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Differences in longissimus
thoracis metabolites in feedlot
steers with differing plasma Zn
concentration and implant status
Brock M. Ortner, Dathan T. Smerchek
and Stephanie L. Hansen*

Department of Animal Science, Iowa State University, Ames, IA, United States
This study examined the role of Zn status on muscle glucose and other

metabolites. Angus steers (144; 525 ± 30 kg) with varying plasma Zn

concentrations and implant status were used for this secondary experiment.

Steers were assigned to implant (IMP) treatments: no implant (NO) or

Component TE-200 (TE-200; Elanco, Greenfield, IN) on d 0. Zinc sulfate was

supplemented at 0 (analyzed 54 mg Zn/kg DM), 30, or 100 mg Zn/kg DM starting

d -60. Steers were fed in two blocks via GrowSafe bunks, and steer was the

experimental unit. Jugular blood and longissimus thoracis biopsies were

collected d 40 post-implant. Plasma Zn was quantified via ICP-OES and

stratified into quintiles by concentration and IMP treatment. Samples (n = 48;

12 low and 12 high from each IMP group) were identified and designated to

plasma Zn treatments (PLZN): low (LO, 1.1 mg Zn/L) or high (HI, 1.6 mg Zn/L).

Corresponding muscle samples were analyzed via gas chromatography-mass

spectrometry for non-targeted metabolomics. Data were analyzed using

ProcMixed of SAS with fixed effects of PLZN, IMP, BLOCK, and PLZN×IMP. No

interactions were noted. b-alanine, 3-hydroxybutyric acid, and glycine were

greater in HI than LO (P ≤ 0.05), while 3-hydroxybutyric acid, 2,3,4-

trihydroxybutyric acid, and glycine were greater in TE200 than NO (P ≤ 0.03).

Lactic and malic acids tended to be greater in TE200 than NO (P ≤ 0.10).

Although both Zn groups were adequate, greater plasma Zn altered

metabolites indicative of enhanced energy metabolism, potentially explaining

benefits of Zn supplementation to feedlot cattle.
KEYWORDS
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1 Introduction

Zinc is an essential trace mineral crucial to whole-body growth. It is a cofactor to over

300 enzymes, a component of many transcription factors, and is implicated in nearly every

signaling pathway in higher organisms (Beyersmann and Haase, 2001; Cousins et al., 2006).

The current requirement for Zn is 30 mg Zn/kg dry matter (DM) and has remained
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unchanged for four decades (NASEM, 2016). However, consulting

nutritionists often supplement at concentrations as high as 300% of

the requirement (Samuelson et al., 2016). This may be to

accommodate the 44% increase in average daily gain (ADG) of

beef cattle between 1977 and 2007 (Capper, 2011). While the

required Zn concentration prevents deficiency, modern feedlot

cattle may need greater Zn to support growth.

In implanted cattle, we have observed improved growth when

supplementing up to 150 mg Zn/kg DM (Messersmith et al., 2022;

Messersmith and Hansen, 2024) but the mechanisms are not

entirely understood. Several of our studies have noted decreased

plasma Zn concentration in implanted cattle, which is often

overcome by Zn supplementation, suggesting circulating Zn may

be important in the Zn-induced growth response (Messersmith and

Hansen, 2021; Messersmith et al., 2022; Smerchek et al., 2024;

Messersmith and Hansen, 2024). In the prior study, growth

performance was not influenced by supplemental Zn, potentially

driven by high plasma Zn concentrations across dietary treatments

and limited growth potential noted in the steers. However, Zn

impacted circulating glucose and insulin, corresponding with

increased d 20 skeletal muscle mRNA abundance of GLUT4 in

implanted steers, implicating altered muscle energy demand

(Smerchek et al., 2024).

In this study, like others who have examined extreme

populations (Russell et al., 2016; Carlson et al., 2017), we

analyzed selected highs and lows in plasma Zn within implanted

and non-implanted steers to examine the muscle metabolome. We

hypothesized that implanted steers and steers with greater plasma

Zn concentration would have greater concentrations of muscle

metabolites related to growth and energy metabolism.
2 Methods

All procedures and protocols were approved by the Iowa State

University Institutional Animal Care and Use Committee (IACUC-

20-127).
2.1 Animals and experimental design

This study utilized samples from a subset of a larger study

(Smerchek et al., 2024). Briefly, 144 single-source Angus-cross

steers (525 ± 30 kg) were used in a 2 × 3 randomized design with

steers blocked by body weight (BW) to one of two blocks to

accommodate sampling logistics and assigned to one of two

implant treatments: no implant or Component TE-200 (200 mg

trenbolone acetate + 20 mg estradiol; Elanco Animal Health,

Greenfield, IN) on d 0. Zinc was supplemented as ZnSO4 at 0 mg

Zn/kg DM (analyzed 53 mg Zn/kg DM), 30 mg Zn/kg DM (CON +

30 mg Zn/kg DM), or 100 mg Zn/kg DM (CON + 100 mg Zn/kg

DM), starting 60 d prior to implant. Steers were stratified by BW
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into pens (n = 6 steers/pen) equipped with GrowSafe bunks

(GrowSafe Systems Ltd., Airdrie, AB, Canada) to determine

individual feed disappearance and steer was the experimental

unit. Steers were fed a dry-rolled corn-based diet ad libitum

delivered daily at 0800 h (45% dry-rolled corn, 20% Sweet Bran,

10% DDGS, 15% corn silage, and 5% basal premix on a dry matter

basis), and Zn treatments were delivered via premix utilizing dry

distillers grains plus solubles as a carrier at 5% diet DM.
2.2 Sample collection and analysis

Blood and longissimus thoracis (LT) muscle samples for this

experiment were collected 40 days after terminal implant

(Smerchek et al., 2024), approximately aligned with peak

hormone payout from uncoated implant pellets (Parr et al., 2014).

Trace mineral concentration of plasma samples was measured

using inductively coupled plasma optical emission microscopy

(Optima 7000 DV, Perkin Elmer, Waltham, MA; Pogge et al.,

2012). Standards were used to verify instrument accuracy (UTAK

Laboratories INC., Valencia, CA). Plasma Zn samples (n = 144) were

stratified into quintiles by plasma Zn concentration to identify the 12

highest (HI) and 12 lowest (LO) samples within non implanted (NO)

or implanted (TE-200) groups (n = 48 total; Table 1). Samples were

selected from both the early and late BW blocks.

For these 48 steers, snap-frozen LT samples from the same day

were pulverized and 100 mg of sample was weighed while frozen

prior to metabolomics analysis. Muscle metabolites were extracted,

dried, and analyzed in accordance with methods adapted from

Heiderscheit and Hansen (2022). Metabolites were identified by the

W.M. Keck Metabolomics Research Laboratory at Iowa State

University (Ames, IA) using an Agilent Technologies Model 6890

GC coupled to Model 5975 controlled by the Agilent ChemStation

software. The reference library was based on metabolites observed

in Heiderscheit and Hansen (2022) which utilized the 2017 mass

spectral library from the National Institutes of Standards and

Technology. Metabolites that could not be assigned to a

metabolite reference were excluded from analysis.
2.3 Statistical analysis

Data were analyzed as a complete randomized design using the

MIXED procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC) with fixed

effects of plasma zinc grouping (PLZN), implant status (IMP), PLZN

× IMP, and block. Metabolites with >30% of values missing were

removed from the dataset. Data were logarithmically transformed to

achieve normality and presented means were back-transformed.

Outliers were characterized as greater than three standard deviations

from the treatment mean and were excluded from analysis. No

interactions were observed for any muscle metabolite and thus main

effects are presented (n = 12 per PLZN × IMP treatment).
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3 Results

Plasma Zn concentrations are displayed in Table 1. There was a

tendency for a PLZN×IMP interaction (P = 0.09) where, by design,

HI was greater than LO, but implanted steers had lesser plasma Zn

in HI and LO. In longissimus thoracis, there was a PLZN effect for

beta-alanine, 3-Hydroxybutyric acid (BHB), and glycine, where HI

was greater than LO (P ≤ 0.05; Figure 1). An IMP effect was noted

for BHB, 2,3,4-trihydroxybutyric acid, and glycine in which TE200

was greater than NO (P = 0.03; Figure 2). Additionally, lactic acid

and malic acid tended to be greater in TE200 than NO (P ≤ 0.10;

Figure 2). Several other metabolites related to amino acid and

energy metabolism were identified but not affected by treatment

(P > 0.10; Table 2).
4 Discussion

Trace minerals support many biological pathways that

profoundly impact functions related to cattle growth (Suttle,

2010). This study investigated the effects of plasma Zn

concentration on muscle metabolites. As supplementing Zn

increased plasma Zn concentration and hot carcass weight of

steers (Messersmith and Hansen, 2021; Messersmith et al., 2022)

and post-mortem rate of tenderness and LT metabolites related to

energy metabolism (Schulte et al., 2023) we hypothesized steers

with greater plasma Zn concentration would have more favorable

energetic metabolites to support growth.

b-alanine is the rate-limiting metabolite of carnosine synthesis

(Artioli et al., 2010), and was increased in HI PLZN. Carnosine

helps buffer cellular H+ ions, making it an important antioxidant

and transition metal chelator. It is also present at higher

concentrations in Type II muscle fibers (Dunnett and Harris,

1997). b-alanine is used to improve stamina in athletes (Artioli

et al., 2010). Cônsolo et al. (2020) found Nellore steers with greater

genetic potential for growth had greater muscle carnosine

compared to low-growth potential counterparts. Similarly, cattle

with more tender steaks had greater b-alanine and b-alanine was

negatively correlated with Warner-Bratzler Shear Force (WBSF; r =

-0.45) (Antonelo et al., 2020), aligning with Schulte et al. (2023) who

observed improved post-mortem LT tenderness in Zn-

supplemented steers. Heiderscheit and Hansen (2022) examined
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the effects of three concentrations of Zn supplementation (0, 70, and

120 mg Zn/kg DM) on LT metabolites before and after an 18 h

transit event. Pre-transit, steers supplemented 70 mg Zn/kg DM

had lesser L-alanine than steers supplemented 120 mg Zn/kg DM.

Porcine satellite cells treated with carnosine had greater

proliferation and Akt/mTOR activity (Liu et al., 2022; Kalbe et al.,

2023), potentially offering a mechanism by which Zn improves the

response to steroidal implants in previous live-animal studies

(Messersmith and Hansen, 2021).

We observed greater glycine concentration in the LT of both HI

PLZN and TE200 steers. Glycine is acquired from dietary sources or

de novo synthesis, resulting mainly from serine and its precursors

(Alves et al., 2019). Glycine is readily catabolized, donating nitrogen

to the greater pool for transamination (Matthews et al., 1981) and is

integral to collagen and the extracellular matrix (Parry, 1988).

Steroidal implants increase circulating insulin-like growth factor-

1, promoting Type II collagen synthesis (Fortier et al., 1999;

Preston, 1999). Genther-Schroeder et al. (2018) found no effects

of increasing dietary Zn on meat collagen content when all steers

were fed ractopamine hydrochloride (Genther-Schroeder et al.,

2018). However, Schulte et al. (2023) found that ractopamine-fed

steers had greater glycine concentrations in post-mortem LT than

in control. While steroidal implants and b-agonists have different

mechanisms of action, growth induced by these technologies may

influence glycine metabolism. Matrix metalloproteinase 9 is

implicated in the biological response to steroidal implants

(Kamanga-Sollo et al., 2014; Thornton et al., 2015) and is

involved in extracellular matrix remodeling (Koulicoff et al.,

2023). In postmortem LT, steers supplemented 60 mg Zn/kg DM

as ZnSO4 + 60 mg Zn/kg DM as Zn-AA had increased matrix

metalloproteinase 9 activity compared to unsupplemented steers,

contributing to altered extracellular matrix degradation (Koulicoff

et al., 2023). In contemporaries to steers from the present study,

increasing supplemental Zn increased mRNA abundance of matrix

metalloproteinase 2 in muscle 20 days post implant (Smerchek

et al., 2024). Further, Zn treatment of HTR-8/SVneo cells has been

shown to influence expression of STAT3 and matrix

metalloproteinase 2/9 (Zong et al., 2017), known to impact

satellite cell proliferation (Thornton et al., 2015). Increased

glycine in both HI PLZN and TE200 groups may be related to

extracellular matrix remodeling associated with increased protein

synthesis and satellite cell fusion to muscle fibers, both key modes of
TABLE 1 Treatment plasma Zn concentration1.

P - value

LO2 × NO3 LO2

× TE2003 HI2 × NO3 HI2

× TE2003 SEM PLZN IMP
PLZN
× IMP

Item

Steers (n) 12 12 12 12

Plasma Zn (mg/L)4 1.18y 1.09z 1.66w 1.46x 0.2 0.01 0.01 0.10
1Plasma samples obtained d 40 via jugular venipuncture.
2Plasma Zn treatments (PLZN; 24 steers/treatment; collected d 40) included LO and HI determined by plasma Zn concentration.
3Implant treatments (IMP; 24 steers/treatment) included NO (no implant) and TE200 (200 mg trenbolone acetate + 20 mg estradiol; administered d 0; Elanco Animal Health, Greenfield, IN).
4Means with different superscripts (w,x,y,z) tend to differ (P < 0.10).
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implant-induced growth (Johnson et al., 1998; Reichhardt et al.,

2021) and influenced by Zn (Ninh et al., 1998; Tang and Shay, 2001;

Haase and Maret, 2003; Plum et al., 2014).

Both HI PLZN and TE200 steers had greater concentrations of

BHB in LT. Similarly, 2,3,4-trihydroxybutyric acid was greater in

TE200 and is an oxidized derivative of BHB. Butyric acid is
Frontiers in Animal Science 04
preferentially absorbed by the rumen epithelium for its energy

requirements. In cattle fed energy-dense diets, epithelial

monocarboxylate transporters provide the animal with ketone

bodies produced by intraepithelial breakdown of volatile fatty

acids (Gäbel et al. , 2002). Additionally, b-Hydroxy-b-
methylbutyrate (HMB), a metabolite of leucine metabolism, leads
FIGURE 1

(A-C) Effects of LO or HI plasma Zn (PLZN) on muscle metabolites of beef steers (P ≤ 0.05). Steers were selected for PLZN treatment groups from
the lowest and highest quintile of plasma Zn concentration (PLZN; LO = 1.1 mg Zn/L; HI = 1.6 mg Zn/L; 24 steers/treatment).
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to increased BHB levels. Rats injected with HMB showed higher

BHB concentrations in plasma and gastrocnemius (Ikeda et al.,

2021). In aged rats with limb disuse for 14 days, HMB treatment led

to a higher proportion of paired box 7 and myogenic

differentiation-1 positive stem cells in the plantaris compared to
Frontiers in Animal Science 05
controls (Alway et al., 2013). In the live-animal study (Smerchek

et al., 2024), myogenic regulatory factor 5 expression increased with

increasing ZnSO4, but not due to implant status. While not assessed

in the present study, it is intriguing to consider differences in LT

BHB may reflect satellite cell differentiation differences.
FIGURE 2

(A–E) Effects of NO or TE200 on muscle metabolites of beef steers collected 40 d after implant (P ≤ 0.10). Steers received a steroidal implant
treatment (IMP) on d 0: 1) no implant; NO; or 2) high potency combination implant; TE200 (200 mg trenbolone acetate + 20 mg estradiol;
administered d 0; Elanco Animal Health, Greenfield, IN; 24 steers/treatment).
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https://doi.org/10.3389/fanim.2025.1640542
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Ortner et al. 10.3389/fanim.2025.1640542
Prior to transit, Zn-supplemented steers had greater BHB in LT

relative to control, and BHB decreased from pre-transit to post-

transit to support energy demands (Heiderscheit and Hansen,

2022). Schulte et al. (2023) found that post-mortem LT of steers

fed greater Zn concentrations or fed ractopamine hydrochloride

had greater BHB concentrations than their respective control

treatments. In support of these findings, we found that steers with

greater plasma Zn concentration had greater BHB concentrations,

indicating HI PLZN improved energy availability to muscle.

Steroidal implants impact both satellite cell fusion into myofibers

and fiber type-specific differences in energy metabolism, and

differences to ketones in the present study suggest differential

energy metabolism and satellite cell activity. Fiber type was not

assessed in the present study.

Both lactic acid and malic acid tended to be greater in TE200

steers. In the forward reaction, Zn-dependent lactate dehydrogenase

converts pyruvate to lactate while oxidizing nicotinamide adenine

dinucleotide (Price, 1962). Similarly, malic acid is an energy

metabolism intermediate of the TCA cycle, contributing to energy
Frontiers in Animal Science 06
production through NADPH generation. Differential lactic and

malic acid levels suggest altered energy metabolism in implanted

cattle, potentially due to a shift towards glycolytic metabolism.

Increased malic acid may result from decreased conversion to

oxaloacetate via malate dehydrogenase, indicating a bottleneck or

regulatory change in the TCA cycle in which malate is spared for

fatty acid synthesis. A study examining the effects of Nellore cattle

fed to achieve high and low growth rates in feedlot and pasture

systems noted decreased malonate, a key compound in fatty acid

synthesis, in low ADG feedlot steers compared to high ADG

pastured steers, indicating greater energy demand to support de

novo fatty acid synthesis in the feedlot steers (Gómez et al., 2022).

Relatedly, feedlot steers with high ADG had greater circulating BHB

(Gómez et al., 2022), which is rapidly sequestered from blood in

high performance cattle to support lipid metabolism (Imaz et al.,

2022), matching our findings. Ractopamine-fed steers

supplemented 120 mg Zn/kg DM compared to non-ractopamine-

fed steers with equal Zn supplementation had lesser abundance of

malate dehydrogenase in post-mortem LT (Schulte et al., 2023).
TABLE 2 Longissimus thoracis metabolites detected that were not different reported as concentrations1.

Treatment mean (femtomoles)3 P - value

Metabolite name LO2 HI2 NO2 TE2002 SEM PLZN IMP PLZN × IMP

Amino acid4

L-5-Oxoproline 10.8 11.6 9.5 12.9 0.15 0.84 0.21 0.87

L-Alanine 35.0 39.0 31.3 42.7 0.15 0.84 0.51 0.89

Isoleucine 1.4 1.7 1.4 1.7 0.16 0.55 0.56 0.22

Leucine 6.4 6.7 6.1 7.0 0.15 0.64 0.45 0.77

Serine 4.6 5.5 4.1 6.1 0.15 0.86 0.79 0.95

Threonine 3.2 3.7 2.9 4.0 0.16 0.97 0.73 0.62

Metabolic intermediate4

Imidazol-2-amine 321 281 282 319 0.15 0.21 0.11 0.35

5-Aminovaleric acid 1.8 2.2 2.0 2.0 0.15 0.74 0.64 0.73

2-Aminomalonic acid 1.6 2.2 1.2 2.5 0.17 0.46 0.32 0.36

Phosphoric acid 2.7 2.1 2.3 2.5 0.15 0.28 0.59 0.75

Urea 10.4 9.6 9.0 11.0 0.16 0.68 0.71 0.36

Glyceric acid 1.2 1.1 1.0 1.3 0.15 0.97 0.72 0.23

Butanedioic acid 4.2 5.0 4.7 4.4 0.15 0.44 0.39 0.81

Silanol 1358 1475 1316 1517 0.15 0.22 0.15 0.13

Sugar4

beta-D-Mannopyranose 75.6 79.6 75.5 79.7 0.16 0.45 0.92 0.66

Glucose 115.2 115.7 101.5 129.3 0.15 0.66 0.21 0.97

Myoinositol 17.9 15.2 17.8 15.4 0.15 0.60 0.91 0.19
front
iersin
1d 40 longissimus thoracis sample collection.
2Plasma Zn treatments (PLZN; 24 steers/treatment) included LO and HI determined by plasma Zn concentration.
Implant treatments (IMP; 24 steers/treatment) included NO (no implant) and TE200 (200 mg trenbolone acetate + 20 mg estradiol; administered d 0; Elanco Animal Health, Greenfield, IN).
3Metabolites reported as femtomoles.
4Metabolites listed by molecule class.
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5 Conclusions

Plasma Zn concentration influenced several metabolites related

to satellite cell proliferation and energy metabolism that may

explain why Zn supplementation enhances cattle growth.

However, unlike previous studies, energy metabolites affected by

PLZN or IMP indicate modification of TCA cycle intermediates.

While there are limitations with the use of metabolites for

inferences of muscle metabolism, data obtained from this study,

specifically metabolites affecting intracellular pH and satellite cell

proliferation, highlight areas affected by Zn status to be validated in

further research to substantiate these exploratory findings.
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