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Introduction: Nutritional status influences developmental processes, including 
sexual maturation. While the effects of macronutrients on reproductive 
development are well studied, the role of specific amino acid composition in 
ovarian and follicular development in birds remains less explored. Here, we 
investigated the impact of dietary restriction and amino acid supplementation on 
growth and reproductive development of Japanese quail (Coturnix japonica). 

Methods: Birds were assigned to five dietary treatments: control (ad libitum), 20% 
dietary restriction (DR20), and DR20 supplemented with methionine (DR20 
+Met), leucine (DR20+Leu) or both (DR20+Leu+Met) at levels 20% above the 
recommended nutrient content. 

Results and discussion: Dietary restriction reduced body mass, ovary mass, ovary 
index, and total antioxidant capacity without affecting hierarchical follicle counts or 
size. However, supplementation with either amino acid improved these parameters 
from dietary restriction to the control levels. Furthermore, methionine 
supplementation alone or combination of methionine and leucine significantly 
increased follicle numbers, whereas leucine alone had no effect on hierarchical 
follicle numbers. Our findings underscore the importance of amino acids in 
mitigating the adverse effects of dietary restriction on growth, reproduction, and 
oxidative balance in birds at the onset of reproductive maturation. 
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1 Introduction 

Sexual maturation is a critical life stage characterized by 
metabolic, reproductive, and physiological changes. During this 
period, sufficient nutrient intake is vital to meet the increased 
energy demands of growth and reproduction, enabling animals to 
reach adult size and sustain reproductive functions (Ruffino et al., 
2014; Milenkaya et al., 2015). Consequently, the development of 
reproductive structures is largely driven by nutritional availability 
(Whelan et al., 2021; Korver, 2023). 

In birds, reproductive maturation is a tightly regulated process 
marked by rapid somatic growth and ovarian and follicular 
development, both of which require substantial metabolic 
investment (Taghipour-Shahbandi et al., 2024). A key indicator of 
ovarian maturation is the high ovary index (Abdul-Rahman et al., 
2018), which is a measure of ovary development relative to body mass 
in females (Johnson, 2014, 2015). Ovarian maturation involves follicle 
differentiation and the recruitment of small follicles into preovulatory 
hierarchical follicles. These hierarchical follicles, ranging from the 
largest (F1) to the smallest (F5 up to F6), along with nonhierarchical 
follicles such as small yellow follicles (SYF), large white follicles (LWF) 
and small white follicles (SWF) undergo rapid growth by 
incorporating yolk-containing nutrients such as lipoproteins 
(Navara et al., 2023; Song et al., 2023). The metabolic demands of 
ovarian development are substantial, particularly during the rapid 
follicular growth and yolk accumulation of both hierarchical follicles 
up to 5 or 6 (F1 largest to F5 smallest) and nonhierarchical, including 
small yellow follicles (SYF), large white follicles (LWF), and small 
white follicles (SWF), impose significant physiological costs. 

Nutritional deficiencies caused by environmental challenges force 
organisms to prioritize energy allocation for survival over reproduction, 
consequently delaying sexual maturation and reducing reproductive 
output (Huber, 2018; Afrouziyeh et al., 2021). The low energy 
allocation leads to slower growth and limits fat deposits, which is 
crucial for reproductive development (Zuidhof et al., 2014; Van Der 
Klein et al., 2018). In birds, feed restriction lowers reproductive success 
by limiting the clutch size, offspring quality and delaying the 
development of reproductive organs (Hargitai et al., 2022; Lu et al., 
2021, 2023; Reda et al., 2024). 

Reduced feed intake is directly linked to lower dietary antioxidant 
levels, which can decrease antioxidant capacity and increase 
susceptibility to oxidative stress (Hargitai et al., 2022). Oxidative 
stress can negatively impact various cellular functions essential for 
growth and reproductive success (Oke et al., 2024). Oxidative stress 
occurs when the production of reactive oxygen species (ROS) exceeds 
the body’s ability to neutralize them through its antioxidant defense 
system, leading to damage to macromolecules such as DNA, protein, 
and lipids (Juan et al., 2021). This imbalance is particularly harmful 
during periods of rapid growth and sexual maturation (Wiersma 
et al., 2004; Romero-Haro et al., 2016). 

Plasma total antioxidant capacity (TAC) is a biomarker for the 
body’s ability to counteract ROS during growth and reproductive 
maturation (Oke et al., 2024). The antioxidant defense system includes 
both endogenous enzymes (e.g. glutathione peroxidase, superoxide 
dismutase) and dietary antioxidants (e.g. vitamins, tocopherols, 
Frontiers in Animal Science 02 
carotenoids, tocotrienols) (Surai, 2020; Desbruslais and Wealleans, 
2022). A significant proportion of antioxidants is obtained from 
dietary sources, and their availability is influenced by protein intake 
(Alan and McWilliams, 2013; Mavrommatis et al., 2021). Low dietary 
protein disrupts antioxidant activity by altering energy balance, 
leading to oxidative stress (Tarry-Adkins et al., 2010; Maniam and 
Morris, 2012). Although feed deprivation reduces antioxidant defense 
systems, its precise effects on plasma TAC remain unclear. However, 
oxidative stress is known to reduce reproductive performance, 
resulting in economic losses (Bacou et al., 2021). 

Among the macronutrients in animal diets, proteins receive 
particular attention because they provide essential amino acids 
required for biological functions, whereas carbohydrates and 
lipids primarily serve as energy sources (Beski et al., 2015). 
Methionine and leucine, in particular, are critical for cell and 
tissue formation, growth, reproduction and antioxidant 
regulation. We recently showed that supplementing Japanese 
quail eggs with 2% leucine or methionine significantly increased 
post-hatch body weight and had a programmatic effect on somatic 
growth. The effect of leucine was detectable as early as day 5, while 
methionine had an impact from day 7 onward, with both 
continuing to enhance growth until day 21 (Ndunguru et al., 
2024a, b). Similarly, a study on ducks showed that dietary 
methionine supplementation improved egg weight, the body mass 
of one-day-old ducklings and total antioxidant capacity (Ruan et al., 
2018). In pigeons, elevated serum levels of leucine and methionine 
were associated with increased body mass, ovary mass, oviduct mass 
and egg white during the egg-laying cycles (Ren et al., 2021). 

Despite the findings in other avian species, the effects of dietary 
interventions on physiological processes of growth and sexual 
maturation in Japanese quail remain unclear. In particular, the effects 
of dietary restriction and targeted nutrient supplementation on ovarian 
development and antioxidant capacity in sexually maturing Japanese 
quail remain unexplored. This represents a significant gap in our 
knowledge regarding how dietary restriction and specific nutrients

influence growth, ovarian follicular development and how the activity 
of plasma total antioxidant capacity is affected by diet, as well as its 
implication in reproductive maturation. This study aimed to examine 
the effects of feed restriction on ovarian follicle development and 
plasma antioxidant status (TAC) during sexual maturation in quail. 
Additionally, we investigated whether methionine and leucine 
supplementation could counteract the effects of feed restriction. 

We hypothesized that feed restriction would reduce ovarian 
mass, follicle number, and TAC, while methionine and leucine 
supplementation would restore these parameters to levels 
comparable to unrestricted controls. 
2 Materials and methods 

2.1 Experimental animal, housing, 
experimental design and measurements 

In this experiment, Japanese quails were reared in the animal 
house of the Institute of Animal Science, Biotechnology and 
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Environmental Science, University of Debrecen. The basal 
(control) grower feed was prepared according to the National 
Research Council (National Research Council (NRC), 1994) 
recommendation for quails on a corn-wheat-soybean meal basis. 
At the age of 5 weeks, we selected 40 female quails with similar body 
mass and kept them in individual cages for one week to acclimate 
them to the experimental conditions, with each group consisting of 
8 birds (n = 8). The cages were housed within the same controlled 
environment, maintaining a temperature of 23–25°C and a relative 
humidity of 60–65%. During the acclimation period, we allowed 
free access to breeder feed and water. Individual body mass changes 
were recorded weekly, while daily feed intake was measured with an 
accuracy of 0.01 g to determine the average daily feed requirement 
per bird for the duration of the experiment. We began the two-week 
experimental period when the quails reached six weeks of age. We 
randomly allocated individuals into five experimental groups (8 
birds per group, housed individually): ad libitum as a control feed, a 
20% restriction (DR20) (i.e. 80% of the average individual feed 
intake), a 20% feed restriction supplemented with either 
methionine, leucine or both, 20% above the recommended 
nutrient levels (DR20+Met, DR20+Leu and DR20+Leu+Met, 
respectively; Table 1). The 20% dietary restriction rate was 
determined  from  our  recent report that showed a moderate

reduction in body mass and reproductive parameters such as egg 
laying probability, without compromising the egg size, compared to 
30% and 40% dietary restrictions, which severely reduced the body 
mass, egg size and egg number (Reda et al., 2024). 
2.2 Measurements 

At the end of the experimental period (8 weeks old), we 
measured live body mass using a digital scale with 0.01 g 
accuracy (Avantor, Radnor, PA, USA). Blood samples were 
collected into the capillary tubes by punching the wing vein and 
transferred to the Eppendorf tubes. Then, blood samples were 
immediately centrifuged for 10 minutes at 10000g, the plasma 
was separated and stored at –80°C for further laboratory analysis. 
After blood collection, the birds were sacrificed by cervical 
dislocation and collecting ovaries, then measured ovary mass 
using a digital balance (0.01 g accuracy) and first (F1), second 
(F2) and third (F3) hierarchical follicle mass (0.01 g accuracy), 
follicle diameter to the nearest mm using a digital vernier calliper 
(0.1 mm accuracy) and follicle number. Each treatment group 
consisted of 8 birds (n = 8); however, the number of each 
hierarchical follicle (F1, F2 and F3) analyzed were not necessarily 
equal to the number of birds in each group, as birds can have 
different numbers of hierarchical follicles at a given time (Ma et al., 
2024) (Figure 1). In cases where multiple follicles were at similar 
development stages, they were all considered in the analysis rather 
than limiting the count to one follicle per bird. To account for the 
variability of the follicle number, we identified a type of follicle 
based on the follicle mass and diameter as described (Arora and 
Samples, 2011; Sreesujatha et al., 2016). To determine the 
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reproductive investment, we computed the female ovary index of 
each bird in the experimental group (Kimario et al., 2020; Jiang 
et al., 2022). The ovary index is a proportional ovary mass expressed 
as a percentage of total body mass calculated using the formula 
described previously (Jiang et al., 2022). 
2.3 Total antioxidant capacity analyses 

The total antioxidant capacity (TAC) of quail plasma samples 
(n = 7, for each group) was analyzed using the Antioxidant Assay 
Kit (Sigma-Aldrich, Merck, KGaA, Darmstadt, Germany) following 
the manufacturer’s instructions. The absorbance of standards and 
samples was measured in duplicate at 570 nm using a microplate 
reader (Synergy HT Multi-Mode Microplate Reader, BioTek 
Instruments Inc., Winooski, USA). The concentrations of the 
TAC were calculated as Trolox equivalent antioxidant capacity 
(TEAC) and expressed in millimole Trolox equivalent per volume 
(mmol Trolox equivalents/L). 
2.4 Statistical analyses 

All statistical analyses were performed using R in the RStudio 
version 4.3.3 ‘Angel Food Cake’ (http://www.r-project.org/). Graphs 
(images) were visualized using the ggplot function provided by the 
‘ggplot2’ package version 3.4.3 (Vaida and Blanchard, 2005). We 
used corrected Akaike’s information criterion (AICc) for small 
sample sizes for model selection (Guthery et al., 2003). We follow 
a forward model selection procedure beginning with a null model. 
Other variables were then added at a time as fixed effect and 
compared using AICc to identify the appropriate model. 
Accordingly, we compared the linear additive model, and linear 
interaction model by observing and selecting the lower AIC when 
analyzing ovary mass, ovary index and follicles. We analyzed the 
effects of amino acid supplementation on top of dietary restriction 
on final body mass, growth rate, number of hierarchical follicles and 
TAC with the function lm using a linear model (Searle, 1997). To 
analyze the effects of treatment on final body mass, we employed 
linear model while controlling for the initial body mass. Similarly, 
we used linear additive model analyze the effects of treatment on 
ovary mass, ovary index, follicle mass and follicle diameter while 
controlling for the initial body mass. To analyze the effects of 
dietary restriction and amino acid supplementation on ovary mass, 
ovary index, hierarchical follicle mass and diameter as response 
variables, we used a linear additive model while controlling for the 
final body mass (Searle et al., 1980). A one-way Analysis of Variance 
(ANOVA) was used to assess the statistical significance among the 
treatment groups on final body mass, growth rate, number of 
ovaries and TAC. A two-way ANOVA was used to determine the 
statistical difference among the treatment groups on ovary mass, 
ovary index, hierarchical follicle mass, follicle diameter, and follicle 
number. The Tukey multiple comparison test was used to compare 
the means between the treatment groups at p < 0.05. 
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TABLE 1 Composition and nutrient content of the experimental feeds. 

Ingredients % Treatments 

Control DR20 DR20+Met DR20+Leu DR20+Met+Leu 

Corn 25.00 25.00 25.00 25.00 25.00 

Wheat 10.10 10.10 10.00 10.00 10.00 

Wheat bran 10.00 10.00 9.96 9.16 9.02 

Pea 13.02 13.02 12.90 12.39 12.30 

Soybean meal 24.86 24.86 24.96 25.48 25.57 

Sunflower oil 9.07 9.07 9.12 9.27 9.30 

Limestone 5.83 5.83 5.83 5.82 5.82 

MCP 0.96 0.96 0.96 0.97 0.97 

L-Lys 0 0 0 0 0 

DL-Met 0.19 0.19 0.30 0.19 0.30 

L-Thr 0.07 0.07 0.07 0.07 0.07 

L-Leu 0.01 0.01 0.01 0.39 0.39 

L-Ile 0.005 0.005 0.005 0.19 0.19 

L-Val 0.005 0.005 0.005 0.19 0.19 

Salt 0.38 0.38 0.38 0.38 0.38 

Premixturea 0.50 0.50 0.50 0.50 0.50 

Calculated nutrient content 

ME, MJ/kg 12.13 12.13 12.13 12.13 12.13 

Crude protein, % 18.00 18.00 18.00 18.00 18.00 

Lys, % 1.01 1.01 1.01 1.02 1.02 

Met % 0.45 0.45 0.56 0.45 0.56 

Thr, % 0.74 0.74 0.74 0.74 0.74 

Trp, % 0.22 0.22 0.22 0.22 0.22 

Leu, % 1.42 1.42 1.42 1.78 1.78 

Ile, % 0.77 0.77 0.77 0.95 0.95 

Val, % 0.87 0.87 0.87 1.05 1.05 

Leu/Ile, ratio 1.84 1.84 1.84 1.87 1.87 

Leu/Val ratio 1.63 1.63 1.63 1.69 1.69 

Arg, % 1.26 1.26 1.26 1.26 1.26 

Ca, % 2.50 2.50 2.50 2.50 2.50 

P, % 0.61 0.61 0.61 0.60 0.60 

non phytate P, % 0.35 0.35 0.35 0.35 0.35 

Na, % 0.15 0.15 0.15 0.15 0.15 
F
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Control, Ad libitum feeding; DR20, 20% dietary restriction; DR20+Met, 20% dietary restriction supplementation with 20% methionine; DR20+Leu, 20% dietary feed restriction supplementation 
with 20% leucine; DR20+Met+Leu, 20% dietary restriction supplementation with 20% methionine and 20 leucine. Leucine was supplemented together with isoleucine and valine as BCAA in a 
ratio of 2:1:1, respectively. aThe premix provided the following per kilogram of complete diet: 5000 NE vitamin A, 1000 NE vitamin D3, 24.5 mg/kg vitamin E, 1 mg vitamin K3, 0.75 mg vitamin 
B1, 2.5 mg vitamin B2, 6 mg Ca-d-Pantothetane, 2 mg vitamin B6, 10 ug vitamin B12, 55 μg biotin, 12.5 mg niacin, 0.3 mg folic acid, 1500 mg choline chloride, 66 mg Zn, 9.6 mg Cu, 48.1 mg Fe, 66 
mg Mn, 0.9 mg I, 0.21 mg Se, 60 μg Co. 
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3 Results 

3.1 Body mass and growth rate 

The initial body mass was similar among the treatment groups 
(F4,33 = 0.287, p = 0.884, Table 2). Dietary restriction treatment 
significantly reduced the final body mass (t = 3.989, 95% CI: 11.16, 
69.42, p < 0.003, Table 2). However, supplementation of leucine, 
methionine and their interaction on top of restricted feeding 
improved the final body mass similar to the control group (DR20 
+Leu: t = 2.088, 95% CI: −8.33, 51.97, p = 0.249; DR20+Met: t = 
2.171, 95% CI: −7.204, 51.05, p = 0.216; DR20+Leu+Met: t = −1.980, 
95% CI: −9.46, 50.85, p = 0.298, Table 2). The multiple comparisons 
showed  no  significant  differences  between  amino  acid  
supplemented and the restricted groups in final body mass (p > 
0.05 for all, Table 2). Growth rate was affected by dietary treatments 
(Table 2). The dietary restriction reduced growth rate compared to 
the control group (t = 6.161, 95% CI: 1.46, 4.03, p < 0.001; Table 2). 
Supplementing methionine or leucine individually or in 
combination with a restricted diet slightly reduced restriction 
effects on growth rate, but remained below the control group 
(DR20+Met: t = 4.394, 95% CI: 0.67, 3.25, p = 0.001; DR20+Leu: 
t = 4.501, 95% CI: 0.76, 3.41, p < 0.001; DR20+Leu+Met: t = 3.143, 
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95% CI: 0.12, 2.781, p = 0.027, Table 2). All other pairwise 
comparisons were not significant (p > 0.05 for all, Table 2). 
3.2 Ovary mass and index 

Dietary restriction significantly reduced ovary mass compared 
to the controls (t = 2.624, 95% CI: 0.25, 5.32, p = 0.013; Figure 2A). 
The supplementation of leucine (either alone or in combination 
with methionine) significantly increased ovary mass relative to the 
restricted group (DR20+Leu: t = −2.913, 95% CI: −5.80, −0.02, p = 
0.047, DR20+Leu+Met: t = −2.939, 95% CI: −5.83, −0.05, p = 0.045) 
and improved ovary mass from dietary restricted similar to control 
levels (DR20+Leu: t = −0.378, 95% CI: −3.266, 2.51, p = 0.995, DR20 
+Leu+Met: t = −0.404, 95% CI: −3.29, 2.48, p = 0.994, Figure 2A). 
Dietary restriction reduced the ovary index compared to the control 
group (DR20: t = −1.761, 95% CI: 0.45, 1.84, p = 0.04; Figure 2B). 
The supplementation of leucine either alone or combined with 
methionine, tended to increase ovary index compared to the 
restricted group (DR20+Leu: t = −2.652, 95% CI: −2.27, 0.10, p = 
0.085, DR20+Met: t = −1.224, 95% CI: −1.63, 0.66, p = 0.738, DR20 
+Leu+Met: t = −2.614, 95% CI: −2.26, 0.11, p = 0.092), bringing it to 
a level statistically similar to the control group (DR20+Leu: t = 
TABLE 2 Comparative effects of amino acid supplementation on initial body mass, final body mass, change in body mass and growth rate in Japanese 
quails reared on restricted feeding. 

Parameters 
Treatments 

P-value 
Control DR20 DR20+Leu DR20+Met DR20+Leu+Met 

Initial body mass (g) 233.98 ± 7.78 232.14 ± 10.04 241.24 ± 5.99 239.48 ± 5.25 233.59 ± 5.61 0.884 

Final body mass (g) 265.94 ± 9.34a 225.65 ± 7.15b 244.11 ± 6.97ab 244.01 ± 5.47ab 245.24 ± 5.95ab 0.009 

Growth rate (g/day) 2.28 ± 0.38a −0.46 ± 0.38c 0.21 ± 0.37bc 0.32 ± 0.15bc 0.83 ± 0.22bc <0.001 
Values are presented in mean ± standard error of the mean (SE) from sample size n = 8 for each treatment group. Means lacking a common superscript in a row differ significantly (p < 0.05). 
Control:- Ad libitum feeding; DR20:- 20% dietary restriction; DR20+Met:- 20% dietary restriction supplementation with 20% methionine; DR20+Leu: 20% dietary restriction supplementation 
with 20% leucine; DR20+Met+Leu: 20% dietary restriction supplementation with 20% methionine and 20% leucine. 
FIGURE 1 

Representative image of the follicles of Japanese quails at 8 weeks old; (A) Showing the hierarchy of follicles, F1-largest follicle to F5-smallest follicle 
(B) Without developed hierarchical follicles. LWF-large white follicles, SWF-small white follicles, SYF-small yellow follicles of Japanese quails at 8 weeks. 
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−0.951, 95% CI: −1.58, 0.80, p = 0.875; DR20+Met: t = −0.537, 95% 
CI: −0.93, 1.36, p = 0.383; DR20+Leu+Met: t = −0.913, 95% CI: 
−1.161, 81, p = 0.889, Figure 2B).Hierarchical follicle mass, 
diameter, and follicle counts. 

Dietary restriction had no significant effect on the mass or 
diameter of F2 and F3 hierarchical follicles compared to the control 
group (p > 0.05 for all treatments; Table 3), but decreased F1 
diameter (p = 0.035). Supplementation with leucine, methionine, or 
their combination did not significantly alter follicle mass relative to 
the restricted group (p > 0.05 for all treatments; Table 3) and 
diameter of F2 F3 follicles compared to the restricted group (p > 
0.05 for all). However, a combination of methionine and leucine 
significantly increased the diameter of F1 follicles compared to 
the restricted group (p = 0.033). The average number of 
hierarchical follicles (F1, F2, and F3) responded significantly to 
dietary treatment (Figure 3). Dietary restriction and leucine 
supplementation alone did not significantly differ from the 
control group (DR20: t = −0.913, p = 0.885; DR20+Leu: t = 0.00, 
p = 1.000). In contrast, methionine supplementation, either alone or 
combined with leucine, increased follicle numbers compared to the 
restricted group (DR20+Met: t = −8.216, p < 0.001; DR20+Leu 
+Met: t = −6.390, p < 0.001, Figure 3). Furthermore, both the 
methionine-supplemented and combined supplementation groups 
had significantly more follicles than the leucine-only group (DR20 
+Met: t = −7.303, p < 0.001, DR20+Met+Leu: t = −9.129, p < 0.001, 
Figure 3). However, the two methionine-supplemented groups had 
a similar number of follicles (t = 1.826, p = 0.411, Figure 3). 
3.3 Plasma total antioxidant capacity 

Dietary treatments affected total antioxidant capacity levels 
similarly to body mass (Figure 4). Dietary restriction significantly 
reduced antioxidant capacity compared to the control group (t = 
2.838, 95% CI: 0.02, 1.46, p = 0.009; Figure 4). However, 
supplementation with methionine, leucine individually or their 
Frontiers in Animal Science 06
combination improved the total antioxidant capacity levels 
similar to the control group (DR20+Leu: t = −1.297, 95% CI: 
−0.46, 1.17, p = 0.573; DR20+Met: t = −1.741, 95% CI: −0.47, 
1.02, p = 0.323; DR20+Leu+Met: = −1.094, 95% CI: −0.34, 1.20, p = 
0.696;  Figure 4). In contrast, none of the amino acid 
supplementation within a restricted diet showed a significant 
difference from the restricted group (p > 0.05 for all, Figure 4). 
3.4 Association between somatic and 
reproductive variables and plasma total 
antioxidant capacity 

Regardless of the treatment, all parameters were significantly 
correlated with plasma total antioxidant capacity (TAC) (final body 
mass: t = 2.859, 95% CI: 3.09, 20.77, R2 = 0.214, p < 0.01; growth 
rate: t = 2.817, 95% CI: 43.49, 356.65, R2 = 0.209; p = 0.0148; ovary 
mass: t = 2.285, 95% CI: 0.01, 0.13, R2 = 0.148, p = 0.029; Figure 5), 
except ovary index which showed marginal correlation (t = 1.997, 
95% CI: −0.004, 0.345, R2 = 0.148, p = 0.055). There was no 
significant correlation between dietary treatment and follicle 
measurements, mass, and diameter (p > 0.05 for all). 
4 Discussion 

Growth and sexual maturation are essential stages in animals as 
they both determine the timing of reproduction, which has a pivotal 
contribution to fitness. Several factors, such as environmental 
conditions (e.g. light intensity, temperature), age, genetics, 
nutrition, and body condition, influence the growth and onset of 
sexual maturation in avian species (Reddish et al., 2003; Widowski 
et al., 2022). Nutritional status, in particular, plays a significant role 
in enhancing growth and development, with long-lasting 
consequences on reproduction (Renema et al., 2007; Yin et al., 
2023). Nutritional challenges may induce developmental stress, 
FIGURE 2 

Effects of dietary treatments on (A) Ovary mass (B) Ovary index of Japanese quails at the age of 8 weeks. Control: ad libitum feeding; DR20: 20% dietary 
feed restriction; DR20+Met: 20% dietary restriction supplemented with 20% methionine; DR20+Leu: 20% dietary restriction supplemented with 20% 
leucine; and DR20+Met+Leu: 20% dietary feed restriction supplemented with both 20% methionine and 20% leucine. Bars represent the mean ± 
standard error (SE) from 8 birds in each treatment group. Different letters above bars indicate statistically significant differences among groups (p < 0.05). 
Dietary restriction reduced ovary mass and index, but supplementation with leucine and methionine improved both to control levels. 
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impacting reproductive investment and the development of 
reproductive organs at the onset of sexual maturation (Lu et al., 
2021; Hargitai et al., 2022). However, the importance of specific 
nutrients, such as amino acids, in shaping avian growth patterns 
and influencing reproductive maturation has recently received 
increased attention (Alagawany et al., 2021; Ndunguru et al., 
2024a, b). 

In this study, we used dietary restrictions to represent a 
nutritional challenge and supplemented amino acids during the 
Frontiers in Animal Science 07 
restriction, expecting amino acid supplementation could mitigate 
the effects of dietary restriction. We found that 20% dietary 
restriction reduced body mass and growth rate compared to the 
ad libitum individuals (Table 2). These results indicate that nutrient 
status can positively influence the body mass increase and the 
development of reproductive structures. We have recently shown in 
8-week-old Japanese quails that 20% feed restriction led to 
moderate weight loss accompanied by reduced egg mass, egg 
number and laying probability (Reda et al., 2024). Consistently, 
FIGURE 3 

The effects of dietary treatments on average number of hierarchical follicles in each treatment of Japanese quails at the age of 8 weeks. Control: Ad 
libitum feeding; DR20: 20% dietary restriction; DR20+Met: 20% dietary restriction supplemented with 20% methionine, DR20+Leu:20% dietary 
restriction supplemented with 20% leucine and DR20+Met+Leu: 20% dietary restriction supplemented with 20% methionine and 20% leucine. Bars 
represent the mean ± standard error (SE) from 8 birds in each treatment group. Different letters above bars indicate statistically significant 
differences among groups (p < 0.05). Methionine supplementation increased follicle numbers compared to the control and restricted group. The 
highest count was in the combined supplementation of methionine and leucine. 
TABLE 3 Comparative effects of amino acid supplementation on follicle mass and follicle diameter of Japanese quails at 8-week age during 
dietary restriction. 

Variables Follicles 
Treatments 

Control DR20 DR20+Met DR20+Leu DR20+Leu+Met P-value 

Fo
lli
cl
e 
m
as
s 
ðgÞ

F1 
2.690 ± 0.10 
(n=4) 

1.996 ± 0.07 
(n=8) 

2.157 ± 0.25 
(n=5) 

2.462 ± 0.18 
(n=5) 

2.548 ± 0.26 
(n=7) 

0.115 

F2 
1.610 ± 0.09 
(n=5) 

1.122 ± 0.11 
(n=5) 

1.033 ± 0.24 
(n=7) 

1.464 ± 0.19 
(n=8) 

1.590 ± 0.24 
(n=8) 

0.064 

F3 
0.575 ± 0.9 
(n=5) 

0.356 ± 0.07 
(n=5) 

0.351 ± 0.11 
(n=8) 

0.640 ± 0.04 
(n=4) 

0.589 ± 0.18 
(n=8) 

0.333 

Fo
lli
cl
e 
di
am

et
er
 ðm

m
Þ 

F1 
18.240 ± 0.34a 

(n=4) 
14.874 ± 0.23b 

(n=8) 
16.181 ± 0.92ab 

(n=5) 
17.420 ± 0.67ab 

(n=5) 
17.696 ± 0.74a 

(n=7) 
0.011 

F2 
14.895 ± 0.42 
(n=5) 

12.996 ± 0.28 
(n=5) 

12.190 ± 1.07 
(n=7) 

14.170 ± 0.71 
(n=8) 

14.622 ± 0.83 
(n=8) 

0.071 

F3 
9.920 ± 0.55 
(n=5) 

8.858 ± 0.13 
(n=5) 

8.644 ± 0.99 
(n=8) 

10.853 ± 0.30 
(n=4) 

10.660 ± 0.72 
(n=8) 

0.169 
fr
Values are presented in mean ± standard error of the mean (SE). Means lacking a common superscript in a row differ significantly (p < 0.05). Control, Ad libitum feeding; DR20, 20% dietary 
restriction; DR20+Met, 20% dietary restriction supplementation with 20% methionine; DR20+Leu, 20% dietary restriction supplementation with 20% leucine; DR20+Met+Leu, 20% dietary 
restriction supplementation with 20% methionine and 20% leucine. 
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FIGURE 5 

The association between total antioxidant capacity (TAC) with (A) final body mass, (B) growth rate, (C) ovary mass and (D) ovary index. Colors 
indicate the treatments. Abbreviations: millimole Trolox equivalent per volume (mmol TE/L). 
FIGURE 4 

Effects of dietary treatments on total antioxidant capacity (TAC) in Japanese quails at the age of 8 weeks. Control: Ad libitum feeding; DR20: 20% 
dietary restriction; DR20+Met: 20% dietary restriction supplemented with 20% methionine, DR20+Leu:20% dietary restriction supplemented with 
20% leucine and DR20+Met+Leu: 20% dietary restriction supplemented with 20% methionine and 20% leucine. Bars represent the mean ± standard 
error of the mean (SE) from the sample size (n = 7 for each group). Different letters above bars indicate statistically significant differences among 
groups. (p < 0.05). Supplementation with leucine and methionine alone was effective in improving the TAC levels of the dietary-restricted group to 
levels comparable to those of the control. 
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the lowest body weight gain was observed from two weeks 12 hours 
daily feed-restricted chicken compared to that of the ad libitum 
control (Gobane et al., 2021), similar to other studies applying 20% 
(Van Der Klein et al., 2018; Lu et al., 2021) or 10% feed restriction 
(Urdaneta-Rincon and Leeson, 2002). 

However, contrasting results have also been reported. For 
example, a 20% dietary restriction in broiler chickens did not affect 
body mass (Butzen et al., 2013), while an alternating feed restriction 
combined with ad libitum refeeding even increased body mass 
(Tesfaye et al., 2009). Similarly, another study showed that 30% 
feed restriction from 14 to 21 days of age in chickens increased body 
mass gain by 7% to 15% up to slaughter age indicating the 
compensatory effects, but the final body mass decreased in males 
by 10% and in females by 16% compared to ad libitum-fed chickens 
(Tůmová et al., 2022). At an early age (1 to 4 or 8 days), gradient feed 
restriction (10% and 20%) in chicken showed reduced body mass 
during the short restriction period compared to ad libitum with 
pronounced growth retardation observed in 20% feed restriction 
(Lippens et al., 2000). Lippens et al. reported that, on reaching 42 
days, normal feeding resulted in a similar body mass to that of those 
subjected to 10% feed restriction, compared to ad libitum. However, a 
20% feed restriction resulted in birds having significantly lower body 
mass, with males being heavier than females at 42 days old (Lippens 
et al., 2000). Another study showed that one week 12 hours daily of 
feed restriction compensated and reached the same body mass as the 
ad libitum birds at weeks 5 and 6 of age (Gobane et al., 2021). These 
contradictory results show that to differences in bird species/strains, 
age or restriction timing, sex-specific influence on feed restriction 
(Lippens et al., 2000), and severity of restriction may influence the 
restriction effects. Supplementing dietary-restricted individuals with 
methionine and leucine individually or in combination reduced the 
effects of dietary restriction, slightly increased body mass, and 
improved growth rate to similar to the control group (Table 2). 
Essential amino acids are well-known for their role in protein 
synthesis and are vital for supporting growth (Zhang et al., 2020). 
Previously, we showed in Japanese quails that embryonic 
supplementation of methionine or leucine increased postnatal 
growth and development (Ndunguru et al., 2024a, b). The finding 
suggests that leucine and methionine supplementation counteracted 
the growth limitations associated with dietary restrictions by 
enhancing protein synthesis. The increasing final body mass and 
growth rate collaborate with the previous report demonstrating the 
anabolic effects of the specific essential amino acids in animals 
(Berrazaga et al., 2019). Furthermore, methionine and leucine are 
critical in supporting the metabolism that regulates protein synthesis 
and energy balance, which explains the growth-promoting effects 
(Babazadeh and Ahmadi Simab, 2022; Rehman et al., 2023). 
Supplementing these amino acids could be a strategy to improve 
growth performance in nutritionally challenged individuals. 

Dietary restriction during sexual maturation decreased ovary 
mass and ovary index. Nutritional status regulates the critical, 
highly demanding sexual maturation stage by influencing the 
development of reproductive organs and improving their function 
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(Rizzoto et al., 2019; Yin et al., 2023). The growth and development of 
sexual organs occur rapidly closer to the sexual maturation stage (Cui 
et al., 2020; Shi et al., 2020). Adequate nutrient and energy intake is 
essential for gonadal development, which is important for 
synthesizing the reproductive hormones prior to sexual maturation 
(Yang et al., 2024). Restricted diets are known to reduce ovary 
development and reproductive performance in birds (Lu et al., 
2023; Pan et al., 2014; Renema et al., 1995; Yin et al., 2023, but see 
Bruggeman et al., 1999; McGovern et al., 1997). Our study revealed 
that supplementing leucine and methionine or their combination 
within a restricted diet improved ovary growth by increasing ovary 
mass compared to the dietary-restricted group. Similarly, the ovary 
index increased to the level of the control group, but did not 
significantly differ from the dietary restricted group. Previous 
studies have shown that amino acid supplementation, such as 
methionine and valine, improved oviduct and follicle development 
in quails and chickens (Bunchasak and Silapasorn, 2005; Hanafy and 
Attia, 2018), a key indicator of reproductive organ development and 
maturation (Jiang et al., 2022; Li et al., 2022). The observed increase in 
ovary mass and index following amino acid supplementation suggests 
a compensatory reproductive investment that mitigates the effects of 
dietary restriction. The reproductive performance of laying Japanese 
quail and chicken is greatly influenced by the availability of essential 
nutrients in their diet and the appropriate development of their 
ovaries (Ma et al., 2020; Santana et al., 2025). Providing a balanced 
and nutritious diet during sexual is vital for maximizing their 
reproductive efficiency. A critical component of poultry nutrition is 
formulating diets that achieve optimal amino acid ratios (Adhikari 
et al., 2025). Methionine, the first-limiting amino acid in birds, serves 
as a sulfur donor and plays essential roles in protein synthesis, cellular 
differentiation and proliferation (Zhang et al., 2020). In laying 
Japanese quail, methionine supplementation did not increase 
follicle number but increased follicle diameter (Santana et al., 2025). 

Dietary restriction did not affect the number or size (weight and 
diameter) of the hierarchical follicles, except F1 follicle diameter, 
which decreased with dietary restriction. In poultry, selection for 
rapid growth has been linked to increased follicle numbers 
(Mfoundou et al., 2021), while nutritional status plays a key role 
in follicular development (Eitan and Soller, 2009). Overfeeding 
during sexual maturation results in excessive follicular growth 
and ovulatory disruption, whereas moderate feed restriction may 
help regulate follicle development (Renema et al., 1995; Diaz and 
Anthony, 2013). However, findings are inconsistent, with some 
studies reporting fewer yellow follicles under dietary restriction (Lu 
et al., 2023; Gholami-Soltanmoradi et al., 2024). 

In our study, methionine supplementation, alone or with 
leucine, increased the number of follicles without altering the 
follicle size, whereas leucine alone did not. While the 
supplementing combination of methionine and leucine increased 
F1 follicle diameter. A critical component of poultry nutrition is 
formulating diets that achieve optimal amino acid ratios (Adhikari 
et al., 2025). Methionine, the first-limiting amino acid in 
birds, serves as a sulfur donor and plays essential roles in 
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protein synthesis, and cellular differentiation and proliferation 
(Zhang et al., 2020). In laying Japanese quail, methionine 
supplementation did not increase follicle number but increased 
follicle diameter (Santana et al., 2025). These results suggest that 
different amino acids may differentially influence ovarian follicular 
differentiation and growth, possibly through distinct metabolic 
pathways. For instance, methionine plays a role in primordial 
germ cell commitment via the methionine cycle and epigenetic 
modifications (Zhang et al., 2020), while leucine supports cell 
proliferation and metabolism through the mTOR pathway 
(Correia et al., 2022). These results suggest and highlight 
potential nutrient-specific effects on hierarchical follicular 
development, though further research is needed to clarify the 
underlying mechanisms. 

Feed restriction reduced the plasma total antioxidant capacity, 
but supplementation with leucine, methionine or their combination 
ameliorated the negative effects of dietary restriction, leading to values 
statistically comparable to control levels. Both amino acids have a 
more substantial oxidative capacity with a significant function in 
providing oxidative energy through the regulation of protein 
metabolism (Zhang et al., 2024). Oxidative stress negatively impacts 
ovarian and follicular development in poultry (Wang et al., 2021), 
and increased antioxidant activity may help mitigate oxidative stress 
during growth and sexual maturation (Oke et al., 2024). Regardless of 
the dietary treatment, the plasma total antioxidant capacity levels 
correlated with most measured parameters except follicles, suggesting 
that birds maintained the ability to neutralize free radicals and other 
reactive species molecules despite an energetic deficit. Nevertheless, 
methionine and leucine together provided the greatest antioxidant 
boost, highlighting their potential to mitigate nutritional stress. 
Methionine serves as a precursor to cysteine, which is a rate
limiting substrate for the synthesis of glutathione (GSH) (Lugata 
et al., 2022). Glutathione is one of the most potent intracellular 
antioxidants that play a central role in maintaining a redox balance 
and protecting the cell from oxidative damage (Hassanpour et al., 
2024). The methionine intake has shown an increased hepatic and 
systemic GSH level in broiler chicken, enhancing the total antioxidant 
capacity (Hassanpour et al., 2024), while methionine restriction 
reduced the GSH levels (Tamanna et al., 2019). In addition, leucine 
modulates the mTOR pathway, which is involved in cellular 
antioxidant responses (Rehman et al., 2023). Nutritional activation 
of mTOR promotes mitochondrial biogenesis and elevates the 
antioxidant defenses such as superoxide dismutase (SOD), 
contributing to the improve total antioxidant activity (Tsang et al., 
2018). The mechanisms may underline the correlation observed in 
the present and warrant further investigation. 
5 Conclusion 

The study highlights the critical role of dietary composition, 
particularly amino acids, in mitigating the effects of dietary restriction 
on growth and reproductive maturation. Supplementing amino acids 
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along with a restricted diet mitigated the adverse effects of dietary 
restriction, improving growth and ovarian development during 
sexual maturation. While dietary restriction alone did not affect 
hierarchical follicle numbers, methionine supplementation 
increased follicle counts, suggesting its specific role in follicular 
differentiation. These findings emphasize the importance of 
optimizing dietary composition to manage developmental stress 
and enhance reproductive potential in poultry. Future research 
could explore the broader implications of amino acid balance 
across different avian species and investigate underlying metabolic 
and endocrine mechanisms shaping reproductive maturation under 
nutritional constraints. 
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