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Mapping genomic regions
affecting resilience traits in a
large dairy farm of Holstein cows
Chiara Punturiero †, Andrea Delledonne †, Carlotta Ferrari ,
Alessandro Bagnato* and Maria Giuseppina Strillacci

Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
Introduction: This study evaluated the genetic architecture of resilience

indicators in Holstein cows managed in a herd equipped with automatic

milking systems (AMS) from 2017 to 2024.

Methods: Four resilience indicators were calculated based on deviations in daily

milk yield: log-transformed variance (LnVar), autocorrelation of residuals (rauto),

weighted frequency of perturbations (wfPert), and accumulated milk losses due

to perturbations (dPert). Polynomial quantile regression models were applied to

594,481 daily records from 966 cows, with data filtered for completeness and

lactation duration. Genome-wide association studies (GWAS) were performed

using selective genotyping coupled with DNA pooling statistics.

Results:Descriptive statistics revealed that LnVar increased with parity, indicating

greater production variability in older cows, while rauto remained stable,

suggesting a consistent ability of cows to recover from production

perturbations. Both dPert and wfPert increased across lactations, reflecting

greater cumulative losses and perturbation frequencies. Genes related to

immune response, energy metabolism, and tissue integrity were identified.

Discussion: These findings suggest a multifactorial complex genetic nature of

resilience and disclose the involvement of several genes that can explain both the

physiology related to production and response to stressors.
KEYWORDS

resilience, Holstein, milk yield, GWAS, QTL
1 Introduction

Over the past few years, the introduction of advanced monitoring systems in dairy

farms such as automatic milking systems (AMS), have significantly enhanced data

collection capabilities. The adoption of AMS provides continuous and high-resolution

data. This system enables an unprecedented ability to monitor fluctuations in milk yield

and to detect health-related disturbances. Such systems offer valuable insight into resilience,
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particularly by facilitating the longitudinal monitoring required to

capture production responses to environmental stressors and

management interventions (Niloofar et al., 2021).

Resilience in dairy cows is a critical aspect, especially in the face

of environmental disruptions such as calving, infection by various

pathogens, extreme weather (e.g. heat waves), or fluctuations in feed

availability and management practice (Hansen et al., 2012; Aradotlu

Parameshwarappa et al., 2019). Maintaining high milk yield is

essential for the profitability of dairy farms, but health issues can

lead to substantial losses in milk production and its quality (Liang

et al., 2017). These losses often appear as disruptions in the lactation

curve (Hertl et al., 2014; Ben Abdelkrim et al., 2021), due to reduced

feed intake, immune system activation (Daniel et al., 2016) and

intramammary infections affecting the udder’s functionality

(Heikkilä et al., 2018). Resilient cows are minimally affected by

these disturbances and are able to recover quickly, resulting in

reduced labor requirements, lower treatment costs, and decreased

milk yield losses compared to their less resilient counterparts

(Colditz and Hine, 2016; Berghof et al., 2019b). In order to

quantify general resilience, two primary indicators have been

recently proposed: the natural log-transformed variance of

deviations from an expected lactation curve (LnVar) and the lag-

1 autocorrelation of yield deviations (rauto). These indicators are

based on the hypothesis that cows with stable production (low

LnVar) and quick recovery from disturbances (low rauto) exhibit

greater resilience (Scheffer et al., 2018; Poppe et al., 2020). Lower

LnVar values indicate more stable production and higher resilience

to disturbances (Scheffer et al., 2018). Differently, the parameter

rauto assesses recovery times from disturbances by measuring the

autocorrelation of yield deviations over time. A lower rauto value

signifies a faster return to baseline performance following

disturbances, indicating quicker recovery (Poppe et al., 2020;

Wang et al., 2022a). In addition to these established indicators,

more recent published research has introduced novel metrics for

resilience assessment, daily perturbations (dPert) and weighted

frequency of perturbations (wfPert) (Chen et al., 2023). These

metrics propose a more dynamic and real-time evaluation of

resilience by capturing the frequency and impact of deviations in

daily milk yield.

Similar approaches have been applied to dairy cattle using daily

step counts and to other livestock species, including pigs, chickens, and

lambs, using longitudinal records of feed intake and body weight (BW)

(Berghof et al., 2019a; Nguyen-Ba et al., 2020; Ben Abdelkrim et al.,

2021; Garcia-Baccino et al., 2021; Poppe et al., 2022).

Despite these advances, the integration of genomic information

to uncover the genetic basis of resilience is still in its infancy and

remains an open topic that requires further investigation. Studies

have shown that LnVar has the highest heritability among resilience

indicators, ranging from 0.13 to 0.21 depending on the lactation

stage (Poppe et al., 2021a; Chen et al., 2023). It is also significantly

genetically correlated with health, longevity, fertility, and metabolic

traits, highlighting its potential value for breeding more resilient

cows. In contrast, rauto exhibits low heritability, ranging from 0.02

to 0.08, suggesting that while it provides some insight into recovery
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times, it may be less effective for selection purposes. Similarly, the

heritability values of wfPert and dPert are low, spanning from 0.01

to 0.06 across different parities (Chen et al., 2023).

Genome-wide association studies (GWAS) have revealed

differences in the genetic architecture of resilience indicators

derived from milk yield variability in North American Holstein

cattle (Chen et al., 2024). Relevant genomic regions and biological

pathways, particularly those related to intestinal homeostasis, were

identified and Mendelian Randomization (MR) analyses indicated

an unfavorable causal association between daily milk yield (DMY)

and LnVar, suggesting caution in its use for breeding resilient cattle

(Chen et al., 2024). Additionally, herd management significantly

affects resilience indicators, as variations across herd-years highlight

the impact of practices like feed management on environmental

disturbances (Chen et al., 2024).

Based on this concept, the aims of the present study were: i) to

calculate the resilience indicators described above for cows farmed

in a single dairy herd with a large amount of longitudinal data

available from an AMS; and ii) to perform a GWAS based on a

selective genotyping (Darvasi and Soller, 1992) using the selective

DNA pooling statistics methodology to identify linkage between

QTLs and SNP markers (Darvasi and Soller, 1994).
2 Materials and methods

2.1 Ethics statement

No animal care committee approval was necessary for the

purposes of this study, as all genotypes and data were available

from the pre-existing database of the GENORIP project, funded by

the Lombardy Region
2.2 Data editing

In this study, we used data collected from nine AMS units

between January 2017 and August 2024 on a farm in the Lombardy

region (Italy). The dataset consisted of 594,481 daily observations

from 966 individual cows, 113 of which had three completed

lactations. To ensure the use of high-quality data, we conducted

rigorous preprocessing. The first step involved thorough data

editing, focusing on filtering out records with missing values or

instances where daily milk production was recorded as zero. Next,

we removed from the analysis the production of the first 10 Days in

Milk (DIM). Then the data analysis was stratified by parity while

only those from 1 to 3 were retained. Lactations were filtered by

selecting only those that started before the 30th DIM in our

database and had at least 250 daily recordings (i.e. DIM); we

considered for the study the conventional lactation at 305 DIM.

Table 1 provides a detailed summary of the number of observations

at the start of the analysis and the remaining counts after each data

filtering step, alongside the corresponding relative distribution of

cows analyzed. After the application of all filtering criteria, the final
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dataset included 627 cows in first parity, 320 in second parity, and

136 in third parity. This progression ensures a robust dataset with

representative samples across the different parity orders for

subsequent analyses.
2.3 Expected lactation curve

For each cow and each parity order, we applied a fourth-degree

polynomial quantile regression using the ‘quantreg’ package in R

and the poly function to generate orthogonal polynomial terms

(Koenker et al., 2018; Poppe et al., 2020). This approach allowed us

to capture nuanced variations in milk production. For each cow and

parity, a polynomial quantile regression curve with the 70th

percentile (t = 0.7) was fitted using daily milk production data

and days in milk (DIM), capturing the expected milk yield under

normal conditions

yi  =  b0 + b1 · DIM1 + b2 · DIM
2
i + b3 · DIM

3
i + b4 · DIM

4
i + ei

where: yi is the predicted daily milk production for day DIMi;

b0, b1, b2, b3, b4 are the intercept and the first to fourth order

coefficients of the polynomial regression describing the relationship

between DIMn and yi; ei is the error term.

The choice of the 70th percentile in the quantile regression was

guided by its ability to provide a balanced estimate of the expected

milk yield under normal physiological conditions. This quantile

reflects production levels that are less influenced by short-term

fluctuations or extreme negative deviations, making it particularly

suitable for evaluating how well cows sustain higher yields in the

face of potential disturbances. This approach has been supported in

previous studies (Poppe et al., 2020) which employed the 70th

percentile for similar purposes in resilience assessment. Then we

calculated the daily yield deviations (residuals) as follows:

Resi   =  Observed  Daily  Milk   Production   −   yi

where Resi represents the deviation between the observed and

expected milk yield on day DIMi, as derived from model (1)
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2.4 Resilience indicators calculation

Four resilience indicators were then calculated starting from the

daily yield deviations residuals, Resi, all of which are based on the cited

studies (Poppe et al., 2020; Adriaens et al., 2021; Chen et al., 2023):
i. Natural log-transformed variance (LnVar): obtained as the

natural logarithm of the variance of all Resi:
LnVar = log(
1

n − 1o
n

i=1
(xi − �x)2),
where n represents the total number of observations, x denotes

the ith observation, spanning from the first to the last

available DIM, and �x represents the average of the

i observations.

LnVar provides a comprehensive measure of milk production

stability within each lactation.

ii. Autocorrelation of Residuals (rauto): is calculated as the

autocorrelation of residuals over consecutive days:
rauto =
n

s2(n − 1)o
ni

i=1
(xi − �x)(xi+1 − �x)
where n represents the total number of observations, x denotes

the ith observation, spanning from the first to the last

available DIM, �x represents the average of the i

observations, and s represents the standard deviation of

the I observations.

This indicator helps identify patterns of persistence or volatility

in milk production dynamics over time.

iii. Weighted occurrence frequency of yield perturbations

(wfPert): this indicator quantifies the occurrence of

perturbations. Only sequences of at least four consecutive

days with negative deviations from expected values in milk

production were considered. Each sequence was required to

include at least one day in which total daily milk pro-
TABLE 1 Workflow adopted before computing the resilience indicators.

Editing steps N. of observations N. of cows

Initial data set 594,481 966

Removed daily records with missing information 520,509 965

Removed first 10 days 452,891 946

Lactation 1 193,113 681

Max DIM < 305 & Min DIM < 10 178,069 627

Lactation 2 139,690 582

Max DIM < 305 & Min DIM < 10 92,213 320

Lactation 3 62819 277

Max DIM < 305 & Min DIM < 10 38,535 136
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Fron
duction fell below 80% of the estimated unperturbed

lactation curve. The duration of each sequence was

weighted (1/4 per day) to assess its overall impact on

milk production efficiency (Adriaens et al., 2021; Chen

et al., 2023):
wfPert = o
n

p=1

lp
4

where lp is the length of the perturbation and n is the total

number of perturbation events. At the end the indicator was

normalized to a ratio per 100 DIM, dividing it by the

number of DIM and multiplied by 100.

iv. Accumulated milk losses of yield perturbations (dPert): it

stands for the total milk losses associated with perturbation

and was calculated as the differences between expected

productions and actual ones, in percentage (Adriaens

et al., 2021; Chen et al., 2023).
dPert = o
n

p=1
o
lp

d=1

yexpd − yobsd
yexpd

*100

where n is the total number of perturbation events, lp is the

length of each perturbation (DIM); yexp and yobs are the estimated

and observed daily milk yield, respectively. Finally, the indicator

was normalized to a ratio per 100 DIM, dividing it by the number of

DIM and multiplied by 100.

The Pearson correlations between pairs of indicators were

assessed both within and across lactations. Within each lactation,

correlations were calculated between the four resilience indicators

(LnVar, rauto, dPert, wfPert), grouped by parity order. Additionally,

to evaluate consistency across lactations, correlations were computed

between the same indicators for cows with complete records across all

three lactations.
2.5 Heritability of resilience indicators

Genetic parameters were estimated using the following animal

model:

y =  Xb   +  Zu   +   e

where y is the vector of phenotypic observations for each

resilience indicator, b is the vector of fixed effects including age at

calving (in months), month of calving (January to December), and

year of calving (2017–2024), u is the vector of random additive

genetic effects assumed to follow a distribution u∼N(0, As2u) where
A is the pedigree-based relationship matrix, and e is the vector of

residual errors e∼N(0,Is2e).
Heritability was estimated using AIREMLF90 software (Misztal

et al., 2018) based on the animal model described above. Estimates

were obtained separately for parity order 1 and 2, not for parity

order 3 because of the small sample size. The fixed effects include:

age at calving expressed in months (from month 22 to 36 for parity

1 and 33 to 49 for parity 2), the month of calving (January to

December), the year of calving (from 2017 to 2024). The
tiers in Animal Science 04
relationship matrix was calculated using the available genealogical

information. All cows included in the study were genotyped using

the GGP 100K SNP chip, and the pedigrees were all previously

verified by ANAFIBJ (Associazione Nazionale Allevatori della

Razza Frisona, Bruna e Jersey Italiana; National Association of

Breeders of the Friesian, Brown and Jersey Italian Breed). This

validation step based on genomic information ensured the accuracy

and consistency of the genealogical data provided for all the animals

included in the study, reducing possible bias in estimating variance

components due to incorrect genealogical recording. The pedigree

information for each individual, included all available generations

of ancestors and was employed to build the relationship matrix. The

overall pedigree file included a total of 3158 animals, including

animals with phenotypes and individuals non-phenotyped. The

pedigree file was used to build the additive relationship matrix A

implemented in the animal model.
2.6 Genome-wide association studies

To investigate the genetic basis of resilience in dairy cows, we

conducted a genome-wide association study (GWAS) using a

selective genotyping approach (Darvasi and Soller, 1992), an

efficient strategy that involves genotyping only individuals with

extreme phenotypes to enhance the detection of SNPs associated

with the trait (Darvasi and Soller, 1992). This methodology is

particularly efficient in detecting QTL, as a considerable amount

of genetic information resides in individuals with extreme

phenotypes (Xing and Xing, 2009; Lipkin et al., 2016).

Cows were selected based on the 10% most extreme values

(highest and lowest) for each indicator: the most resilient (RE) and

least resilient (NRE) cows. Since each indicator captures different

aspects of lactation curve perturbations, animals ranked in the top

or bottom 10% for one indicator are not necessarily the same as

those in another (Medugorac and Soller, 2001). All genotypes

(mapped according to the ARS-UCD1.2 bovine genome

assembly) were already available for both selected RE and NRE

cows. To simulate the selective DNA pooling strategy (Darvasi and

Soller, 1994) using individual genotype data, each RE and NRE

group was randomly divided into two biological replicates (RE1/

RE2 and NRE1/NRE2) with comparable sample sizes. For each

replicate, allele frequencies at each SNP marker were calculated

using the ‘genotype statistics by marker’ function of Golden Helix’s

SNP & Variation Suite (SVS v8.9, Golden Helix Inc., Bozeman, MT,

USA). The GWAS was conducted only for resilience indicators with

heritability greater than 0.05, both in our dataset and consistently

reported in the literature (Poppe et al., 2020; Chen et al., 2023). This

dual criterion ensured a focus on traits with a strong biological and

genetic basis, making them more reliable for downstream genomic

analysis. The analysis was further restricted to the first and second

lactations, which included the largest number of animals (627 and

320 cows, respectively), to ensure robust estimation of both

phenotypic indicators and genetic parameters.

The GWAS analyses were conducted by comparing the allele

frequency of each SNP (for one of the possible alleles) between

resilient (RE1 and RE2) and non-resilient (NRE1 and NRE2) cows
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using an in-house R script (R version 4.0.5). Monomorphic

markers, which do not provide useful information, were excluded

from the analysis. Additionally, SNPs showing a high degree of

variability between replicates (i.e., the top 5% of the absolute value

of allele differences between RE1 vs RE2 and NRE1 vs NRE2) were

also removed to reduce potential false positives calls.

After the filtering process, the following numbers of SNPs were

retained, out of the original 89,764 autosomal markers, for the

analysis: i) LnVar1: 63,862 SNPs; ii) LnVar2: 60,513 SNPs; iii)

rauto1: 69,347 SNPs; iv) rauto2: 65,066 SNPs; v) dPert2:

67,124 SNPs.

This filtered dataset ensures high-quality genetic markers are

available for robust downstream analyses.

According to (Darvasi and Soller, 1994) a single-marker

association test was applied, calculating a Z-test for each marker

to assess the association between the A allele frequency difference

and resilience status. The Z-test was defined as follows:

Ztest =
Dtest

SD(Dnull)

where Dtest is the difference in the A allele frequencies between

the resilient and non-resilient groups, and Dnull is the difference

within groups (i.e., between the two biological replicates within RE

or NRE groups).

The association results were visualized using a Manhattan plot,

generated with the qqman R package (Turner, 2018). After the

analysis, the False Discovery Rate (FDR) and Bonferroni correction

thresholds were used for determining the statistically significant SNPs.
2.7 Gene annotation

All SNPs over the 5% FDR threshold were annotated, and the

SNP’s rsID code (Reference SNP cluster ID) of each of the Illumina

SNPmarkers has been obtained. The Variant Effect Predictor (VEP)

tool of the Ensembl database allowed to annotate the significant

SNPs through the rsID codes according to the Bos taurus genome

assembly ARS-UCD1.2 (Annotation Release: 106). Candidate genes

were identified as: i) if a significant SNP was annotated within a

gene, this latter was considered as a candidate gene; ii) for intergenic

SNPs, the candidate gene was the one mapping closest, either

upstream or downstream, within a maximum distance of 500 kb.

QTL associated with each indicator were identified using the

QTLdb’s ‘Search by associated gene’ option available within the

Cattle Quantitative Trait Locus (QTL) Database of Animal QTLdb

(https://www.animalgenome.org/cgi-bin/QTLdb/BT/index).
3 Results and discussion

3.1 Modeling lactation curves

The modeling of lactation curves using polynomial quantile

regression allowed for the estimation of the expected daily milk

production. This approach, as detailed in Poppe et al (Poppe et al.,
Frontiers in Animal Science 05
2020), captures the variability in milk production across different

days in milk (DIM) and provides a robust basis for calculating

deviations from expected milk yield and consequently the resilience

indicators. The graphs in Figure 1 illustrate the lactation

performance of two cows: one classified as more resilient

(Figure 1a) and the other as less resilient (Figure 1b).

The first visible difference between the curves is the fluctuations of

the daily milk yield. In Figure 1a, with LnVar value 1.06, the cow

shows a relatively stable milk production over time: the milk yield

remains consistent, with minor day-to-day variability, assuming the

cow’s strong ability to cope with stressors. In contrast, the cow in

Figure 1b has a value of LnVar equal to 2.98 and reveals more

significant fluctuations in daily milk yield and a sharper decline in

production. The pattern of milk yield by DIM respect to the expected

lactation curve suggests that the resilient cow is more capable to

maintain high levels of productivity along the lactation. The less

resilient cow, on the other hand, exhibits greater variability in daily

milk production, which is hypothesized to reflect a reduced capacity to

recover from stressors. Periods of stress are marked by sharp declines

in production, followed by slower recoveries, which can be interpreted

as a diminished ability to maintain production efficiency over time.
3.2 Descriptive statistics of the derived
resilience indicators

Table 2 shows the descriptive statistics for the calculated

resilience indicators across different lactations. When compared

to recent studies, LnVar across parity orders are similar to the

results of (Chen et al., 2023) (average from 1.39 to 1.83 and SD from

0.57 and 0.62), while they are different when compared to (Poppe

et al., 2021a) (average from 4.40 to 4.99 and SD from 0.66 and 0.79).

The observed increase in LnVar through the parity orders is

consistent with findings from the mentioned studies, showing

that milk yield variability tends to rise proportionally with aging.

Possibly, this is due to physiological changes that occur with aging,

such as changes in mammary gland function or in metabolic

regulation. Additionally, it is possible that prolonged exposure to

environmental stressors, including variation in management or in

environmental conditions over time, may contribute to the increase

of the variability (Friggens and Badsberg, 2007; Wathes et al., 2007).

The rauto values indicate a consistent pattern of autocorrelation

through parities. In our study, the mean rauto values were 0.62,

0.63, and 0.62 for the first, second, and third parity, respectively. In

comparison, Chen et al (Chen et al., 2023). reported mean rauto

values of 0.37, 0.43, and 0.44 for these parities, while Poppe et al

(Poppe et al., 2021a). observed values of 0.55, 0.56, and 0.55. This

stability suggests that the persistence in milk production patterns

stays relatively constant over different parity orders. This somehow

contrasts with the increasing variability observed in LnVar,

highlighting that while overall variability in milk yield increases

with parity, the persistence of production patterns (as measured by

autocorrelation) may remain stable. This difference underscores the

complexity of lactation dynamics, where variability and persistence

can be influenced by different factors and may not always align.
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The upward trend in dPert across lactations suggests that milk

production losses due to perturbations accumulate more

significantly as cows’ parity increases. In our study, the average

dPert ranged from 19.1 to 20.2, with a standard deviation (SD)

ranging from 2.44 to 2.74 across lactations. These values are higher

than those reported by Chen et al (Chen et al., 2023), who found

averages between 15.62 and 17.43 for the same parities. This

discrepancy may be explained by the generally higher milk

production in multiparous cows, where any deviation from

expected yield results in proportionally greater losses.

Consequently, higher yields in older cows are likely to contribute

to more substantial accumulated milk losses during perturbation

periods. The wfPert values show a relatively consistent frequency of

perturbations across parties, with only slight variations seen in the

third one. In our study, there were 24 cows in the first lactation

without any perturbations (3.8%), 10 in the second lactation (2.8%),

and 4 in the third lactation (2.9%).

The wfPert showed an average of 4.68 ± 2.67 s.d. in the first

lactation, compared to 5.03 ± 2.81 in the second lactation and 5.57 ±

2.45 in the third lactation. Although the average for the third

lactation is a bit higher compared to the first and second

lactations, the differences are not large. In Chen et al (Chen et al.,
Frontiers in Animal Science 06
2023). the results are slightly bigger: from the first to the third parity

order, averages and standard deviations are 5.43 ± 1.75, 5.85 ± 1.91

and 6.11 ± 1.94, respectively.

The correlation analysis of resilience indicators within lactation

and across lactations provides valuable insights into the

relationships between the various measures of milk production

stability and perturbations. The results of the correlation matrix are

visualized in Figure 2.

In the first lactation (Figure 2a), the pairwise correlations

between the indicators are all positive and range from moderate

to high, varying from 0.22 (between rauto and wfPert) to 0.78

(between wfPert and dPert). This pattern is expected, as all

indicators are derived from the same residuals obtained through

the quantile regression model and are specifically designed to

capture different aspects of resilience. The strongest correlation,

observed between dPert and wfPert, reflects the similarity in their

definitions—both quantify production losses due to perturbations,

albeit from different perspectives.

Moreover, it makes biological sense that a cow with more

frequent production losses exhibits a greater total loss. Strong

correlations are also observed between LnVar – dPert and LnVar

– wfPert. This suggests that cows with higher variability in milk
FIGURE 1

In this figure two lactation curves are reported as examples of how resilience is captured and how two different cows are considered resilient (a) and
non-resilient (b). The represented lactations belong to cows in their first order of parity.
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production (LnVar) also experience more frequent and severe

production losses. In contrast, the lowest correlations involved

rauto, which measures the persistence of deviations. Interestingly,

in lactations 2 and 3 (Figures 2b, c), the correlations between rauto

and the other indicators became stronger, while the remaining

pairwise correlations remained relatively stable. As shown in

Figures 2a–c, correlations within lactations tended to strengthen

across parities. However, this pattern is not evident in Figure 2d,

where correlations between indicators across lactations are

generally low and tend to weaken. As cows age, they do not

exhibit consistent resilience patterns across parities, suggesting

that their responses to perturbations evolve over time.

Furthermore, Figure 2d confirms that strong correlations between

indicators are primarily observed within the same lactation.

Calculating these resilience indicators within a single farm has the

potential to help farmers better understand the productive life of

cows at the end of their lactation. The indicators can also be used to

measure the ongoing production and behavior of cows, so that

attention can be paid to those animals that show different

behavioral patterns. Productive animals are known to be less

resilient, depending on how we measure the resilience indicators.

Since some resilience indicators are constructed such that higher

values reflect greater instability or poorer recovery, they are often

positively genetically correlated with milk yield. In this context,

higher values of these indicators correspond to lower resilience and

higher milk production (Poppe et al., 2021b). This is an explicit

trade-off between resilience and production. However, accurate

measures of cow life events that may be available to help calculate

fertility and reproductive traits, together with treatment records

kept by farmers, could help to assess a better definition of resilience.

In addition, AMS can provide more than just daily milk yield, but

longitudinal traits such as feeding behavior and milk contents,

which can be used to improve understanding of the physiological

responses of lactating cows throughout their lactation. This was not

the aim of this study.
3.3 Variance components and heritability

The results of the heritability calculations for the traits are

shown in Table 3 and briefly discussed below. However, an
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important premise must be made before the discussion. As the

heritability estimates shown here were obtained in only one herd,

they may not fully capture the existing population additive genetic

variability, even if the sires used in this farm are selected by the

owner himself from all available bulls on the market, i.e. from

different AI companies, countries and genetic programs, and as

such they are a representative sample of the population.

Furthermore, since our goal was not to estimate heritability per se

or to introduce it into breeding programs, heritability values were

retained for comments and to select the resilience indicator to be the

subject of the GWAS, also based on the fact that they confirmed

already published values, as hereinbelow commented.

The heritabilities of LnVar in the first and second lactation are

both 0.086, which is considerably lower than previous results where

0.13 and 0.15 were estimated for the first lactation and 0.18 and 0.20

for the second lactation (Poppe et al., 2021a; Chen et al., 2023). As

shown here and in a previous study, heritability exhibits small

variations across parities but does not follow a specific trend,

suggesting that the heritability of LnVar may be considered stable

throughout a cow’s life (Poppe et al., 2021b). For rauto, the

estimated values are 0.14 and 0.09 for lactations 1 and 2. These

results are slightly higher than those reported previously, ranging

from 0.08 for the first lactation to 0.07 for the second one (Poppe

et al., 2021a). Our results are also higher than those in another

study, where estimates range from 0.04 for the first lactation to 0.02

for the second lactation (Chen et al., 2023). Only one study has

estimated the heritability of the resilience indicators dPert and

wfPert (Chen et al., 2023). The results we obtained are compared by

placing in curly brackets the corresponding values from that study.

The heritability of dPert ranges from 0.01 (0.03) in the first lactation

to 0.13 (0.06) in the second lactation. Regarding wfPert, the

estimated heritabilities obtained here were zero, while another

study reported values of 0.04 and 0.02 for the first and second

lactation, respectively (Chen et al., 2023).
3.4 Genome wide association study

As hereinbefore described, GWAS were performed using the

selective genotyping approach coupled to the statistics of DNA

pooling to investigate the genetic basis of resilience in the
TABLE 2 Descriptive statistics of the resilience indicators.

Indicator Average SD Min Max

Lactation 1 2 3 1 2 3 1 2 3 1 2 3

LnVar 1.86 2.31 2.49 0.48 0.57 0.53 0.44 0.64 1.38 3.40 4.25 4.07

rauto 0.62 0.63 0.62 0.11 0.12 0.23 0.23 0.15 0.29 0.90 0.93 0.87

dPert 19.07 19.39 20.02 2.44 2.74 2.65 13.87 13.17 15.20 28.47 31.00 27.39

wfPert 4.68 5.03 5.57 2.67 2.81 2.45 0.00 0.00 0.00 13.01 12.46 13.18
fron
LnVar, log-transformed variance of daily milk yield residuals; rauto, lag-1 autocorrelation of daily milk yield residuals; dPert, accumulated milk losses of yield perturbations; wfPert, weighted
occurrence frequency of yield perturbations.
tiersin.org

https://doi.org/10.3389/fanim.2025.1627086
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Punturiero et al. 10.3389/fanim.2025.1627086
population only for those indicators that have shown heritability.

The descriptive statistics shown in Supplementary Table S1 refer to

the full RE and NRE groups prior to replicate creation.

For the animals selected for the GWAS (top 10%most resilient -

RES and bottom 10% least resilient - NRES) the average gEBVs for

milk yield and SCC of the cows were plotted in Supplementary

Figure S1. The figure includes only the resilience indicators selected

for GWAS analysis (i.e., LnVar, rauto, and dPert). Interestingly, the

analysis revealed that RES animals consistently exhibited lower

gEBV values for milk yield and higher value for SCC across the

three resilience indicators (Supplementary Figure S1). This trend

was particularly evident for LnVar-based indicators. The results

here obtained are in agreement with the findings of (Chen et al.,

2024) that showed an unfavorable causal association between daily
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milk yield (DMY) and LnVar. Results of each GWAS are

graphically shown in the Manhattan plots of Figures 3A–E and

reported in Table 4.

A total of 66, 22, 60, 33, and 8 significant SNPs were identified

above the 5% FDR threshold (blue line) for LnVar1, LnVar2, rauto1,

rauto2, and dPert2, respectively (Supplementary Table S2). These SNPs

were located in intronic (n = 79), intergenic (n = 99), 5’UTR (n = 2),

3’UTR (n = 4), and intragenic regions (n = 2; one missense and one

synonymous). Based on the location of these SNPs, a total of 124

candidate genes were identified for functional interpretation. Out of

these, the Animal Genome Cattle Database linked 40 genes to six main

“QTL Terms – Trait_class” categories, comprising 77 unique “QTL

Trait_Name” entries (Supplementary Table S2). As shown in

Supplementary Figure S2, milk-related traits were more frequently
FIGURE 2

Correlation between resilience indicators within lactation one, two and three [respectively, (a–c)] and across lactation (d).
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associated with LnVar1 than with LnVar2. QTL terms associated with

LnVar2 were predominantly linked to milk-related traits (87.0%),

whereas for LnVar1, only 30.8% were related to milk production.

The remaining QTLs associated with LnVar1 were distributed among

other categories, including exterior traits (26.2%), reproduction

(16.9%), production traits (16.9%), meat and carcass traits (6.2%),

and others. This discrepancy may reflect physiological and genetic

differences in milk production dynamics between first and second

parity. The genetic correlations between milk yield in the first and

second lactations have been estimated at approximately rg = 0.82,

indicating a strong but not perfect relationship between the two (Dong

and Van Vleck, 1989). This suggests that while a common genetic

component influences both lactations, specific factors unique to each

parity also contributes to milk production dynamics. The potential

roles of some of candidate genes in resilience are then herein below

discussed by resilience indicator.

3.4.1 LnVar
For LnVar1, on BTA 1 a total of 9 significant SNPs were above

the FDR threshold (Figure 3a). Among them, rs110792885 is located

in intron position of the EPHB1 gene (EPH Receptor B1), one of the

Eph (erythropoietin-producing hepatocellular carcinoma) receptors

representing one of the largest known family of receptor tyrosine

kinases in mammals: there is evidence the Eph receptors and ephrin

ligands may mediate immune cell activation and the immune cell

trafficking required for optimal functioning of immune system

(Darling and Lamb, 2019). Given that Eph receptors are involved

in various normal cellular processes during development and play a

crucial role in maintaining adult tissue homeostasis, their role in both

non-infectious and infectious diseases is well established. As a result,

the pathways in which they operate may indirectly impact stress

responses and resilience traits. The EPHB1 gene was also associated

with udder traits (udder suspension and teat score) in Angus cattle

(Devani et al., 2020). On BTA 2, three above FDR threshold SNP are

in intron sequences of SCN2A and SCN3A genes, but none of their

functions that may be related to resilience has been reported to date.

The SNP rs110164494, is located in the intron of the PDSS1 gene on

BTA 13. PDSS1 encodes the enzyme decaprenyl diphosphate
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synthase subunit 1, which is involved in the synthesis of coenzyme

Q (ubiquinone), a key component of mitochondrial electron

transport and cellular energy production. The association of PDSS1

with female fertility traits has been highlighted in previous studies,

such asMohammadi et al (Mohammadi et al., 2020), who identified it

in a GWAS focused on Iranian Holstein cattle. This study found that

PDSS1 could play a role in female fertility through pathways linked to

cellular energy metabolism, which is crucial for reproductive

performance and resilience during energy-intensive periods

like lactation.

On BTA14 at about 6 Mbp, two intergenic markers

(rs110769987 and rs42211697) were found to be significantly

associated with LnVar1 and were located closely to KHDRBS3.

This gene has previously been associated with milk production

traits in both Chinese Holstein and crossbred populations (Jiang

et al., 2010; da Cruz et al., 2020).

The ST3GAL1 gene was also found to be associated with milk

traits, including milk yield, milk fat yield, and milk fat percentage

(Wickramasinghe et al., 2011). Thyroglobulin gene (TG), identified

as candidate gene on BTA14 (rs29021775), is a key glycoprotein

involved in the synthesis of thyroid hormones. TG plays an

important role in different physiological processes including

regulating the metabolism, adipocyte growth, differentiation and

homeostasis of fat depots (Dubey et al., 2014). Given its function TG

can be easily linked to resilience. In fact, studies in rat and livestock

have demonstrated that thyroid function, influenced by TG, is

critical for coping with temperature extremes, supporting its role

in resilience to environmental stressors (Sejian et al., 2018; Rial-

Pensado et al., 2022).

At about 82 Kbp from rs41629530 on BTA 15 is located the

GRAMD1B gene, part of the GRAM (glucosyltransferases, Rab-like

GTPase activators and myotubularin) domain- containing gene

group, involved in maintaining cholesterol homeostasis, apoptosis

and cancer (Yang et al., 2011). In livestock, GRAMD1B was already

associated with feed efficiency, production and reproduction traits

in cattle (Kunej et al., 2024). SERGEF at positions about 34 Mbp

(identified as candidate gene by rs110010916 and rs109595542) has

been linked to pig adaptation to high-altitude conditions, suggesting
TABLE 3 Genetic (Gen.) and residual (Res.) variance components and heritability (h2) for each indicator within lactations 1 and 2.

Indicator Lactation Gen. variance (SE) Res. variance (SE) Heritability (SE)

LnVar 1 0.019 (0.017) 0.204 (0.019) 0.086 (0.076)

rauto 1 0.0016 (0.0011) 0.0098 (0.0011) 0.143 (0.092)

dPert 1 0.033 (0.261) 5.85 (0.42) 0.01 (0.044)

wfPert 1 0 (0) 7.08 (0.42) 0 (0)

LnVar 2 0.026 (0.038) 0.275 (0.042) 0.086 (0.128)

rauto 2 0.0014 (0.002) 0.014 (0.0022) 0.09 (0.14)

dPert 2 0.895 (1.00) 6.14 (1.05) 0.127 (0.14)

wfPert 2 0 (0) 7.34 (0.63) 0 (0)
Estimates were found with the use of the Average Information REML algorithm. The values minor than 0.01 (1%) for the heritability are written as 0, while the values for variance components
(Gen. and Res.) and their standard errors are written as 0 when minor than 0.001.
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potential resilience to environmental stressors that may indirectly

influence lactation stability (Dong et al., 2014).

The significant rs110249272 maps in the 3’UTR region of the

RNF135 gene (Ring Finger Protein 135) involved in the activation of

the NF-kB signaling pathway, which is essential for immune

responses, inflammation regulation, and cell survival (Kiser et al.,

2018). In cattle, activation of this pathway helps increase resilience

to infections likeMycobacterium avium paratuberculosis (Map), the
Frontiers in Animal Science 10
pathogen causing Johne’s disease. The activation of NF-kB by these

proteins boosts the cattle’s resilience by ensuring the survival of

immune cells, especially monocytes, which are key to fighting

infection. This ability to withstand and adapt to immune

challenges contributes to overall health and disease resistance

(Calderón-Chagoya et al., 2023).

For LnVar2, the major part of candidate genes seems to be

involved both in functional and productive traits (as reported in
FIGURE 3

Manhattan plots of the GWAS results for the resilience indicators showing hereditability: LnVar – first (A) and second Lactation (B); rauto – first (C)
and second Lactation (D); dPert – second Lactation. The lines represent the False Discovery Rate (blue) and Bonferroni (red) thresholds, respectively,
set at 5% genome-wide.
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TABLE 4 Results of the GWAS analysis.

SNP* CHR bp_Start bp_End P-value (*) Gene Variant

Lnvar1

Hapmap60237-rs29019540 1 112581930 112581930 1.74E-05 MME intron

BovineHD0100038618 1 134531830 134531830 1.74E-05 EPHB1 intron

ARS-BFGL-BAC-29669, BovineHD0200009212, Hapmap27145-BTA-116154 2 30980589 31096836 1.94E-05 SCN2A intron

BovineHD0900012694, BovineHD0900012701 9 45190557 45228937 3.73E-05 HACE1 intron

BovineHD1300005194 13 17948346 17948346 1.74E-05 PDSS1 intron

ARS-BFGL-NGS-17819 13 31353706 31353706 7.91E-06 CUBN intron

ARS-BFGL-BAC-24839 14 4586387 4586387 3.73E-05 FAM135B intron

DB-838-seq-rs109494080 14 7881268 7881268 3.73E-05 ST3GAL1 intron

Hapmap53910-rs29021775 14 8266712 8266712 1.74E-05 TG intron

BovineHD1500001927 15 7384011 7384011 3.21E-05 TRPC6 intron

BovineHD1500009549, ARS-BFGL-NGS-118826, BovineHD1500009559 15 34468497 34497030 1.74E-05
TPH1,
SERGEF

intron

BovineHD1500011481 15 41240619 41240619 1.74E-05 GALNT18 intron

BovineHD1500013117 15 45782481 45782481 7.91E-06 ZNF215 intron

BovineHD1500019157 15 65873261 65873261 1.74E-05 SLC1A2 intron

Hapmap53277-rs29025667 18 10305903 10305903 7.91E-06 NECAB2 synonyomus

chr19_18330921 19 17991086 17991086 1.50E-06 RNF135 3’ UTR

BovineHD2200010872 22 38049578 38049578 3.73E-05 SYNPR intron

BovineHD2700000363 27 2286136 2286136 3.73E-05 CSMD1 intron

Lnvar2

BovineHD0400009324, BovineHD0400009326, BovineHD0400009327,
BovineHD0400009328, BovineHD0400009334

4 32682347 32692288 1.65E-05 RUNDC3B intron

BovineHD0500011732, BovineHD0500011741 5 40817911 40874992 9.33E-06 SLC2A13 intron

BovineHD0500012967 5 44906731 44906731 6.09E-06 CPM intron

BovineHD0500013030 5 45080266 45080266 2.15E-06 NUP107 intron

BovineHD0500013061 5 45169905 45169905 7.27E-07 RAP1B intron

ARS-BFGL-NGS-19337 19 41942159 41942159 6.09E-06 HAP1 intron

BovineHD1900012186 19 42107233 42107233 1.65E-05 ODAD4 5’UTR

BovineHD2400006407 24 23149184 23149184 1.65E-05 NOL4 intron

rauto_1

BTB-01935567 1 126208399 126208399 2.05E-05 PCOLCE2 intron

ARS-BFGL-NGS-106296, ARS-BFGL-NGS-101030, BovineHD0100038576 1 134365317 134439762 1.24E-05 EPHB1 intron

BovineHD0300013636 3 44311093 44311093 1.66E-05 PLPPR5 intron

BovineHD0500006098 5 21026129 21026129 3.64E-05 DCN intron

Hapmap25928-BTA-18390 6 55450495 55450495 5.64E-07 ARAP2 intron

BovineHD0800015665 8 51978193 51978193 9.89E-07 PCSK5 intron

Hapmap43807-BTA-21732 11 59822134 59822134 6.86E-06 C11H2orf74 3’ UTR

BovineHD1100022461 11 78167522 78167522 1.60E-05 LDAH intron

(Continued)
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TABLE 4 Continued

SNP* CHR bp_Start bp_End P-value (*) Gene Variant

rauto_1

Hapmap50260-BTA-121056 16 37673618 37673618 2.75E-05 KIFAP3 intron

ARS-BFGL-NGS-18897 18 45789853 45789853 1.76E-06 HPN intron

BovineHD1900000212, ARS-BFGL-NGS-92544, BovineHD1900002018 19 1120842 1131844 2.58E-07 CA10 intron

BovineHD2000005959 20 19858203 19858203 3.87E-05 PDE4D intronic

BovineHD2000014687, BTB-00788976, BovineHD2000014688,
BovineHD2000014691, BovineHD2000014724

20 53442839 53557191 1.87E-06 CDH18 intron

ARS-BFGL-NGS-117960 22 52783681 52783681 3.87E-05 TMIE intron

BovineHD2500003400 25 12057939 12057939 8.16E-07 SHISA9 intron

ARS-BFGL-NGS-59828 25 32764383 32764383 7.77E-07 NCF1 intron

BovineHD2500011569 25 40434604 40434604 1.18E-05 CARD11 intron

BovineHD2700004421 27 16219404 16219404 1.65E-06 FAM149A 5’ UTR

BovineHD2700008510, BovineHD2700008511, BovineHD2700008539 27 31017430 31056395 1.51E-05 UNC5D intron

rauto_2

BTB-01466122 3 83872828 83872828 5.22E-06 PATJ intron

BTA-68603-no-rs 3 86312172 86312172 1.43E-05 FGGY intron

BTA-00702-no-rs 4 10147900 10147900 9.33E-06 CDK6 intron

ARS-BFGL-NGS-69509 5 10190011 10190011 6.04E-06 PTPRQ intron

ARS-BFGL-NGS-108825, chr10_7895525 10 7960731 7961933 5.70E-06 F2R
synonymous,

3’ UTR

BovineHD1100020894 11 73073273 73073273 1.76E-05 OTOF missense

BovineHD1200025294 12 82887622 82887622 9.33E-06 FAM155A intron

BovineHD1400018052, BovineHD1400018067 14 62668956 62692420 1.04E-05 NCALD intron

BovineHD1500018110 15 62392291 62392291 6.99E-06 ELP4 intron

BovineHD2200000724 22 2715544 2715544 1.89E-05 CMC1 intron

Hapmap51784-BTA-97575 23 5530326 5530326 2.49E-05 FAM83B intron

BovineHD2300011375, BovineHD2300011378, BovineHD2300011379,
BovineHD2300011381, BovineHD2300011380

23 39585474 39610535 8.49E-06 KIF13A intron

ARS-BFGL-NGS-74596 25 35220858 35220858 1.16E-05 COL26A1 3’ UTR

Hapmap51005-BTA-60474 25 40111236 40111236 1.64E-05 SDK1 intron

dPert_2

BovineHD0100031225 1 109410007 109410007 1.02E-06 RSRC1 intron

BovineHD0500011732 5 40817911 40817911 2.70E-06 SLC2A13 intron

BovineHD0500012310 5 42830228 42830228 2.30E-06 PTPRR intron

BovineHD2200017497 22 59585131 59585131 1.18E-06 KBTBD12 intron
F
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The Table lists only SNPs located within genes, grouped by chromosome. When multiple SNPs map to the same gene, the reported P-value (*) corresponds to the average of the individual p-
values. Full results, including all significant SNPs (both genic and intergenic), the corresponding flanking genes, and the associated QTLs for each gene, are provided in Supplementary Table S2.
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Supplementary Table S3, QTL). In addition, on BTA 4, all the

significant SNPs mapped in the intronic position of RUNDC3B gene,

that is considered a backfat gene (Yang et al., 2011). As of now, the

RUNDC3B gene has not been directly associated with backfat thickness

in Holstein cattle. However, it is well known, that backfat genes have

role in body composition, energy reserves, and overall productivity

(Schmidtmann et al., 2024). We may speculate that genes influencing

fat deposition (backfat genes) might relate to resilience indirectly, as fat

reserves can buffer energy deficits during stress, thereby supporting

resilience. The gene Rap1b, identified as a candidate by the SNP

rs133340933, belongs to the Ras superfamily, a group of proteins

involved in regulating B-cell development, homing, and T-cell-

dependent humoral immunity (Chu et al., 2008). It is well known,

that adaptive immune response, characterized by its specificity and

memory, plays a critical role in maintaining long-term resilience

against pathogens (Alotiby, 2024). Two significant SNPs were

annotated in intronic positions of SLC2A13, one of the glucoses

transporters, resulted associated with milk, protein and fat yields in

Buffaloes species (Du et al., 2019). Even the gene NOL4 seem to be

involved in milk traits according with was reported in different cattle

breeds (Bekele et al., 2023).

3.4.2 rauto
Regarding rauto1, the QTL region at about 134 Mbp and

defined by three significant SNPs (in intronic position of the

EPHB1 gene) overlaps the one identified for LnVa1. Based on its

functions (as described in the LnVar1 GWAS results), we

hypothesize that for rauto (reflecting stability and recovery after

perturbation) EPHB1 could regulate pathways that maintain

homeostasis under stress by guaranteeing robust intercellular

signaling. Instead, for LnVar1 (which measures variability, where

lower variability suggests more robust responses to environmental

or physiological stress) EPHB1might reduce variability by ensuring

consistent signaling pathways, supporting immune responses across

diverse environmental challenges, and thereby contributing to more

consistent physiological outcomes.

On BTA 1, a second significant region is defined by three SNPs,

all mapping close to the POFUT2 gene (max distance 59 Kbp). This

gene has been associated both with female fertility in Nordic dairy

cattle (Mesbah-Uddin et al., 2022) and with body conformation

traits in Holstein (Wang et al., 2022b).

On BTA 3, the genetic variant rs133042560 is located in the

intronic position of DCN gene, that encodes for decorin, a small

leucine-rich proteoglycan involved in connective tissue structure.

Decorin binds collagen fibrils and regulates collagen assembly,

influencing fibril uniformity (Khatib, 2005). This function is

essential for tissue integrity and may impact resilience,

particularly in response to metabolic and physical changes during

early lactation. DCN is maternally expressed in placental tissue in

mice, highlighting its potential role in tissue development and

adaptation, which could be relevant for bovine resilience during

the first lactation (Mizuno et al., 2002).

On BTA 11, two significant SNPs are located near the IL1B

gene. The IL1B gene, as a member of the interleukin-1 (IL-1) family,

plays a crucial role in inflammation and immune responses
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(Moghaddam et al., 2019). Its expression is upregulated in milk

somatic cells as part of the immune response during udder

infections (Lee et al., 2006). Additionally, increased expression of

IL1B has been reported in response to infectious agents, such as

Mycoplasma bovis and Klebsiella pneumoniae (Bannerman et al.,

2004; Kauf et al., 2007). The IL1B gene is also associated with bovine

respiratory disease susceptibility (Tizioto et al., 2015), a key trait

impacting animal health and productivity (Neupane et al., 2018).

The rs135712530 is an intronic variant of the LDAH gene.

LDAH has been associated with hoof and leg disorders (Wu et al.,

2016), suggesting a potential role in health traits. Hoof and leg

issues are critical in livestock, affecting both productivity and

welfare, indicating the relevance of this locus for improving

resilience and health in cattle. It may influence rauto1 by

modulating the stability of physiological responses under stress.

On BTA 20, the SNP rs109908751, located in the intergenic

region near the PDE4D may be associated with resilience. The

expression of PDE4D has been detected in mammary glands,

indicating its potential involvement in milk production. In fact,

previous studies have suggested a possible role of PDE4 in the

regulation of mammary gland function and lactation (Dostaler-

Touchette et al., 2009). This function may be related with rauto1, as

PDE4D could influence the consistency and stability of

physiological responses during early lactation. In fact, the PDE4D

gene is part of the PDE4 family, involved in regulating cAMP

signaling pathways, which are critical for cell desensitization, signal

compartmentalization, and cross-talk between cellular signals. By

maintaining cAMP homeostasis, PDE4D plays a key role in

regulating various physiological processes (Dostaler-Touchette

et al., 2009). The regulation of cAMP signaling by PDE4D could

also contribute to the stability of immune responses and metabolic

adaptations, both critical for resilience in dairy cattle during the

early lactation period.

Another SNP, rs42070678, is located in an intronic region of

NCF1 on BTA 25. This gene encodes a cytosolic subunit of

neutrophil NADPH oxidase, which plays a critical role in the

production of reactive oxygen species (ROS). ROS are key

mediators in host defense and the regulation of inflammation

(Kennedy and DeLeo, 2009). Although this gene has not been

directly associated with a known QTL, the role of NCF1 in

modulating ROS production suggests it may be involved in the

immune responses and inflammatory control, both of which are

crucial for maintaining resilience during the early lactation period.

Also, the CARD11 gene in which rs109938921 maps, is involved in

immune signaling, being crucial in the activation of T-cells and the

differentiation of peripheral B-cells (Stepensky et al., 2013). In dairy

cattle, CARD11 has been linked to feed efficiency (FE), with studies

showing its involvement in residual feed intake (RFI) in Danish

Holstein cattle. CARD11 was downregulated in animals with high

RFI compared to those with low RFI, suggesting its role in

regulating energy balance and metabolic efficiency (Salleh et al.,

2017). CARD11 may then influence resilience to metabolic and

immune stress during early lactation.

On BTA 20, a genomic region at approximately 53.4 Kbp is

defined by 9 significant SNPs, including 5 intronic variants and 4
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intergenic ones (Table 3). This region harbors the CDH18 gene,

which belongs to the canonical cadherin (CDH) gene family. The

cadherin family is composed of a series of cell adhesion molecules

that play a dominant role in tissue morphogenesis and regulate

adhesion interactions. Some studies have shown that the CDH18

gene locus resulted strongly associated with milk and fat yields in

dairy cattle (Laodim et al., 2017).

Finally, three significant SNPs (rs133164649, rs42130478, and

rs109905892) are all located in the intron position of the UNC5D

(BTA 27). UNC5D is implicated in the development and

maintenance of udder structure and conformation (Cole et al.,

2011), which are crucial for efficient milk production and the

animal’s ability to cope with physiological stress during lactation.

Rauto1 may reflect how well an animal’s udder structure and other

related traits maintain stability during early lactation.

The genes associated with rauto2 are involved in various traits,

as described by the examples reported below. On BTA 3, two

significant SNPs were located in the intronic regions of the PATJ

and FGGY genes. These genes have been reported to be associated

with fertility and reproduction traits, as well as body structure and

finishing precocity, respectively. CDK6 gene can be considered a

candidate gene involved in body traits (Liu et al., 2011; Silva et al.,

2019). PTPRQ on BTA 5, as identified by (Robakowska-Hyżorek

et al., 2016), may influence meat production traits in beef cattle,

possibly through the regulation of MRF (myogenic regulatory

factors) gene expression. Two closed SNPs on BTA 10 lie in the

coding sequence (synonymous and 3’UTR) of the F2R gene,

proposed as novel and promising candidates for regulation of

hypoxic adaptation in the heart by Wang et al (Wang et al.,

2021), a study that compared the hypoxic adaptation of the yak

(Bos grunniens) against different cattle species.

On BTA 14, rs110970186 and rs43430961 are annotated in

intronic position of the NCALD (Neurocalcin Delta) gene that was

associated with the Bovine Respiratory Disease (Kiser et al., 2017).

On BTA 25, rs42073064, located in the 3’UTR region of COL26A1,

which encodes collagen type XXVI, was identified as one of the

differentially expressed genes potentially involved in host resistance

against ticks (Mantilla Valdivieso et al., 2022). KRT14, located 193

bp from the rs43727762 SNP, plays a role in mammary epithelial

cell lineage changes, which are essential for the proper development

of the mammary epithelium during the cow’s life and, consequently,

for milk production (Finot et al., 2019). The same authors described

also the role of KRT14 (together with other cell line) in the

development of the bovine mammary gland at puberty (Finot

et al., 2018).

Finally, we found five significant SNPs mapping in the intronic

position of KIF13A. This gene belongs to the kinesin superfamily, a

large group of motor proteins involved in intracellular transport

and recycling endosome dynamics. These functions are crucial for

maintaining cellular homeostasis and responding to environmental

stressors, particularly when KIF13A interacts with other proteins

such as Rab GTPases (Thankachan and Setty, 2022). The

interaction between these two classes of proteins could be a key

mechanism in stress adaptation and recovery. Therefore, we may
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speculate that this represents an indirect link with rauto, which

measures autoregulation—the ability of a system to autonomously

regulate itself without external intervention.

3.4.3 dPert
Eight above FDR threshold SNPs sparse along the

chromosomes were associate with dPert2. One of these SNPs was

already associated with LnVar2 (rs133894374 annotated in intronic

position of SLC2A13). As reported here and by Chen et al (Chen

et al., 2023), LnVar2 and dPert2 were highly correlated (0.85,

Figure 2d). This strong association is expected, as both metrics

reflect an animal’s ability to maintain stable performance

despite challenges.

The PTPRR gene harbors the intronic rs43440584. The protein

encoded by PTPRR is a member of the protein tyrosine phosphatase

(PTP) family and appears to be involved in mammary gland

involution, possibly contributing to the remodeling of udder

tissue for subsequent parturitions. Researchers reported that

weaning (in mice) increased PTP activity in the mammary gland

(Tolleson et al., 2017). PTPRR gene has also been associated with

various mammary traits in different cattle breeds (Tolleson et al.,

2017; Sinha et al., 2023).

The rs43219764 and rs132905517 are intronic SNPs of RSRC1

and KBTBD12 genes, that were associated with reproduction traits

and with milking temperament in Holstein cattle, respectively

(Chen et al., 2020; Grigoletto et al., 2020). Opposite genetic

correlation between immune response traits (the most ones

related to resilience) and fertility traits are reported by Konig and

May (König and May, 2019). In their review, the gestation length

resulted positively and negatively correlated with antibody- and

cell-mediated immune response, respectively (+0.17; -0.17). The

same opposite correlation values were found also for other fertility

traits including calving ease, maternal calving ease, and daughter

fertility (König and May, 2019). The potential link between milk

temperament and resilience in milk production suggests that also

behavioral traits might indirectly influence the physiological

stability of lactating cows. However, some evidences are

contrasting: i) Stepancheva et al., 2024, investigating how milking

temperament affects milk productivity, found that Buffalos with

higher milking behavior scores (4 or 5, more reactive cows) had the

quite higher LS means for TDMY; ii) Marçal-Pedroza et al., 2023

reported that calm and intermediate cows produced more milk and

a shorter milking time and a greater average milk flow; iii)

Antanaitis et al., 2021, observed a negative genetic correlation

between the temperament of cows and milk yield; instead,

temperament was positively correlated with SCS.
4 Conclusions

This study offers a high-resolution analysis of resilience indicators

in Holstein cows, leveraging daily milk yield data from automatic

milking systems collected under standardized management and

environmental conditions. The four indicators assessed (LnVar,
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rauto, dPert, and wfPert) captured different resilience dimensions.

LnVar showed the most robust biological and genetic signals,

particularly in the second parity. Rauto showed moderate

heritability and improved biological coherence with age, while dPert

and wfPert, despite lower heritabilities, provided valuable insights into

the dynamics of short-term production perturbations.

Genome-wide association studies identified a complex genetic

basis for resilience, involving immune function, metabolic

regulation, and tissue integrity. Candidate genes such as EPHB1,

IL1B, PDSS1, GRAMD1B, and DCN were associated with processes

including inflammation, energy homeostasis, and extracellular

matrix remodeling. The EPHB1 and SLC2A13 genes were linked

to multiple indicators or parities, suggesting shared regulatory

mechanisms, while others appeared only in later parities, pointing

to age-related physiological adaptations. Several genes have also

been previously associated with production traits, supporting

potential pleiotropy and the importance of considering resilience

in breeding decisions.

Working within a single, large and well-monitored herd

minimized environmental variability, allowing clearer detection of

individual differences and genetic signals. This approach delivers

practical value to farmers by supporting herd management

decisions, especially for low-resilience cows, and informing

breeding strategies that prioritize resilient phenotypes. Future

studies across diverse herds and environments, enriched with

health records and external stressor data (e.g., disease, heat), may

improve and validate these findings and further disentangle

intrinsic resilience from environmental effects.
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Yang, B., Bassols, A., Saco, Y., and Pérez-Enciso, M. (2011). Association between
plasma metabolites and gene expression profiles in five porcine endocrine tissues.
Genet. Sel Evol. 43, 28. doi: 10.1186/1297-9686-43-28
frontiersin.org

https://doi.org/10.1051/vetres:2005051
https://doi.org/10.3168/jds.2016-11565
https://doi.org/10.1371/journal.pone.0153423
https://doi.org/10.4238/vol10-3gmr1466
https://doi.org/10.1186/s12864-022-08686-3
https://doi.org/10.1371/journal.pone.0286466
https://doi.org/10.1046/j.1439-0388.2001.00308.x
https://doi.org/10.1046/j.1439-0388.2001.00308.x
https://doi.org/10.3168/jds.2021-20655
https://doi.org/10.1006/bbrc.2002.6370
https://doi.org/10.2478/aoas-2020-0031
https://doi.org/10.1111/age.12718
https://doi.org/10.1017/S175173112000083X
https://doi.org/10.1016/j.compag.2021.106406
https://doi.org/10.3168/jds.2020-19245
https://doi.org/10.1186/s12711-022-00713-x
https://doi.org/10.3168/jds.2020-19817
https://doi.org/10.3168/jds.2019-17290
https://doi.org/10.3389/fphys.2022.1017381
https://doi.org/10.17221/118/2014-CJAS
https://doi.org/10.1186/s12864-017-3622-9
https://doi.org/10.1186/s12864-017-3622-9
https://doi.org/10.1073/pnas.1810630115
https://doi.org/10.1111/jbg.12867
https://doi.org/10.1017/S1751731118001945
https://doi.org/10.1017/S1751731118001945
https://doi.org/10.1111/jbg.12373
https://doi.org/10.1080/10495398.2022.2114083
https://doi.org/10.3390/ani14070987
https://doi.org/10.1016/j.jaci.2012.11.050
https://doi.org/10.3389/fcell.2022.877532
https://doi.org/10.1371/journal.pone.0131459
https://doi.org/10.2527/jas.2017.1475
https://doi.org/10.2527/jas.2017.1475
https://doi.org/10.21105/joss.00731
https://doi.org/10.3389/fgene.2022.1031557
https://doi.org/10.3389/fgene.2022.1031557
https://doi.org/10.3389/fvets.2022.932034
https://doi.org/10.3389/fgene.2021.579800
https://doi.org/10.3389/fgene.2021.579800
https://doi.org/10.1016/j.domaniend.2006.05.004
https://doi.org/10.1016/j.domaniend.2006.05.004
https://doi.org/10.1371/journal.pone.0018895
https://doi.org/10.1371/journal.pone.0018895
https://doi.org/10.3168/jds.2015-10705
https://doi.org/10.1186/1753-6561-3-S7-S23
https://doi.org/10.1186/1753-6561-3-S7-S23
https://doi.org/10.1186/1297-9686-43-28
https://doi.org/10.3389/fanim.2025.1627086
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org

	Mapping genomic regions affecting resilience traits in a large dairy farm of Holstein cows
	1 Introduction
	2 Materials and methods
	2.1 Ethics statement
	2.2 Data editing
	2.3 Expected lactation curve
	2.4 Resilience indicators calculation
	2.5 Heritability of resilience indicators
	2.6 Genome-wide association studies
	2.7 Gene annotation

	3 Results and discussion
	3.1 Modeling lactation curves
	3.2 Descriptive statistics of the derived resilience indicators
	3.3 Variance components and heritability
	3.4 Genome wide association study
	3.4.1 LnVar
	3.4.2 rauto
	3.4.3 dPert


	4 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


