, dose-,
and basal diet–dependent; tailor

inclusion rates to optimize nutritional
performance while maximizing CH4

mitigation.

(Meehan et al.,
2021)

(Continued)
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accumulation was not observed, and excretion appeared transient in

that study. Additionally, some trials with Asparagopsis armata at

0.5–1.0% of dietary OM in dairy cows reduced CH4 yield but also

lowered DMI, highlighting the need for careful dosing and

monitoring of animal performance and product quality (including

iodine/halogen load) (Muizelaar et al., 2021). Similarly, in dairy

cows, supplementation with A. taxiformis at 0.3% of dietary OM

reduced enteric CH4 emissions by ~30% during the first 8 weeks,

with no sustained effect from week 9 to 12. This inclusion level also

led to reductions in DMI (~7%) and ECM (~2%), shifts in VFA

profiles (↓acetate; ↑propionate, butyrate, valerate), and elevated

concentrations of bromine and iodine in milk (5-fold and 9-fold

higher than controls, respectively), highlighting the need for long-

term evaluation of efficacy, safety, and product integrity (Angellotti

et al., 2025).

By contrast, brown and green seaweeds generally lack

halomethanes at higher levels; their antimethanogenic potential is

less consistent and often modest. For example, bromoform-free

brown/green species included at 10 g/kg diet DM did not reduce

CH4 in RUSITEC tests, whereas metabolomics indicate these taxa

contain phenolics (e.g., phlorotannins) and other sulfated

compounds that could influence fermentation. Species, season,

and geography contribute to pronounced chemical variability

(Nørskov et al., 2021; Roskam et al., 2022).

Several microalgae and cyanobacteria have shown methane-

mitigating potential—though, to date, none match Asparagopsis in

vivo. In vitro study comparing Chlorella vulgaris, Tetraselmis spp., and

Nannochloropsis oceanica found the lowest CH4 yield with N. oceanica

at 10% of incubated DM, likely linked to its high n-3 PUFA content

(Meehan et al., 2021). Likewise, Dunaliella salina, when used as an

additive with maize forages, lowered biogas/CH4 kinetics without

compromising fermentation characteristics (Elghandour et al., 2023).

In vivo findings are mixed and context-dependent. Some studies

report that Chlorella can increase methanogenic archaea and

protozoa in goats, whereas others (including associative feeding

strategies with low-level Chlorella) suggest potential to improve

fermentation while decreasing CH4 (Tsiplakou et al., 2017; Kholif
Frontiers in Animal Science 10
et al., 2023). Cyanobacteria Spirulina (Arthrospira spp.) is widely

used as a protein/antioxidant supplement. Across small-ruminant

studies, Spirulina supplementation has been shown to modulate the

rumen microbiome, but it yields inconsistent methane responses. In

lactating goats, ≈1% of diet DM—especially when combined with

live yeast—lowered Methanobrevibacter prevalence and predicted

CH4, though effects were small-scale (Emara Rabee et al., 2025). In

ewes, graded doses of methanogen inhibitors shifted community

s t ruc ture wi thout reduc ing tota l methanogens , and

Methanobrevibacter tended to increase at the highest inclusion

rate (Christodoulou et al., 2023). In lambs, ~3% (fresh-weight basis)

of the altered microbiota did not produce consistent enteric CH4

outcomes (Wang et al., 2024b). Collectively, Spirulina may

influence archaeal ecology at low inclusion rates, yet robust,

controlled trials are needed to clarify its effects on CH4 emissions.

Microalgal feed supplements appear to modulate rumen

fermentation and H2 disposal pathways (e.g., favoring propionate

or microbial lipid sinks); however, the magnitude of CH4

suppression is typically lower than that achieved with Asparagopsis.

Collectively, the literature supports algae as a diverse toolbox for

enteric methane abatement. Asparagopsis (via bromoform) delivers

the most considerable and reproducible reductions—especially in

high-concentrate systems—while brown/green macroalgae and

microalgae offer nutritional value and modest, formulation-

dependent CH4 mitigation. Critical research gaps include: (1)

scalable, cost-efficient cultivation and processing for consistent

bioactive content; (2) long-term animal health and product-

quality surveillance (residues, iodine/halogens); (3) delivery

formats that sustain efficacy without depressing intake; and (4)

robust performance data in pasture-based and dairy systems.
4.2 Biochar supplementation for enteric
methane mitigation

Biochar (BH) has garnered increasing interest as a potential

CH4 mitigation agent in ruminant nutrition due to its high surface
TABLE 4 Continued

Algal Species/Product
Type
of

study

Inclusion/
dose

Animal
type

CH4 effect Toxicity/side effects Reference

Dunaliella salina In vitro 3% on DM basis
In vitro

incubation
↓CH4 production by

8.58–73.23%
Recommended to use in diets based on

corn forage
(Elghandour
et al., 2023)

Chlorella vulgaris In vitro
25% of the total
incubated DM

In vitro
incubation

↓CH4 production by
34%

NR (Sucu, 2020)

Chlorella vulgaris In vitro
1, 2, and 3% DM

basis

In vitro
fermentation
(ANKOM)

↓CH4 production
C. vulgaris at a 2 or 3% level exerted

negative effects on ruminal fermentation
and nutrient degradability

(Kholif et al.,
2023)

Australian freshwater algal
mixes (predominantly

containing Spirogyra maxima)
In vitro

5%, 10%, 20%, 30%
and 50% of DM

In vitro
batch assay

trials

Algal mixes
containing

Spirogyra ↓CH4 by
>10% and had high

lipid content

safe for livestock consumption at an
inclusion rate of 20%

(Lester et al.,
2024)
DM, dry matter; OM, organic matter; DMI, dry matter intake; FI, feed intake; ADG, average daily gain; MY, milk yield; RF, rumen fermentation; NR, not reported.
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area, porosity, and adsorptive capacity, which may modulate rumen

fermentation and microbial dynamics. Proposed mechanisms

include altering microbial habitats, reducing hydrogen availability

for methanogenesis, and promoting the proliferation of alternative

hydrogen-utilizing microbes (Leng et al., 2013; Saenab et al., 2018).

However, evidence for its effectiveness remains inconsistent across

studies (Winders et al., 2019; Sperber et al., 2022).

In a recent two-phase study in beef cattle, supplementation with

tailored (“fit-for-purpose”) biochars yielded modest reductions in

CH4 emissions (8.8–12.9%) under controlled pen conditions. Still,

no effect was observed under grazing systems, highlighting a

disconnect between controlled trials and practical field application

(Martinez-Fernandez et al., 2024). Similarly, in dairy cattle, a Latin

square trial revealed that neither biochar nor biochar–urea blends

affected CH4 emissions or productive performance (Terler et al.,

2023), while supplementation at 1% DM in lactating Holsteins also

yielded no benefits (Dittmann et al., 2024). A study in lambs found

no favorable effects on CH4 production or growth, both in vitro and

in vivo (Lind et al., 2024). Additionally, mineral-enriched biochar

failed to elicit any changes in CH4 or rumen fermentation in

Holstein steers (Ni et al., 2024). By contrast, an in vivo study in

ewes reported improved feed efficiency and reduced CH4 emissions

with biochar supplementation (Burezq and Khalil, 2025), indicating

that host species, diet type, and biochar formulation may all

influence response. This inconsistency likely stems from

differences in pyrolysis conditions, feedstock type, particle size,

and chemical composition of the biochar used. Smaller particle sizes

and acidic pH have been associated with greater CH4 mitigation

(Zhou et al., 2017; Osman et al., 2022), while the presence of

phenolic compounds may exert additional antimicrobial effects. A

recent quantitative review confirmed the modest average efficacy of

biochar across studies but emphasized the substantial heterogeneity

and lack of dose–response consistency, calling for standardization

in biochar production and application protocols (Pepeta

et al., 2024).

Overall, while biochar shows mechanistic potential as a CH4

mitigation tool, primarily through indirect modulation of ruminal

hydrogen metabolism, current in vivo evidence does not yet support

its broad implementation in commercial livestock systems. Future

work should focus on defining optimal biochar types, inclusion

levels, and diet contexts, as well as the possible synergistic effects

with other mitigation agents.
4.3 Garlic

Garlic (Allium sativum) and its organosulfur compounds—such

as allicin, diallyl sulfide, diallyl disulfide, and allyl mercaptan – have

attracted attention as natural feed additives for mitigating enteric

CH4 emissions in ruminants. These compounds exhibit

antimicrobial activity against methanogenic archaea and rumen

protozoa and have been shown to alter fermentation profiles by

promoting propionate production, thereby redirecting H2 away

from methanogenesis (Shang et al., 2019; Sari et al., 2022).
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However, the efficacy of garlic-based interventions appears

highly variable. It is influenced by multiple factors, including the

specific compound used, its concentration and stability, the delivery

matrix (e.g., oil, extract, powder), and interactions with the basal

diet (Kamel et al., 2008; Sari et al., 2022).

Recent in vivo evidence supports the methane-reducing

potential of garlic-derived products under controlled and grazing

conditions. In a respiration chamber study with mid-lactation dairy

cows, supplementation with a garlic–citrus extract over 18 days

reduced CH4 production (−10.3%), intensity (−11.7%), and tended

to lower CH4 yield (−9.7%) without affecting dry matter intake or

milk yield. Propionate concentrations increased, while

Methanobrevibacter abundance declined. Similarly, under grazing

conditions, daily supplementation of 33 g/cow of GCE over 12

weeks improved DMI and ECM yield. This led to an 8.39%

reduction in milk GHG intensity, as determined by a life cycle

assessment, although CH4 was not directly quantified in the study

(Khurana et al., 2024).

Meta-analyses and recent reviews have emphasized the

heterogeneity in response to garlic supplementation, highlighting

formulation sensitivity as a key factor influencing efficacy (Shang

et al., 2019; Sari et al., 2022a, Ding et al., 2023; Martin and

Chaudhry, 2024). Several studies demonstrated that garlic

products provide a range of biological benefits to ruminants

(Ogbuewu et al., 2019; Yang et al., 2021). While garlic-based

products offer a promising natural approach to CH4 mitigation,

especially at practical inclusion levels that do not compromise

intake or animal performance, their persistence and repeatability

under commercial conditions remain uncertain.

In summary, garlic and its bioactive constituents have

demonstrated potential for mitigating CH4 through both direct

inhibition of methanogens and fermentation shifts that favor

propionate production. However, the success of such strategies

depends heavily on compound selection, dosing, delivery method,

and dietary context. Long-term, multi-period in vivo studies are

needed to confirm sustained efficacy, evaluate adaptation, and guide

the development of commercially viable formulations.
4.4 Tannins

Tannins—classified as condensed (CT) or hydrolyzable (HT)

based on their chemical structure—are among the most widely

studied plant secondary compounds for enteric CH4 mitigation in

ruminants. Their antimethanogenic effects are attributed to multiple

mechanisms, including suppression of protozoa and associated

methanogens, shifts in VFAs production (typically characterized by

reduced acetate and increased propionate), and complexation with

dietary proteins and carbohydrates, which can reduce H2 availability

for methanogenesis (Patra and Saxena, 2011; Goel and Makkar, 2012).

The extent of mitigation depends heavily on the type of tannin, the

botanical source, the inclusion rate, and the adaptation period.

A comprehensive meta-analysis by Jayanegara et al. (2012)

covering both in vitro and in vivo data confirmed an apparent,
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dose-dependent reduction in CH4 emissions, particularly with CT

sources. More recently, a systematic review by Cardoso-Gutierrez

et al. (2021) focused on tropical forages and reported consistent

CH4 suppression across multiple studies. However, the magnitude

of reduction was highly variable and linked to the specific plant

species and dosage employed. Goel and Makkar (2012) highlighted

that CT mitigates CH4 primarily via indirect mechanisms, such as

reducing fiber digestion and thus limiting H2 availability. In

contrast, HT appear to exert more direct antimethanogenic effects

by inhibiting the growth and activity of methanogens and

hydrogen-producing microbes. Animal-level studies further

demonstrate the complex and dose-dependent impacts of tannin

supplementation on CH4 mitigation and animal productivity. In

dairy goats, stepwise inclusion of quebracho-derived condensed

tannins (CT; 0–6% of diet DM) elicited non-linear responses, with

milk yield peaking at approximately 4% CT, beyond which diet

digestibility declined and effects on methane emissions became

inconsistent (Battelli et al., 2024). Similarly, dietary inclusion of

hydrolyzable tannins (HT) has been associated with improvements

in milk yield and udder health, further supporting their utility in

dairy systems (Ali et al., 2017). In an earlier in vivo study,

Beauchemin et al. (2007a) reported a 14% reduction in CH4

emissions following dietary supplementation with Quebracho

tannin extract, accompanied by a shift in VFA production toward

propionate, a competitive H2 sink. Comparable results were

observed by Grainger et al. (2009) who supplemented condensed

tannins from Lotus pedunculatus and reported up to 29% CH4

reduction without adverse effects on dry matter intake or

animal productivity.

In vitro investigations support the potential of forage-derived

tannins. For example, purified CT extracts from Hedysarum

coronarium (sulla) and Lotus corniculatus (big trefoil) decreased

CH4 production by up to ~15% at inclusion rates of 30 g/kg DM.

However, gas production and fermentation efficiency were

negatively affected at the highest levels (Verma et al., 2023). These

findings underscore the importance of optimizing tannin inclusion

levels to mitigate undesirable effects on rumen fermentation and

animal productivity.

In summary, tannins represent a viable strategy for mitigating

enteric CH4 emissions in ruminants, particularly when their use is

aligned with dietary context and production objectives. Low-to-

moderate inclusion levels (<3–4% of diet DM) have been shown to

reduce CH4 output without adversely affecting animal performance;

however, higher doses may impair nutrient digestibility and feed

efficiency. Effective formulation requires careful consideration of

tannin type (condensed vs. hydrolyzable), bioactivity, and

interactions with the basal diet to ensure sustained mitigation and

production efficiency.

In addition, key knowledge gaps remain regarding the

mechanisms by which tannins reduce methanogenesis, including

their effects on nutrient utilization, direct inhibition of

methanogens, suppression of protozoa, and modulation of

hydrogen sinks within the rumen environment. Addressing these

uncertainties through targeted in vivo research will be essential to

optimizing tannin-based strategies for practical application.
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4.5 Saponins

Saponins—diverse glycosides abundant in legumes and tropical

plants—are recognized for their antiprotozoal and antimicrobial

properties (Patra and Saxena, 2009; Goel and Makkar, 2012). By

suppressing rumen protozoa—key partners of methanogenic

archaea—saponins diminish hydrogen transfer to methanogens,

thereby reducing CH4 formation. They also act directly against

methanogens, shifting fermentation toward propionate production

—a competitive hydrogen sink (Hristov et al., 2013; Pen et al., 2006;

Patra and Saxena, 2009; Firkins and Mitchell, 2023). Commercial

saponin sources such as Yucca schidigera andQuillaja saponaria are

well-characterized: QS contains ~10% triterpenoid saponins across

20+ structures, while YS offers ~4.4% steroidal saponins spanning

28 variants (Kholif, 2023). Other promising sources include

Sapindus saponaria, which exhibits potent antiprotozoal activity

(Hu et al., 2018), and fenugreek (Trigonella foenum-graecum),

notable for its high saponin content (~4.63 g per 10 g) and

potential antimethanogenic action (Singh and Garg, 2006;

Visuvanathan et al., 2022).

In vitro, S. saponaria fruit extracts (100 mg/g) significantly

decreased CH4 without impairing fermentation. At the same time,

inclusion of its seed pericarp reduced protozoa and improved

weight gain in sheep, though CH4 was not measured (Navas-

Camacho et al., 2001; Hess et al., 2003). Fenugreek extracts also

inhibited total gas and CH4 production and shifted VFAs toward

propionate in vitro (Dey, 2015; Niu et al., 2021), while improving

nitrogen utilization without affecting intake or digestibility (Wina

et al., 2005).

Although saponins exhibit considerable potential to reduce

enteric methane emissions across a range of inclusion levels,

thereby supporting environmentally sustainable ruminant

nutrition (Ridla et al., 2021). Evidence suggests that their effects

may not be consistently sustained over time. Several long-term in

vitro studies have indicated that the methane-suppressing effects of

certain saponin extracts on rumen microbial fermentation may be

transient rather than permanent (Wang et al., 1998; Cardozo et al.,

2004). This attenuation may be partly explained by microbial

adaptation, as rumen microbes can adjust to repeated exposure to

bioactive compounds such as saponins (Makkar and Becker, 1997;

Wallace et al., 2002).

However, in vivo responses to saponin supplementation remain

inconsistent. For instance, supplementation of whole-plant Yucca

schidigera or Quillaja saponaria at 10 g/kg DM failed to reduce CH4

emissions in lactating dairy cows (Holtshausen et al., 2009), while

lower-dose inclusion in sheep yielded only numerical reductions

(Pen et al., 2007). Similarly, in dairy goats, supplementation with

fenugreek seeds at 0.1 kg/d had no significant impact on milk yield

or health status (El-Tarabany et al., 2018; Akbağ et al., 2022). By

contrast, substantial CH4 reductions of 28%, 35.8%, and 47.9% were

observed in sheep supplemented with tea seed saponins at 5, 10, and

20 g/kg DM, respectively (Zhang et al., 2021), highlighting the role

of the botanical source and dose in determining efficacy. Beyond

ruminant systems, low-level inclusion of fenugreek (0.04%) has

demonstrated benefits in aquaculture species—improving growth,
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antioxidant capacity, and immune function (Yu et al., 2019; Abdel-

Wareth et al., 2021; Yang et al., 2022; Paneru et al., 2022), indicating

the broader applicability of saponins across animal production

systems. A recent meta-analysis encompassing 66 in vivo

treatments (up to 40 g/kg DM) revealed no adverse effects on

feed intake; however, the effects on productivity and fermentation

were highly variable and dependent on the plant source, animal

species, and dietary context (Yanza et al., 2024).

These findings underscore the need for additional long-term,

species-specific studies to better understand the persistence of

saponin-induced CH4 mitigation and to refine supplementation

strategies for practical livestock systems.

The summary report of the analysis of literature data on the

effects of supplementation of ruminant diets with garlic, tannins, or

saponins is shown in Table 5.
4.6 Essential oils as natural methane
mitigation agents

Essential oils (EOs) are plant-derived volatile compounds with

antimicrobial properties that have been explored as natural feed

additives to mitigate enteric CH4 emissions in ruminants. Their

effects are attributed to the modulation of rumen microbial

communities, the inhibition of methanogens and protozoa, and

alterations in fermentation profiles (Castillejos et al., 2005;

Calsamiglia et al., 2007; Patra and Yu, 2012). Compounds such as

thymol, eugenol, carvacrol, cinnamaldehyde, and flavonoids (e.g.,

naringin, hesperidin) have demonstrated methane-reducing

potential in both in vitro and in vivo systems (Busquet et al.,

2005a; Patra and Yu, 2015; Yu et al., 2024).

In vitro studies report CH4 reductions ranging from 10% to

91%, depending on EO type, dose, and microbial sensitivity

(Busquet et al., 2006; Cobellis et al., 2016). For example, garlic oil

constituents—diallyl disulfide and allyl mercaptan—reduced CH4

production by up to 74% in batch cultures (Busquet et al., 2005a),

high-carvacrol oregano oil reduced methane by 22% at 1000 mg/L,

although with concurrent suppression of VFA production and feed

digestion (Benchaar and Hassanat, 2024).

Similarly, citrus flavonoids (naringin and hesperidin, each at 10

g/kg DM) or citrus flavonoid extract (20 g/kg DM) significantly

reduced CH4 and ammonia concentrations in vitro, alongside

declines in archaea Methanobrevibacter spp. and protozoa

Isotricha spp. populations (Yu et al., 2024). The authors suggest

that flavonoids may possess synergistic effects in mitigating ruminal

CH4 and have the potential to enhance N utilization. Using the

rumen simulation technique (RUSITEC), Soliva et al. (2011)

reported a 91% reduction in daily CH4 emissions, accompanied

by a decrease in protozoal counts and an increase in total bacterial

populations, highlighting the strong methane-mitigating potential

of the garlic oil under controlled in vitro conditions. In another in

vitro study, five essential oils—clove, eucalyptus, garlic, oregano,

and peppermint – reduced CH4 production by 34.4%, 17.6%, 42.3%,
Frontiers in Animal Science 13
87.0%, and 25.7%, respectively, at 1.0 g/L, with oregano oil showing

the most significant CH4 inhibition (Patra and Yu, 2012).

In vivo, results have been inconsistent. Agolin® Ruminant (a

commercial EOs blend) reduced CH4 emissions by 8.8%, improved

milk yield by 4.1%, and enhanced feed efficiency by 4.4% in lactating

dairy cows (Belanche et al., 2020). A carbon footprint modelling

study confirmed a 6% reduction in GHG emissions across several

feeding strategies (Becker et al., 2023). However, Benchaar and

Hassanat (2025) found no effect of the same blend (1 g/day) on

lactational performance or CH4 output in dairy cows. Castro-

Montoya et al. (2015) reported a 15% CH4 reduction after 6

weeks of supplementation with 0.2 g/d of Agolin® Ruminant in

dairy cows. Interestingly, no significant changes were seen in beef

heifers supplemented with the same dose.

Conversely, several studies have reported inconsistent or non-

significant effects of essential oil supplementation on CH4

mitigation and animal performance. For example, an EOs blend

of cresols, thymol, limonene, vanillin, eugenol, and salicylates (1.2

g/day) did not confer any measurable benefits in mid-lactation

Holstein dairy cows in terms of CH4 mitigation, lactational

performance, or rumen fermentation parameters (Joch et al.,

2019). Likewise, Jiménez-Ocampo et al. (2021) demonstrated CH4

reductions with 1.5 g/kg DMI of naringin and chitosan in in vivo

trials. However, in situ tests using the same doses (1.5–3.0 g/kg

DMI) showed no significant changes in CH4 or nutrient use.

Supplementation with eucalyptus and anise oils at 0.5 g/animal/

day in sheep had no significant effect on methane production

(Wang et al., 2018). An in vitro experiment using rumen

inoculum from Daragh ewes demonstrated that sage, pine, and

clove EOs at 300–900 mg/L led to dose-dependent CH4 suppression

and improved the ruminal fatty acid profile (Bokharaeian

et al., 2023).

These contrasting findings underscore the complexity of host–

additive interactions and suggest that the delivery method, dosage,

and microbial adaptation may have a significant influence on

experimental results.

Recommended effective doses for CH4 mitigation typically

range from 20 to 1000 mg/L in vitro and 500 to 1000 mg/day in

vivo. However, high doses may impair fibre digestion and reduce

feed intake (Cobellis et al., 2016; Joch et al., 2019). Long-term

exposure to EOs may induce microbial adaptation, reducing their

effectiveness over time.

Thus, EOs supplementation should be approached with caution

—strategies such as encapsulation, rotational use, or combination

with other phytochemicals are recommended to sustain efficacy

while minimizing adverse effects (Benchaar and Greathead, 2011;

Patra and Yu, 2015).
4.7 Probiotics

Ezema (2013) described probiotics as live, non-pathogenic, and

non-toxic microorganisms that, when administered in appropriate
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TABLE 5 Observations from different articles reporting effects of garlic, tannins, and saponins on enteric CH4 mitigation.

Additive/source
Type
of

study
Inclusion/dose

Animal
type

CH4 effect
Toxicity/side

effects
Reference

Garlic + citrus extract In vivo 44 g/cow/d
mid-lactation
Nordic Red

cows

↓CH4 10.3% g/d; 11.7%
intensity; trend 9.7%

CH4 yield
ND

(Khurana
et al., 2023)

Garlic + citrus extract In vivo 33 g/cow/d
Irish Holstein-
Friesian dairy

cows
Not measured ↑MY, DMI, FE.

(Khurana
et al., 2024)

GAR, DAS, DAD, ALL, and ALM In vitro 3–3000 mg/L (medium)
In vitro batch
incubation

↓CH4 with GAR

Shift VFA:
↓acetate,

↑propionate &
butyrate

(Busquet et al.,
2005b)

Garlic powder
In vitro/
in vivo

2, 4, and 6% of DMI
(incubation in vitro), 2% of

DMI (in vivo)

lactating Murrah
buffaloes

↓CH4 by 34% ND
(Zafarian and
Manafi, 2013)

Quebracho CT In vivo
2%, 4%, and 6% on DM

basis
lactating goats no influence on CH4

Reduced the milk
efficiency

(Battelli et al.,
2024)

Chestnut tannin extract In vivo 40 and 80 g/day
mid-lactation
Holstein cows

↓CH4 yield by 34%24% ND
(Prodanović
et al., 2025)

Quebracho–chestnut tannin extract In vivo
Dosages tested: 10, 20, and

30 g/d. Dosage
recommended: 30 g/d.

Early-lactating
Holstein cows

Not measured ND
(Wang et al.,

2024a)

Extracted tannins from birdsfoot
trefoil, big trefoil, salad burnet, and

sulla
In vitro 10, 20, and 30 g/kg DM

In vitro
incubation

↓CH4 by up to 12% ND
(Verma et al.,

2024)

Quebracho CT In vivo 1 and 2% of DM
Angus heifers
and Angus

steers
No impact on CH4 ND

(Beauchemin
et al., 2007b)

Mimosa tenuiflora CT In vivo 30 g/kg DM male sheep No impact on CH4 ND
(Lima et al.,

2019)

Acacia mearnsii CT In vivo 163 and 326 g/d/cow
Holstein

Friesian cows
↓CH4 by 14-29% ↓MY

(Grainger
et al., 2009)

Acacia and quebracho CT, chestnut
and valonia HT

In vitro
20, 50, 100, 150, and 200 g

kg DM
In vitro

incubation
Chestnut HT, acacia CT
(at 50 g/kg DM) ↓CH4

↓VFA and ruminal
protein

degradation

(Hassanat and
Benchaar,
2013)

Blend of tannin and saponins In vivo 0.7 g/kg DM Nellore bulls
↓CH4 by 17.3% or
88.76 kg of CO2

equivalent
ND

(Magnani
et al., 2023)

Sapindus saponaria (SS),
Enterolobium cyclocarpum (EC),

Pithecellobium saman (PS)
In vitro

100 mg/g (SS), 200 mg/g
(EC), 200 mg/g (PS)

Rumen
simulation
technique
(Rusitec)

↓CH4 by 14-29% ND
(Hess et al.,

2003)

Fenugreek forage In vitro Not specified
48-h in vitro
batch culture
incubations

↓ CH4; ↑ propionate ND
(Niu et al.,

2021)

Tea saponins
In vitro/
in vivo

5, 10, 20 g/kg DM (in vitro,
in vivo)

Han ×Dorper
male castrated

sheep
↓ CH4 ND

(Zhang et al.,
2021)

Yucca schidigera or Quillaja
saponaria

In vivo 10 g/kg of DM Dairy cows No effect on CH4 ND
(Holtshausen
et al., 2009)

Yucca schidigera In vivo 0.12 and 0.15 g/kg DM
cannulated

Cheviot sheep
↓ CH4 ND

(Santoso et al.,
2004)
F
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ND, not detected. MY, milk yield; DM, dry matter; DMI, dry matter intake; FE, feed efficiency; GAR, garlic oil; DAS, diallyl sulfide; DAD, diallyl disulfide; ALL, allicin; ALM, allyl mercaptan; CT,
condensed tannin; HT, hydrolisable tannin.
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amounts, confer beneficial effects on the host animal. Their

mechanism of action includes improving feed digestibility,

enhancing beneficial microbial populations, competing with

methanogens for substrates (e.g., hydrogen), and modulating

ruminal fermentation pathways (Uyeno et al., 2015). In ruminant

nutrition, commonly used probiotics—also referred to as direct-fed

microbials—include yeast species such as Saccharomyces cerevisiae,

as well as bacterial genera including Bacillus, Bifidobacterium,

Enterococcus, Lactobacillus, Propionibacterium, Megasphaera

elsdenii, and Prevotella bryantii (Seo et al., 2010).

The summary report of the literature analysis on the effects of

supplementing ruminant diets with probiotic bacteria is presented

in Table 6.

Bacterial probiotics have been shown to improve rumen

function, enhance dry matter intake, feed efficiency, and weight

gain in ruminants (Elghandour et al., 2015). They may also inhibit

pathogenic microbes, modulate gut microbiota, and stimulate the

immune system via bacteriocin production (Khan et al., 2016).

Additionally, their supplementation has been associated with

increased milk yield, fat-corrected milk, and milk fat content

(Elghandour et al., 2015; Khan et al., 2016).

Studies of Bacillus subtilis supplementation in cattle have

reported improvements in digestibility, performance, milk

production, reductions in somatic cell counts, reductions in CH4

emissions, and stimulation of proteolytic and amylolytic bacterial

growth (Sun et al., 2013; Jia et al., 2022). The inclusion of B. subtilis

under in vitro conditions has demonstrated potential for reducing

ruminal methane production when supplemented in mid-lactation

dairy cow diets, suggesting its promise as a methane mitigation

additive (Sarmikasoglou et al., 2024). In young Holstein calves,

dietary supplementation with a probiotic mixture (L. plantarum,

Pediococcus acidilactici, Pediococcus pentosaceus, and B. subtilis) has

been shown to enhance health status and decrease the need for

medicinal treatments (Wang et al., 2022).

M. elsdenii, a lactic acid-utilizing bacterium, has also been

investigated for its probiotic potential. Its capacity to metabolize

lactate into VFAs such as butyrate and propionate supports pH

stability and reduces lactate accumulation, which can limit

methanogenic activity (Carberry et al., 2012; Cabral and Weimer,

2024). A recent meta−analysis by Susanto et al. (2023) integrating

32 studies (136 data points) found that M. elsdenii inclusion

significantly reduced CH4 emissions (p < 0.05), while

simultaneously improving fermentation profiles (e.g., increased

propionate, butyrate, isobutyrate, valerate; decreased lactic acid

and acetate proportion) and enhancing livestock performance

(e.g., average daily gain, body condition score, carcass traits).

Yeast-based probiotics have emerged as a potential strategy for

mitigating enteric CH4 emissions in ruminants. Although

supplementation with live yeast, particularly Saccharomyces

cerevisiae, is known to stimulate cellulolytic bacterial populations,

potentially increasing H2 production—a key substrate for

methanogenesis—it may also simultaneously enhance the
Frontiers in Animal Science 15
proliferation of alternative H2-utilizing microorganisms. This dual

microbial modulation may lead to a net reduction in CH4

production by diverting metabolic H2 flux away from

methanogens and toward competing fermentation pathways, such

as propionate or acetogenesis. Such mechanisms suggest that yeast

probiotics could play a supportive role in reducing CH4 emissions

while improving overall rumen function and fermentation

efficiency (Newbold and Rode, 2006; Chaucheyras-Durand et al.,

2008; Newbold et al., 1996; Fonty and Chaucheyras-Durand, 2006).

In several in vitro studies, the addition of S. cerevisiae has been

shown to decrease CH4 production (Bayat et al., 2015; Kamal

et al., 2025).

While direct anti-methanogenic effects of yeast are less

pronounced, their supportive role in maintaining rumen health

and competitive microbial dynamics can indirectly contribute to

CH4 mitigation. Additionally, S. cerevisiae can improve feed intake,

nutrient digestibility, rumen ecology, and growth performance

(Khalouei et al., 2020; Phesatcha et al., 2021), and milk

production in dairy cows (Majdoub-Mathlouthi et al., 2009;

Moallem et al., 2009; Maamouri et al., 2014; Bayat et al., 2015;

Rossow et al., 2018; Perdomo et al., 2020; Cattaneo et al., 2023). It

can also reduce oxidative stress and improve dairy cattle

performance under heat-stress conditions (Perdomo et al., 2020;

Benedetti et al., 2024). Despite promising results, the application of

probiotics in ruminants for CH4 mitigation remains limited

compared to chemical inhibitors or feed formulation strategies. In

addition, the effectiveness of probiotics is often inconsistent due to

variations in strain specificity, dosage, delivery method, dietary

context, and host microbiome composition. Long-term, large-scale

in vivo studies under commercial conditions are necessary to

validate their efficacy in CH4 reduction and assess potential

interactions with other mitigation strategies.

Nonetheless, probiotics—particularly when used in synergistic

combinations or in conjunction with complementary additives—

represent a sustainable and biologically integrated strategy for

mitigating methane. In addition to their environmental benefits,

probiotics contribute to enhanced rumen health, improved nutrient

utilization, and increased overall animal productivity.
5 Chemical compounds

Chemical compounds have emerged as effective feed additives to

mitigate enteric CH4 emissions in ruminants. These compounds

typically function by inhibiting methanogenic archaea, redirecting H2

utilization to alternative pathways, or modifying rumen fermentation

profiles. Among the most extensively studied are 3-nitrooxypropanol

(3-NOP), nitrate salts, and organic acids like fumarate and malate.

Each exhibits unique mechanisms of action and variable efficacy

depending on diet composition, animal species, and dosage.

Recommended dosages and toxicity of chemical compounds

reducing enteric methane are represented in Table 7.
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3-NOP is widely recognized for its ability to selectively inhibit

methyl-coenzyme M reductase (MCR), a key enzyme in the

methanogenesis process. This compound shares structural similarity

with methyl-coenzyme M. The practical use of 3-NOP remains under

evaluation, primarily due to safety considerations (Yu et al., 2021; Pitta

et al., 2022; Hristov et al., 2015; Yu et al., 2021b).

In both dairy and beef cattle, 3-NOP has consistently

demonstrated CH4 reductions ranging from 20% to 40% without

adversely affecting feed intake, nutrient digestibility, or animal

productivity (Dijkstra et al., 2018; Romero-Perez et al., 2014;

Kebreab et al., 2023). While productivity effects are generally

modest, they tend to be favorable—several studies have reported

improvements in milk composition, particularly in fat and protein
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content, in dairy cattle, as well as enhanced feed conversion

efficiency in beef cattle (Melgar et al., 2020; Yu et al., 2021).

Commercially available as Bovaer®, 3-NOP has received

regulatory approval in over 65 countries, including the EU, US,

and Brazil (Elanco, 2024). The European Food Safety Authority

(EFSA) recommends a maximum dose of 100 mg/kg DM or 88 mg

of 3-NOP per kilogram of complete feed (Bampidis et al., 2021).

However, several studies report on enhanced CH4 mitigation at

higher doses. For instance, a recent study demonstrated that

supplementing dairy cattle with 3-NOP at an average dose of 123

mg/kg DM resulted in a significant mean reduction in enteric

methane emissions of 39.0 ± 5.4% (Dijkstra et al., 2018).

Similarly, Alemu et al. (2021) observed that supplementing corn-
TABLE 6 Observations from different articles reporting effects of bacterial and yeast probiotics on enteric CH4 and rumen functions.

Probiotic Type/
Strain

Study type
Methane
reduction

Other effects
Recommended/effective

dosage
Reference

Megasphaera elsdenii Meta–analysis ↓CH4

↑propionate, butyrate,
isobutyrate, and valerate.
↓Lactate, total bacteria.
Production performance
and health improvement

(↑ADG, carcass quality, and
gain).

up to 13.30 log 10 CFU
(Susanto et al.,

2023)

Methanotroph-based
probiotics (Methylocystis sp.,

Methylobacterium sp.)

In vitro and In vivo
(Hanwoo steers, n=12,

30 days
supplementation)

↓CH4 40% and
50% after 12 and
24 h (in vitro);

↓CH4

No effect on RF profile and
production in vivo

5.1 × 107 CFUs/ml (in vitro); low and
hight dosage (3 × 107, 3 × 108 CFUs/
ml) were effective in CH4 reduction.

(Tseten et al.,
2025)

Bacillus subtilis
In vitro (24 and 48 h
after inoculation)

Mixed effect on
CH4

↓acetate, propionate;
↑butyrate, valerate.

NR. Potential reduction of CH4 in
mid lactation.

(Sarmikasoglou
et al., 2024)

Bacillus subtilis,
Saccharomyces cerevisiae

In vitro fermentation
in the rumen of Hu

sheep
↓CH4

S. cerevisiae ↑TGP,
microbial protein, ↑ NH3

S. cerevisiae and B. subtilis at doses
of 8 and 20 × 106 CFU g/1

(Kamal et al.,
2025)

Enterococcus faecium +
Saccharomyces cerevisiae,
Bacillus licheniformis +

Bacillus subtilis

In vitro (donors of
rumen fluid → three

Nellore steers)

↓CH4 (dose and
diet dependent

effect)

Improved RF profile, ↓ CH4,

and CO2.

E. faecium (5 × 109 CFU/g) + S.
cerevisiae (5 × 109 CFU/g) and B.
licheniformis + B. subtilis (3.2 × 109

CFU/g).

(Silva et al.,
2024)

Bacillus subtilis (BS) and
Macleaya cordata extract

(MCE)

In vivo (Holstein cows,
n = 60)

↓CH4 yield (g/kg
DMI) and

intensity (g/kg
ECM, FCM).

↑MY, milk fat and protein
yields; ↑DMI, and nutrient

digestibility.

50 g/head/d (BS) or 450 mg/head/d
(MCE).

(Jia et al., 2022)

Active dry Yeast
(Saccharomyces cerevisiae,

strain Sc47), 1 × 1010 CFU/g

In vivo (high-
production dairy cows,

n = 50)
No effect on CH4 ↑FE, MY NR

(Garnsworthy
et al., 2025)

Active dry Yeast
(Saccharomyces cerevisiae,
strain Sc47), 2 × 109 CFU/g

In vivo (early lactating
Holstein cows, n = 60)

No effect on CH4

Improved lactation
performance and nutrient

digestibility.

The optimal dose is 20 g/g/animal/
day.

(Li et al., 2021)

Active dry Yeast
(Saccharomyces cerevisiae,

strain Sc47), 2 × 1010 CFU/g

In vivo (lactating dairy
cows)

No effect on total
CH4. ↑ CH4 per

unit of FI.
No impact on MY, FI NR

(Muñoz et al.,
2016)

Active dry Yeast
(Saccharomyces cerevisiae,

strain Sc47), 1 × 1010 CFU/g

In vivo (transition .,
Holstein dairy cows, n

= 20)
Not measured

Improved RF profile.
↑ DMI, MY; ↓ risk of
metabolic diseases.

NR
(Cattaneo et al.,

2023)
NR, no recommendation; ADG, average daily gain; CFU, colony-forming unit; RF, rumen fermentation; FE, feed efficiency; MY, milk yield; FI, feed intake; DMI, dry matter intake; TGP, total gas
production; ECM, energy corrected milk; FCM, fat corrected milk.
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based finishing diets with 3-NOP at 100, 125, and 150 mg/kg DM

significantly reduced CH4 yield in a commercial feedlot setting, with

the 125 mg/kg DM dose yielding a 76% reduction, highlighting its

efficacy as a methane mitigation strategy in beef production

systems. A recent meta-analysis by Kebreab et al. (2023) further

confirmed a dose-dependent response, with significantly greater

methane reductions achieved at inclusion rates exceeding 100 mg/

kg DM. It is essential to note that while current regulatory

recommendations are specific to dairy cattle, the application of 3-

NOP in other ruminant species, such as beef cattle, requires further

research to validate efficacy, optimal dosage, and safety. Dijkstra
Frontiers in Animal Science 17
et al. (2018) reported that 3-Nitrooxypropanol has more substantial

antimethanogenic effects in dairy cattle than in beef cattle.

The nutrient composition of the diet significantly influences the

efficacy of 3-NOP diet (Almeida et al., 2023). Diets with higher

concentrations of neutral detergent fiber (NDF) and crude fat tend

to reduce their methane-mitigating potential. In contrast, increased

starch content enhances their effectiveness in lowering CH4 yield

and intensity (Kebreab et al., 2023; Zhang et al., 2024a).

A short-term study in lactating dairy cows by Van Gastelen

et al. (2022) confirmed that both 3-NOP dose and diet composition

are critical determinants of efficacy. Cows receiving 60 or 80 mg
TABLE 7 Recommended dosages and toxicity of chemical methane mitigation additives.

Compound Mechanism of action
Recommended

dosage

CH4

reduction
(%)

Toxicity/limitations

3-NOP
Inhibits methyl-coenzyme M reductase, the

final step in methanogenesis
Dairy: 60–150 mg/kg

DM
20–40%

Generally safe at recommended levels; Did not have
an adverse impact on animal production or rumen

fermentation.

Nitrate (e.g.,
calcium or

potassium nitrate)

Acts as an alternative H2 sink; reduces CH4 by
redirecting H2 to ammonia synthesis

1–2% of dietary DM 10–30%
Risk of nitrite toxicity; requires adaptation . and

precise control

Fumarate/Malate
Serves as an alternative electron acceptor;

promotes propionate formation and reduces
H2 availability

50–100 g/day <10%
Efficacy is more pronounced in high-concentrate

diets; cost-effectiveness varies.
TABLE 8 SWOT analysis of nutritional strategies for reducing methane emissions in ruminant livestock.

Strengths Weaknesses

Effective reduction in enteric methane emissions through

feed manipulation and additives.
• 3-NOP: 20-40%
• Tannins: 10-29%
• Saponins: 10-25%
• EOs: 10-30%
• Garlic compounds: 20-74%
• Algae: 30-98%
• Nitrate salts: 10-30%
• Nitrate salts: 10-30%
• Fumarate/malate: < 10%

Enhances feed efficiency by reducing energy loss as

methane.

Can improve animal productivity (milk yield, growth rate)

when optimized.

Natural compounds (e.g., tannins, saponins, essential oils)

align with consumer preferences for clean, sustainable
agriculture.

Variable efficacy depending on animal species, diet composition, and environmental factors.

Lack of long-term in vivo data. Inconsistent results are common between in vitro and in vivo

studies.

Some additives (e.g., high levels of tannins, saponins, nitrates) may reduce feed intake, fiber

digestibility, or nutrient absorption.

Complexity in Practical Implementation. Requires precise dosing, consistent feed formulation, and

farmer training for practical application at scale.

Cost and Adoption Barriers – Premium additives like 3-NOP, algae-based, or encapsulated EOs can

be expensive. Limited access in low- and middle-income countries due to distribution or production
barriers.

The rumen microbial population may adapt over time, reducing the long-term efficacy of certain

additives (e.g., EOs).

Opportunities Threats

Development of novel feed additives with multi-functional

benefits (e.g., antimethanogenic, immunomodulatory).

Integration into precision feeding and low-carbon farming

programs.

Expansion of regulatory approvals (e.g., 3-NOP, seaweed-

based products).

Use of local feed resources (e.g., tannin-rich tropical

forages) to reduce costs and promote sustainability.

Regulatory Hurdles – Regulatory limitations and approval processes for new feed additives.

Risk of adverse effects on rumen microbiota or animal health if not properly dosed.

Potential environmental risks (e.g., bromoform from seaweed additives).

Market Volatility and Supply Chain Issues – The availability and cost of specific feed additives (e.g.,

seaweed) may fluctuate, affecting long-term viability.
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3-NOP/kg DM across three different diets exhibited significantly

greater CH4 mitigation when fed a corn silage-based diet compared

to a grass silage-based one. Importantly, 3-NOP had no adverse

effects on dry matter intake, milk yield, milk composition, or feed

efficiency. Similar findings were reported in another study by Van

Gastelen et al. (2020), which found that supplementation with 60

mg 3-NOP/kg DM did not affect production or intake parameters.

In contrast, results from a longer-term study by Van Gastelen

et al. (2024) suggested that diet composition may have an even

greater effect on the efficacy of 3-NOP than the duration of

supplementation following its initial introduction. Schilde et al.

(2021) reported a synergistic reduction in CH4 emissions when 3-

NOP was combined with a high-concentrate, low-fiber (CFP) diet.

At the same time, the mitigating effect of 3-NOP declined over time

when added to a high-forage ration. These findings underscore the

need for further long-term research to clarify the persistent impact

of 3-NOP on CH4 emissions and to better understand how dietary

variability influences its mitigation potential.

Another class of methane-reducing compounds includes nitrate

salts, such as calcium nitrate or potassium nitrate (Yang et al.,

2016). Nitrate serves as an alternative H2 sink in the rumen,

competing with carbon dioxide for hydrogen and by redirecting

the reductive potential toward ammonia synthesis (Datta et al.,

2017). While nitrate can reduce CH4 emissions by 10–30%, its

application is limited by the potential risk of nitrite accumulation

and toxicity, requiring careful management of dosage and

adaptation periods (Yang et al., 2016). To mitigate the risk of

nitrite toxicity associated with nitrate supplementation, several

strategies have been proposed, including the use of sulfur-based

additives, inoculation with nitrite-reducing bacteria (Latham et al.,

2019; Zhao and Zhao, 2022), and gradual acclimation of animals to

dietary nitrate (Lee and Beauchemin, 2014). These approaches aim

to enhance the safety of nitrate application while preserving its

potential for mitigating methane.

Fumarate and malate, organic acids involved in the tricarboxylic

acid (TCA) cycle, have also been evaluated for their ability to reduce

CH4. These compounds function as alternative electron acceptors,

promoting propionate formation over acetate and butyrate, thereby

reducing hydrogen availability for methanogenesis (Asanuma et al.,

1999). However, the efficacy of fumarate and malate appears to be

dose-dependent and is often more pronounced in high-concentrate

diets, with CH4 reductions typically below 10% (Morgavi

et al., 2010).

Despite their demonstrated efficacy in controlled trials, the

large-scale application of chemical compounds in methane

mitigation must consider factors such as cost, safety, consumer

acceptance, and regulatory approval. Nonetheless, these

compounds—particularly 3-NOP—represent important tools in

the development of low-emission livestock systems.

The advantages and challenges of nutritional strategies for

reducing methane emissions from ruminants are presented

through a SWOT analysis, as shown in Table 8.
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6 Conclusions
Reducing enteric methane emissions in ruminants requires the

strategic application of validated nutritional, botanical, and

management interventions. Among currently available tools, 3-

nitrooxypropanol (3-NOP) offers the most consistent and

repeatable reductions in CH4 emissions under both research and

commercial conditions. Products derived from Asparagopsis spp.

can achieve greater absolute mitigation—often exceeding 50%—but

require careful management of inclusion rates, potential impacts on

dry matter intake and milk composition, and regulatory concerns

related to bromoform and iodine residues.

Botanical additives such as garlic, tannins, and saponins hold

additional promise by modulating the rumen microbiota and

suppressing methanogens and protozoa. However, their efficacy is

highly dependent on the delivery matrix, dose, ruminant species,

and background diet. Notably, higher inclusion levels—particularly

of condensed tannins—can impair fiber digestibility and animal

performance, necessitating diet-specific optimization and

formulation limits to avoid negative trade-offs.

In parallel, management-based strategies such as improving

forage quality, selecting silages with higher non-fiber carbohydrate

(NFC) content, and refining grazing intensity offer additional

avenues for reducing CH4 yield and intensity. These approaches

can enhance overall nutrient use efficiency and complement

additive-based interventions at the farm level.

Collectively, these findings underscore the importance of

integrating proven feed additives with targeted dietary

formulation and forage management to achieve sustained, cost-

effective methane mitigation in ruminant systems.
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Džermeikaitė, K., Krisťolaitytė, J., and Antanaitis, R. (2024). Relationship between
dairy cow health and intensity of greenhouse gas emissions. Anim. (Basel) 14.
doi: 10.3390/ani14060829

Elanco (2024). Elanco announces FDA has completed review of Bovaer®, first-in-class
methane-reducing feed ingredient for U.S. dairy industry. Available online at: https://www.
elanco.com/en-us/insights/elanco-announces-fda-has-completed-review-of-bovaer-first-in-
class-methane-reducing-feed-ingredient-for-u-s-dairy-industry:Elanco (Accessed March 13,
2025).

Elghandour, M., Maggiolino, A., Alvarado-Ramıŕez, E. R., Hernández-Meléndez, J.,
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Zubieta, Á.S., Savian, J. V., De Souza Filho, W., Wallau, M. O., Gómez, A. M.,
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