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Climate frequently influences the sustainability of livestock systems. As a result of

climate change, heat stress may become a significant challenge for cattle

producers. Heat stress occurs during hot weather conditions when animals are

unable to maintain homeothermy, which can negatively affect production,

reproduction, and animal well-being. In this study, thermal heat index was used

to monitor thermal conditions facing cattle on rangelands. Three metrics—

movement rate, activity, and distance traveled from water—obtained from GPS

tracking were used to represent behavior changes in response to variation in

thermal conditions. Each of these behavior metrics was categorized into four

behavioral levels (high, medium, slight, and low) using a well-known k-means

clustering algorithm. Additionally, daily thermal conditions were categorized into

threeweather levels (hot, medium, and cool) based on heat index values, also using

the k-means clustering. The objective was to identify and detect the relationship

between hot weather and cattle behavior, with the hypothesis that consecutive hot

days have a clear negative effect on cattle behavior, particularly leading to a

reduction in activity and movement. To investigate this, the unsupervised Co-

occurrence Map Sequential Pattern Mining (CM-SPAM) algorithm in data mining

was applied to analyse tracking data collected in the summers of 2019 and 2021 at

Deep Well Ranch, Prescott, Arizona, USA. The CM-SPAM algorithm successfully

identified that consecutive hot days (two, three and four days in a row) resulted in a

consistent decrease in movement rate on the second, third and fourth days,

respectively, suggesting a decrease in cattle activity during the morning and

evening grazing bouts. The activity and distance to water metrics were not able

to establish a connection between hot weather conditions and behavioral change.

The CM-SPAM algorithm successfully identified impacts of consecutive days of hot

weather on cattle rather than only daily evaluations. Our study demonstrates the

potential to remotely detect changes in cattle behavior during potentially stressful

thermal conditions. This type of analysis could enable early interventions to

manage heat stress, preventing potential negative effects on the animals’ health

and productivity.
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1 Introduction
Heat stress arises in hot weather conditions when animals

struggle to maintain homeothermy. It is a serious threat to the

animal well-being and sustainability of livestock systems because it

negatively impacts health, production, reproduction, and nutrition

(Becker et al., 2020; Gonzalez-Rivas et al., 2020). When cattle are

under heat stress, their core body temperature increases, often

leading to changes in behavior, such as increased water and

decreased feed intake as well as reduced activity. In 2003, heat

stress caused annual economic losses of $369 million for beef and

$128 million for poultry in the US (St-Pierre et al., 2003). Heat stress

continues to be problematic with global warming (Berman, 2019;

Napolitano et al., 2023). Therefore, it is crucial to identify and

understand the relation between heat stress and animal behavior to

detect conditions when animals are susceptible and to implement

management strategies to alleviate the negative impact of heat stress

and ensure the health and productivity of livestock.

Observing cattle in extensive rangeland is difficult and labor-

intensive (Bailey, 2016). However, recent advancements in

technology, such as on-animal sensors like GPS tracking and

accelerometers, as well as Internet of Things (IoT), have greatly

improved the ability to monitor livestock (Bailey et al., 2018;

Nyamuryekung’e, 2024). Real-time livestock monitoring using on-

animal sensors not only reduces the labor associated with

traditional methods of livestock observation but also enables

farmers and ranchers to respond more quickly when animals are

affected by adverse weather conditions.

Machine learning is increasingly applied in agriculture to utilize

data from sensors, which are able to enhance the management of

animal health, behavior, nutrition, and productivity (Liakos et al.,

2018; Mia et al., 2025; Shine and Murphy, 2021). In Gorczyca and

Gebremedhin (2020)’s study, four different supervised machine

learning models, penalized linear regression, random forests,

gradient boosted machines, and neural networks, were used to

analyze how environmental heat stressors (air temperature, relative

humidity, solar radiation, and wind speed) affect physiological

responses (respiration rate, skin temperature, and vaginal

temperature) in dairy cows. In Becker et al. (2021)’s study,

logistic regression, Gaussian naïve Bayes, and random forest were

used to predict cow heat stress levels—scored from 1 (no stress) to 4

(moribund)—based on different features (temperature-humidity

index, respiration rate, lying time, lying bouts, total steps,

drooling, open-mouth breathing, panting, location in shade or

sprinklers, somatic cell score, reticulorumen temperature, hygiene

body condition score, milk yield, and milk fat and protein percent),

providing dairy producers valuable insights to identify heat stress

early and minimize its harmful impacts like milk loss. While

supervised learning depends on labeled datasets to guide the

training process, unsupervised learning explores patterns within

unlabeled datasets. Developing labeled datasets require observations

or video to record livestock behavior. Obtaining visual observations

is time consuming and expensive. On extensive rangelands, video is

not a practical approach to record grazing animal behaviors. In the
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study by Branco et al. (2021), the Generalized Sequential Pattern

(GSP) algorithm in Weka was applied to detect sequential pattern

mining for the behavioral sequences, revealing that the behavior

sequence of “Lying down” followed by “Lying laterally” occurred

under heat stress conditions, indicating a thermally stressful

environment for the birds. In Mluba et al. (2024)’s work, the

Sequence-to-Pattern Generation (Seq2Pat) library, which offers a

constraint-based sequential pattern mining algorithm, was used to

mine sequential patterns from pig behavior data obtained through

sequences of cropped images. These patterns help identify

behavioral deviations that may indicate potential health or welfare

issues, although heat stress conditions were not included in the

analysis. In our work, we focus on detecting the relationship

between cumulative heat load and cattle behavior using

unsupervised learning. Each day’s weather level is associated with

the corresponding animal behavior and encoded in the sequences,

enabling analysis of behavioral patterns across consecutive days,

followed by a comparison between behavior observed in the

detected pattern during heat stress and that on the nearest cool

weather day.

This study aims to demonstrate a “proof of concept study” to

evaluate the potential of identifying hot weather conditions that

may adversely impact cattle behavior. The hypothesis is that

consecutive hot days negatively impact cattle behavior, and cattle

respond by decreasing their activity and movement. The cattle

behavior was represented by using three GPS-derived metrics:

movement rate, activity, and distance traveled from water. Each

behavior metric was clustered into four categories (high, medium,

slight, and low) using the well-known k-means clustering

algorithm. Traditionally, a supervised classification (Bishop and

Nasrabadi, 2006) is employed to classify behavior (class) from

labeled data. The data consists of weather features, including

variables such as air temperature and humidity. These can be

used to differentiate between the various levels of behavior metric

(low, slight, medium, and high). These methods typically focus on

daily predictions, rather than tracking behavior across multiple

continuous days. In contrast, our research leverages unsupervised

methods (sequential pattern mining in particular) in data mining

(Han et al., 2011) to uncover relationships related to hot weather

and animal behavior. Unlike supervised methods, unsupervised

algorithms identify patterns or structures in the data without any

labeled data. In this work, the unsupervised Co-occurrence Map

Sequential Pattern Mining (CM-SPAM) algorithm in data mining

was applied to analyse GPS tracking data collected in the summers

from two different years, 2019 and 2021, at Deep Well Ranch,

Prescott, Arizona, USA. To monitor the thermal conditions

experienced by cattle on rangelands, the thermal heat index was

utilized in our work. Based on daily heat index values, the k-means

clustering algorithm was employed to categorize weather conditions

into three levels: hot, medium, and cool. While sequential pattern

mining is widely used in applications such as analysing customer

purchase or web page sequences (Fournier-Viger et al., 2017; Tan

et al., 2016), its application is not well recognized in the agriculture

field. We hypothesize that CM-SPAM can effectively detect changes

in cattle behavior during consecutive hot days. Consecutive hot days
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may be more averse to cattle than a single hot day (Beatty et al.,

2006; Hahn, 1999).
2 Material and methods

2.1 Study site and environment

The study was conducted in the North Pasture at Deep Well

Ranch (DWR) located 16 km north of Prescott, Arizona, United

States (112° 29’W, 34° 41’ N). The pasture spans an area of 1096 ha

of rolling terrain, with elevations ranging from 1471 to 1542 m. The

study site is in the cold semi-arid (Bsk) Köppen climate zone.

Average annual precipitation is around 450 mm, with more than

40% of it falling during the summer monsoon season, which

typically occurs from July to September. Vegetation is primarily

composed of perennial grasslands, dominated by species such as

black grama (Bouteloua eripoda (Torr.) Torr.), dropseeds

(Sporobolous spp.) and purple threeawn (Aristida purpurea Nutt).

Two different studies were carried out during the summer in 2019

and 2021.
2.2 Animals and devices

The protocol for this study was approved by the New Mexico

State University Institutional Animal Care and Use Committee

(approval number 2019-021).

In Trial 1, a herd of 135 Corriente cow-calf pairs grazed the

North Pasture. The cows ranged in age from 2 to 15 years.

Throughout their lives, the herd had always grazed the North and

adjacent pastures. Randomly selected cows were equipped with GPS

tracking collars, using IgotU GT-120 and IgotU GT-600 receivers

(Knight et al., 2018). A total of 35 GPS collars were placed on 35

randomly selected cows, with 6 recording at 2-minute intervals

(IgotU GT-600) and 29 at 10-minute intervals (19 IgotU 120, and

10 IgotU 600). The difference in recording intervals (2 minutes vs.

10 minutes) was due to the battery capacities of the devices. In the

North Pasture, the collars were placed on cows on June 4th, 2019,

and removed on October 31st, 2019. This data was part of a study

summarized by Tobin et al. (2021a).

In Trial 2, a herd of 120 Corriente cows grazed the North

Pasture. Collars (IgotU 120) were placed on 40 randomly selected

cows, recording their locations at 10-minute intervals. The collars

were attached on June 13th, 2021, and the study was conducted from

July 8th to September 17th, 2021, while the cows grazed the

North Pasture.
2.3 Experimental design

In Trial 1, 10-minute interval tracking data from 22 cows was

recorded from June 5th, 2019 to September 17th, 2019. In Trial 2,

only 7 cows were used due to missing data. The time frame for Trial
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2 was in the summer, starting on July 8th and ending on September

17th, 2021.

The weather data for both trials were downloaded from Prescott

Regional Airport (PRA), located in Prescott, Arizona, United States,

which is located adjacent to DWR and 7.5 km from the study

pasture (34° 38’ 57.0114” N, 112° 25’ 19.9914” W). The terrain (flat

to gentle) slopes, elevations and vegetation at DWR next to the

airport are similar to the study pasture. Weather data were recorded

every 5 minutes and inc luded air temperature and

relative humidity.
3 Data mining analysis

3.1 Terminology

This section introduces the necessary terminology for

describing the dataset used in data mining analysis and the

concept of sequential pattern mining (Tan et al., 2016).

3.1.1 Definition 1 (sequence)
A sequence in this study is in chronological order and combines

the daily thermal heat index (described in Section 3.2.1) and

behavior within n continuous days periods. More formally, the

definition of sequence is as follows:

Let I = {i1, i2,.,il} be a set of items (symbols). An itemset X is a set

of items such that X ⊆ I. A sequence is an ordered list of itemsets

s = <I1,I2,.,In> such that Ik ⊆ I where 1 ≤ k ≤ n.

In our study, examples of items are Julian date (jdate_156), heat

index (cool_heatIndex) and movement rate (low_avg_rate),

represented low behavior rate. An example of itemsets is

{jdate_156,cool_heatIndex, low_avg_rate}. An example of a

sequence is shown in Table 1. Each sequence represents six

consecutive days (n = 6), consisting of six ordered itemsets, where

each itemset includes the heat index level and the movement rate

level, which represent the behavior for a day.

3.1.2 Definition 2 (horizontal sequence database)
The sequence database in this study is a collection of all

information about daily heat index and behavior during the

experiment. More formally, the definition of database is as follows:

A sequence database SDB is a list of sequences SDB = <s1,s2,.,sp>

having sequence identifiers (SIDs) 1,2,…,p.

Table 1 presents a portion of the sequence database SDB,

containing three sequences for cow ID 105 in Trial 1 of our

experiment. In this work, we use s ∈ SDB to denote that s

belongs to SDB.

3.1.3 Definition 3 (subsequence)
A subsequence is a smaller part of a sequence. More formally,

the definition of a subsequence is defined as follows:

A sequence sa = <A1, A2, … ,An> is said to be contained in a

sequence sb = <B1, B2,… ,Bm> if and only if there exist integers 1 ≤ j1
< j2 < ··· < jn ≤m such that A1 ⊆Bj1 , A2 ⊆Bj2 , :::,An ⊆Bjn (denoted as

sa ⊑ sb).
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For example, sequence sa = <{high_heatIndex},{low_avg_rate}>

is a subsequence of sb = <{high_heatIndex},{high_heatIndex},

{high_heatIndex, low_avg_rate}> because the first item in sa is

shown in sb, the second itemset in sa is subset of the third itemset

of sb.

3.14 Definition 4 (support)
The support of a sequence refers to the frequency or occurrence

of a particular sequence within a database. It is a measure that helps

to identify how commonly a sequence appears across all sequences

in the database. More formally, the definition of support follows:

The support of a sequence sa in a sequence database SDB is

defined as the number of sequences s ∈   SDB such that sa ⊑ s and is

denoted by supSDB(sa).

In other word, supSDB(sa) = sf jsa ⊑ s∧ s ∈ SDBj gj.
For example, consider the sequence sa as follows:

sa = high _ heatIndexf g,   high _ heatIndexf g,   high _ heatIndex, low _ avg _ ratef gh i

Sequence sa is the subsequence of sequences SID = 1, SID = 2

and SID = 3 in Table 1; thus, supSDB(sa) = 3.

3.1.5 Definition 5 (frequent sequential pattern
discovery)

To ensure that only the most frequent sequences are considered,

a minimum support threshold, minsup, is used to define them. A

frequent sequential pattern is a sequence such that its support is
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greater than or equal to minsup. In other words, the goal is to

identify the frequent subsequences that occur across many different

sequences in the database. More formally, the definition of frequent

sequential pattern is as follows:

Let minsup be a threshold provided by the user and SDB be a

sequence database. A sequence s is a frequent sequential pattern if

supSDB(s) ≥ minsup.
3.2 Data preprocessing

3.2.1 Weather data
The raw weather 5-minute data containing air temperature and

relative humidity were averaged hourly. Hourly Heat Index (HI)

was computed using the following equations from the United States

National Weather Service (https://www.wpc.ncep.noaa.gov/html/

heatindex_equation.shtml), where T represents the hourly average

air temperature in degrees Fahrenheit and RH represents the hourly

average relative humidity:

0:5   *   T   +   61:0   +  ½(T − 68:0)*1:2�   +   (RH*0:094)
� �

(1)

Then, the HI is equal to the average of the result from Equation

1 and air temperature. If HI exceeded 80 F, the following equation

is applied.

If HI > 80, the regression equation of Rothfusz in 1990 is used,

as shown below:
TABLE 1 Sample of sequences for cow ID 105 in Trial 1 during period P1.

Sequence identifier (SID) Julian day Heat index Average rate Sequences

1

189 Cool High

〈{ jdate _ 189,   cool _ heatIndex,   high _ avg _ rate},
{ jdate _ 190,  medium _ heatIndex,   low _ avg _ rate},
{ jdate _ 191,   high _ heatIndex,   low _ avg _ rate},
{ jdate _ 192,   high _ heatIndex,   low _ avg _ rate},
{ jdate _ 193,   high _ heatIndex,  medium _ avg _ rate},
{ jdate _ 194,   high _ heatIndex,   low _ avg _ rate}

〉

190 Medium Low

191 High Low

192 High Low

193 High Medium

194 High Low

2

204 Medium Slight
〈{ jdate _ 204,  medium _ heatIndex,   slight _ avg _ rate
},
{ jdate _ 205,  medium _ heatIndex,   slight _ avg _ rate},
{ jdate _ 206,   high _ heatIndex,   slight _ avg _ rate},
{ jdate _ 207,   high _ heatIndex,   slight _ avg _ rate},
{ jdate _ 208,   high _ heatIndex,   slight _ avg _ rate},
{ jdate _ 209,   high _ heatIndex,   low _ avg _ rate}

〉

205 Medium Slight

206 High Slight

207 High Slight

208 High Slight

209 High Low

3

235 Medium Low

〈{ jdate _ 235,  medium _ heatIndex,   low _ avg _ rate},
{ jdate _ 236,   high _ heatIndex,   low _ avg _ rate},
{ jdate _ 237,   high _ heatIndex,   slight _ avg _ rate},
{ jdate _ 238,   high _ heatIndex,  medium _ avg _ rate},
{ jdate _ 239,   high _ heatIndex,   low _ avg _ rate},
{ jdate _ 240,   high _ heatIndex,   low _ avg _ rate}

〉

236 High Low

237 High Slight

238 High Medium

239 High Low

240 High Low
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HI =   −42:379   +   2:04901523*T   +   10:14333127*RH  −  

0:22475541*T*RH  −   0:00683783*T
2  −   0:05481717*RH

2

+   0:00122874*T
2
*RH   +   0:00085282*T*RH

2  −  

0:00000199*T
2
*RH

2

(2)

I f RH < 13%   and   (T   >   80   and  T   <   112), t h e n t h e

following is subtracted from Equation 2:

13 − RH
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17 − ABS(T − 95)

17

r

I f RH   >   85%   and   (T   >   80   and  T   <   87), t h en the

following is added to Equation 2:

RH − 85
10

� 87 − T
5

The HI was then converted to Celsius for this paper. The

equation to convert from Fahrenheit (°F) to Celsius (°C) is as

follows:

°C = (°F − 32)� 5

9

3.2.2 Behavior data and periods
We utilized three different metrics to define animal behavior,

movement rate, activity and distance travelled from water. These
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metrics were calculated from the tracking data. Rate was calculated

by dividing the spatial distance between successive positions by the

temporal interval between the successive positions. Rate measures

were then averaged hourly. Distance to water was the Euclidean

distance between a position and the pasture’s only water source

using the extract feature of ArcMap (https://www.esri.com/en-us/

arcgis/products/arcgis-desktop/resources). Distances were averaged

hourly. Activity was calculated using rate and criteria described by

Augustine and Derner (2013) and Nyamuryekung’e et al. (2020).

Cattle activity can have value 0 and 1. Cattle were considered

inactive when rate was less than 2.34 m/min for each position. A

value of 0 was assigned for activity when rate was less than 2.34 m/

min, and a value of 1 for activity when rate was greater than 2.34 m/

min. If there were less than 3 positions recorded during an hour

(poor GPS performance), the hourly average activity was not

calculated and not used. If there were 3 or more positions per

hour, activities were averaged each hour.

Using all the rate and activity data in Trial 1, we selected two

periods to define typical grazing and grazing periods (Figure 1).

Period P1 is from 5:00 AM to 8:00 AM and 5:00 PM to 8:00 PM,

which focuses on the two major grazing bouts of cattle on rangeland

(Kilgour et al., 2012). Period P2 is from 5:00 AM to 8:00 PM, which

cover all activities during the day, when activity and movement are

usually higher compared to night.

These variables were selected because they may be useful for

monitoring common behaviors cattle show during periods of heat

stress (reduced feed intake, increased water intake and decreased
FIGURE 1

The average movement rate and the percentage of activity by hour for all animals during Trial 1, showing two common peaks in the morning and
evening grazing bouts.
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activity) (Alves et al., 2020). Changes in movement rate during the

primary grazing bouts may reflect changes in forage intake.

Decreased distance travelled from water may reflect increased

visits to water and more time spent near water, which may occur

in response to increased water intake. Our activity measure should

reflect changes in cattle activity.

3.2.3 Database for sequence pattern mining
Hourly averages of movement rate, activity, and distance

travelled from water were averaged within each period (P1 and

P2) for the data mining analysis. The other hourly averages were not

used in data mining. For each day, theHI and behavior metrics were

categorized into three (cool, medium and high) and four levels (low,

slight, medium, and high), respectively, using k-means clustering

method outlined in Section 3.3.1. Experimental data were then

segmented into six-day intervals, with a sliding window of one day.

For example, Figure 2 illustrates two segments in which the first

segment contains data from Julian dates 156 (June 5th, 2019) to 161

(June 10th, 2019) and the second segment contains data from Julian

dates 157 (June 6th, 2019) to 162 (June 11th, 2019). For the purpose

of applying algorithm, Julian dates are used instead of dates in the

day, month and year format. When using movement rate

(representing cattle behavior) and HI, the set of items (Definition

1) is I = {jdate_156, jdate_157,…, jdate_259, jdate_260,

coo l_heat Index , medium_heat Index , h igh_heat Index ,

low_avg_rate, slight_avg_rate, medium_avg_rate, high_avg_rate}.

An itemset consisting of three items: a Julian date encoded as

jdate_index, where index ∈ 156, 157,…, 260f g; the HI level

encoded as l ow_heat Index , medium_heat Index , and

high_heatIndex; and the movement rate level encoded as

low_avg_rate , s l ight_avg_rate , medium_avg_rate , and

high_avg_rate. Formally, based on Definition 1, the sequence

formed from weather and movement rate data is an ordered list

of information spanning six continuous days (n = 6). Each day’s

information is represented as an itemset. The sequence database,

which treats movement rate as behavior, includes all sequences with

movement rate levels. In the same way, the sequence databases

using activity and distance travelled from water as behavior metric

are constructed using activity levels and distance travelled from

water levels, respectively.
Frontiers in Animal Science 06
3.3 Data mining approach

Given the availability of both weather and GPS datasets, the

weather data was first processed using the method described in

Section 3.2.1 to compute the HI. The GPS data was then used to

calculate three behavioral metrics: movement rate, activity level,

and distance traveled from water—each representing cattle behavior

in Section 3.2.2.

In this section, the clustering method described in Section 3.3.1

is applied separately to the HI dataset and to each of the three

behavioral datasets. As a result, for each individual cattle and each

day, an HI level and a corresponding behavioral level are assigned.

This process generates separate databases for each behavioral

metric, which are then used for sequence pattern mining,

described in Section 3.2.3.

Subsequently, the CM-SPAM algorithm from the SPMF data

mining library in Section 3.3.2 is applied to each cattle’s behavioral

database to extract frequent sequential patterns, revealing

relationships between heat stress and reductions in behavior.

Finally, Section 3.3.3 details the analysis of detected continuous

patterns by comparing behavior during hot weather with behavior

observed during the preceding cool weather day.

3.3.1 Clustering for weather data and behavior
data

To categorize the weather for each day, we applied K-means

clustering method (Tan et al., 2016). This is an unsupervised

learning technique that partitions the data into k groups based on

their distance from centroids. Given k, the process is described

as follows:
• Step 1: Randomly select k centroids and partition the data

points into k non-empty non-overlapping subsets.

• Step 2: Calculate the centroids of the clusters from the

current partition, with each centroid representing the mean

of its the mean point of the cluster.

• Step 3: Assign each data point to the cluster with the

nearest centroid.

• Step 4: If no new assignment occurs, the algorithm stops.

Otherwise, go to step 2.
FIGURE 2

Segmentation of data into six-day intervals with a sliding window one day. The first and second segments contain weather and behavior data from
Julian dates from 156 to 161 and 157 to 162, respectively.
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In our experiment, we set k = 3 to represent three weather levels,

hot, medium and cool. In addition, to handle sudden weather

changes such as storms that lead to a very low value of HI, we

utilized k-means clustering method with constraint, ensuring each

cluster contains at least five data points (Bradley et al., 2000). The

cluster size constraint is met by formulating the assignment step 3

as a Minimum Cost Flow (MCF) problem (Bertsekas, 1991) and the

MCF algorithm is used to ensure that each cluster receives the

required minimum number of points. This constraint prevents the

creation of a cluster solely based on the extreme low HI values,

ensuring that the cluster representing cool weather is more

representative of typical cool weather conditions, rather than

being influenced by anomalous values.

In the same way, to categorize the cattle behavior, movement

rate, activity and distance travelled from water, into four levels:

high, medium, slight or low, we utilized the k-means clustering

method to divide the daily average of each behavior metric into four

distinct clusters. For this analysis, we set k = 4 and included the

constraint that each group must have at least five data points.

3.3.2 CM-SPAM algorithm
Mining frequent sequential patterns is a challenging and

computationally expensive task due to the exponential growth in

the number of subsequences. For example, considering a sequence

containing q items, it can have up to 2q-1 distinct subsequences, all

of which could potentially be candidates for frequent sequential

patterns (Fournier-Viger et al., 2017). Alternatively, when

considering the total number of k-sequences (sequences contains

k items) present in n itemsets is ( nk ) (Tan et al., 2016). In this study,

we apply an unsupervised Co-occurrence Map Sequential Pattern

Mining (CM-SPAM) algorithm (Fournier-Viger et al., 2014) for

discovering all frequent sequential patterns. It is one of the most

advantageous techniques and has been applied in various fields,

such as discovering frequent nucleotide patterns related to COVID

19 (Nawaz et al., 2021) and identifying frequent API call patterns in

malware behavior analysis (Nawaz et al., 2022; Pektas ̧, 2018).
CM-SPAM is a sequential pattern mining algorithm built on the

SPAM algorithm (Ayres et al., 2002). It utilizes a depth-first search

algorithm to discover patterns through the following steps:
Fron
• Step 1: First, the database is scanned to identify sequences

containing single items such as <{high_heatIndex}>, <

{low_avg_rate}>, and <{medium_avg_rate}>. The frequent

single-item sequences, whose support is higher than a given

threshold, are referred to as 1-sequences.

• Step 2: The algorithm recursively performs two operations,

s-extensions and i-extensions, to generate larger

subsequences as follows:
tiers in
◦ Order of items: To begin the extension process, it

assumes that all items are ordered in either

decreasing or increasing lexicographical order

(denoted as ≻) such as medium _ avg _ rate≻ low _

avg _ rate≻ high _ heatIndex : Note that the specific

order does not affect the final result, but is used to
Animal Science 07
explore the potential sequential patterns and avoid

considering the same pattern multiple times.

◦ s-extensions: Given a sequence sa = I1, I2,…, In and

an item x, an s-extension of sequence sa is formed as

sb = I1, I2,…, Ih, xf g;
◦ i-extensions: Given a sequence sa = I1, I2,…, In and

an item x, an i-extension of sequence sa is formed as

sb = I1, I2,…, Ih ∪ ​ xf g such that x is the last item

in Ih according to the lexicographical order ≻.
For example, given a sequence sa = high _ heatIndexf gh i with

i t e m l o w _ a v g _ r a t e , a n s - e x t e n s i o n i s

high _ heatIndexf g, low _ avg _ ratef gh i and an i-extension is

high _ heatIndex, low _ avg _ ratef gh i.
Using the s-extensions and i-extensions, the algorithm

generates (k+1)-sequences from one or more frequent k-

sequence. If a sequence can no longer be extended, the algorithm

backtracks and continues generating other patterns using

another sequence.

In this study, the SPMF data mining library (https://

www.philippe-fournier-viger.com/spmf/), an open-source Java

library, is utilized to call the CM-SPAM algorithm (Fournier-

Viger et al., 2017). Four parameters are configured. First,

minimum support threshold (minsup) is determined. If minsup

threshold is too low, it may result in an overwhelming number of

patterns, which may slow down the algorithm. Conversely, if

minsup threshold is set too high, too few patterns may be

identified. In this work, conducted over two different periods P1
and P2, because the length of period P1 is shorter than P2, the setup

ofminsup is 20% for period P1 and 25% for period P2 It means that a

pattern is considered frequent in P1, it must appear in at least 20%

of sequences in the dataset from P1, and a pattern is considered

frequent in P2, it must appear in at least 25% of sequences in the

dataset from P2. The value of minsup varies among different

problems; however, these values should not be too low, because

they have been used in discovering sequential pattern mining in

COVID-19 genome using CM-SPAM (Nawaz et al., 2021). Second,

the minimum number of items required in a pattern is set to three

in this study. This is because we aim to identify continuous patterns

spanning at least two days, which includes the weather level on the

first day and both the weather and behavior levels on the second

day. The third parameter is required items, which ensure the

detection of a decrease in animal behavior. Required items that

the frequent pattern must contain are low level values of each metric

(e.g. low_avg_rate). Finally, the max gap parameter specifies

whether gaps between item sets (meaning day’s information) are

allowed in sequential patterns. We have set it to be one to prevent

any gap between item sets, meaning that the frequent sequential

pattern identified in our experiment corresponds to

continuous days.

3.3.3 Examining the continuous patterns
To investigate the influence of continuous patterns on animal

behavior in comparison to cool days, we calculated three values: (1)
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the frequency of decrease in the behavior metric between the closest

cool weather day d before a pattern s begins and the last day dlast of

that pattern, (2) the average decrease in the behavior metric from d

and dlast across patterns, and (3) the average difference in the

behavior metric between d and dlast for each pattern. Because the

hot weather can last for several days (Trial 1), day d is defined as

either: (1) the closest cool day—the nearest day within the week

before the pattern start day on which the cool-level HI occurred; or

(2) the closest medium weather day—the nearest day before the

pattern start day on which the medium-level HI occurred.

Let CP be the set of continuous patterns found in data of a cow,

and |CP| be the number of patterns in CP. Let Bs
d and B

s
dlast

represent

the behavior metrics on day d and dlast related to continuous pattern

s ∈ CP (as defined above). Let C be the set of patterns s ∈ CP such

that Bs
d > Bs

dlast
, and let |C| be the number of patterns in C.

The frequency of decrease in the behavior metric for a cow is

defined as follows:

Cj j
CPj j

The average decrease in the behavior metric between days d and

dlast for a cow is defined as follows:

os∈C(B
s
d − Bs

dlast
)

Cj j (3)

The average difference in the behavior metric between days d

and dlast for a cow is defined as follows:

os∈CP(B
s
d − Bs

dlast
)

CPj j (4)

The difference between Equation 3 and Equation 4 is that

Equation 3 calculates the average decrease when the behavior

metric on day dlast is lower than that on day d, whereas Equation

4 computes the overall difference in behavior metric between days d

and dlast.

In this study, this exploration was applied to the behavior

metric (rate, m/min) that most successfully detects the

continuous pattern.

3.3.4 Binomial probability
To determine whether the detected patterns are unlikely due to

chance, we apply binomial probability to Trial 1 and Trial 2. The

binomial probability is calculated using the following equation:

P(X = k) =
n !

(n − k) ! k !
pk(1 − p)n−k

where:

n: total number of m continuous hot days across all animals.

k: total occurrences of the m-day continuous pattern detected

across all animals in our study.

p = 0.25: The probability of anm-day continuous pattern, based

on the assumption that on a last day of a pattern, the animal

behavior is equally likely to be one of four levels (low, slight,

medium, high), and the animal behavior is associated with “low”

movement rate on the day.
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In this study, we analyze the most successfully detected frequent

continuous patterns for Trial 1 and Trial 2.
4 Results

4.1 K-means weather clusters for trials 1
and 2

Based on the cluster method, the temperature of hot weather

periods in Trial 1 was greater than or equal to 30°C (Figure 3). The

medium weather period varied between 27°C to 30°C. The cool

weather was below 27°C. Two notable temperature drops occur on

Julian dates 212 and 225 (Figure 3).

In Trial 2, the weather threshold calculated from the cluster

method was slightly lower than in Trial 1. The hot weather is

defined as 29.5°C or higher (Figure 4). The medium weather ranges

from 26°C to 29.5°C. The cool weather was below 26°C.
4.2 CM-SPAM algorithm for pattern
recognition of behavior and weather data
for Trial 1

The following describes different continuous patterns that were

identified and detected in this work.
• A four-day continuous pattern with regard to a behavior

metric A is described as: “The first day features a high HI,

the second day also has a high HI, the third day continues

with a high HI, and the fourth day shows a low average of A

along with a high HI”.

• A three-day continuous pattern with regard to a behavior

metric A is described as: “The first day has a high HI, the

second day also has a high HI, and the third day presents a

low average of A alongside a high HI”.

• A two-day continuous pattern with regard to a behavior

metric A is described as: “The first day experiences a high

HI, and the second day shows a low average of A with a

high HI”.
During period P1 (5:00 AM to 8:00 AM and 5:00 PM to 8:00

PM), by utilizing average daily rate, CM-SPAM successfully

identifies the pattern between hot weather and low movement

rate, with 90.91% of animals exhibiting the three-day continuous

pattern. Among these, 54.55% animals show four-day continuous

patterns (Figures 5–8). Only two animals (9.09%) do not display

any four-day or three-day continuous patterns. In contrast, when

the algorithm analyses the average daily activity metric, which is

another cattle behavior metric, it fails to detect relationship between

hot weather and low average daily activity. The majority of animals

(95.45%) show no four-day or three-day continuous patterns

related to hot weather and low in activity. Only one animal

demonstrates the three-day continuous pattern (Figure 9). When

CM-SPAM is applied to average daily distance to water (the third
frontiersin.org

https://doi.org/10.3389/fanim.2025.1640550
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Trieu et al. 10.3389/fanim.2025.1640550
FIGURE 3

Three weather levels (hot, medium, and cool weather days) calculated using the K-means clustering method with the constraint across days in Trial 1.
FIGURE 4

Three weather levels (hot, medium, and cool weather days) calculated using the K-means clustering method with the constraint across days in Trial 2.
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FIGURE 5

Average movement rate of cows with three-day continuous patterns and the average rate of cows without continuous patterns (three-day and
four-day) in period P1 of Trial 1. Daily maximum heat index helps identify periods of hot weather.
FIGURE 6

Average movement rate of cows with four-day continuous patterns and the average rate of cows without continuous patterns (both three-day and
four-day) in period P1 of Trial 1. Daily maximum heat index helps identify periods of hot weather.
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cattle behavior metric), only one animal showed four-day

continuous pattern. More cows (31.82%) displayed a three-day

continuous pattern, while 68.18% of cows did not show any four-

day or three-day continuous patterns linked to hot weather and low

in distance to water (Figure 10) (Table 2).

In period P2 (5:00 AM to 8:00 PM), 54.55% of the cows

displayed three-day continuous patterns related to their average

daily rate, with 13.64% of them showing four-day continuous

pattern. Meanwhile, 45.45% of animals do not exhibit either four-

day or three-day continuous pattern. When analysing daily average

activity and average daily distance to water, the results are similar to

those in the period P1. The algorithm did not identify a connection

between hot weather and a decrease in this behavior, and 95.45% of

the cows did not show any three-day or four-day continuous

patterns when considering average daily activity. For daily

distance travelled to water, 31.82% of animals displayed three-day

continuous patterns (Table 3).

When the three-day continuous patterns were detected using

movement rate during period P1 for 20 cows out of 22 cows, the

frequency of decreases in rate had minimum, maximum and mean

values of 53%, 100% and 87%, respectively (Table 4). The average

decrease in movement rate from the last cool day within a week
Frontiers in Animal Science 11
before a three-day continuous pattern began or the last medium

weather day to the last hot day in the pattern among 20 cows ranged

from 2.17 (m/min) to 8.0 (m/min), with a mean of 4.57 (m/min).

The minimum, maximum and mean values of average difference in

rates during hot days and the previous cool day within a week or the

closest medium weather day are 0.61 (m/min), 8.0 (m/min) and

3.93 (m/min), respectively. For the 12 cows exhibiting four-day

continuous pattern in period P1 using movement rate, the

minimum frequency of decreases in rate was slightly higher than

that of three-day continuous pattern (55%), with four cows showing

100% frequency of decrease and a mean frequency of 82%. The

minimum, maximum and mean values of average decrease in

movement rate from the previous cool day within a week before a

four-day continuous pattern started or the last medium weather day

to the end of the hot period in the pattern were slightly higher

compared to the three-day continuous pattern, with values of 2.38

(m/min), 8.64 (m/min) and 5.43 (m/min), respectively. Similarly,

the minimum, maximum and mean values for the average

differences between the four-day continuous hot days and the

cool day within a week or the closest medium weather day were

slightly higher than those for three-day continuous pattern, with

values of 1.26 (m/min), 8.37 (m/min) and 4.37 (m/min) (Table 4).
FIGURE 7

Three-day continuous patterns using the movement rate metric for cow 105 in Trial 1 during period P1, with detected patterns highlighted.
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The binomial probability was calculated during P1 period, based

on the movement rate behavior metric over the three-day

continuous patterns. With m = 3, n = 622, k = 214, we find that

P(X = 214) < 0:0001.
4.3 CM-SPAM algorithm for pattern
recognition of behavior and weather data
for trial 2

Because the frequency of hot weather in Trial 2 is lower than in

Trial 1, and the duration of dataset in Trial 2 is shorter than in Trial

1 (less than one month), two-day continuous patterns are included

in the results. In period P1 (5:00 AM to 8:00 AM and 5:00 PM to

8:00 PM), utilizing average daily rate, CM-SPAM algorithm

identified 71.43% of animals exhibited a two-day continuous

pattern between hot weather and low in movement rate levels.

Among these, 42.86% show three-day continuous pattern.

Meanwhile, 28.57% of animals did not display any continuous

patterns (two-day, three-day or four-day) related to hot weather

and low movement rate (Figures 11–14). When considering average

daily activity as a behavior metric, 28.57% of animals show a two-

day continuous pattern, while the rest did not show any connection
Frontiers in Animal Science 12
between hot weather and low activity (Figure 15). CM-SPAM is

unable to detect any pattern linking hot weather and distance

travelled to water, with 100% of animals showing no

relationship (Table 5).

During period P2 (5:00 AM to 8:00 PM), no three-day

continuous patterns were observed when using three behavior

metrics. When average daily rate is used to represent the

behavior, 42.86% of animals showed a two-day continuous

pattern, while 57.14% of animals did not exhibit any continuous

patterns (two-day, three-day or four-day) associated with hot

weather and low movement rate. Similarly, CM-SPAM detected

that 42.86% of animals showed two-day continuous pattern

between hot weather and low activity, while the remaining

animals showed no continuous patterns. Like in period P1, CM-

SPAM did not detect any continuous patterns between hot weather

and reduced distance travelled to water, with 100% of animals

showing no relationship (Table 6).

When the two-day continuous patterns were detected using

movement rate during period P1 for five cows out of seven cows, the

frequency of decreased rates varied from 78% to 100%, with a mean

of 92%. The minimum, maximum and mean values of average

decrease in movement rate from the previous cool day within a

week before a two-day continuous pattern started or the closest
FIGURE 8

Four-day continuous patterns using movement rate metric for cow ID 105 in Trial 1 during period P1, with detected patterns highlighted.
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medium weather day to the end of the hot day in the pattern were

1.4 (m/min), 5.52 (m/min) and 3.76 (m/min), respectively. Among

five cows, the average difference in movement rate from the cool day

to rates during the hot period ranged from 1.4 (m/min) to 5.52 (m/

min), with a mean of 3.18 (m/min). For the three cows showing the

three-day continuous pattern in period P1 using movement rate, the

minimum, maximum and mean values for frequency of decrease

were 75%, 100% and 92%, respectively. The average decrease in

movement rate (the closest cool day within a week before a three-

day continuous pattern began or the last medium weather day to the

end of the hot day in the pattern) ranged from 1.4 (m/min) to 5.18

(m/min), with a mean of 3.78 (m/min). The minimum, maximum

and mean values for the average difference for three-day continuous

pattern from the previous cool day within a week before a three-day

continuous pattern started or the closest medium weather day were

1 . 4 (m /m i n ) , 5 . 1 8 (m /m i n ) a n d 3 . 2 3 (m /m i n ) ,

respectively (Table 7).

The binomial probability was calculated during P1 period, based

on the movement rate behavior metric over the two-day continuous

patterns. With m = 2, n = 105, k = 49, we find that P(X = 49) <

0:0001.
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5 Discussion

In this study, CM-SPAM was applied to two separate summer

trials conducted at the same pasture in different years, 2019 and

2021. Among three behavior metrics, the CM-SPAM algorithm

successfully identified a frequent sequential pattern between hot

weather and a decrease in movement rate in period P1. The three-

day continuous pattern showed that three consecutive hot days led

to a decrease in movement rate on the third day during the morning

and evening grazing bouts. Hahn (1999) describes how heat wave

episodes (several days of hot weather) affected the ability of feedlot

steers to maintain homeothermy. With several days of hot weather,

many feedlot steers in the midwestern US succumbed to heat stress.

Beatty et al. (2006) found that cattle exposed to sustained hot

temperatures and high humidity levels in controlled climate rooms

displayed increased respiration rates and core body temperature

after several days. In addition, changes in blood chemistry

(imbalance of acid-base and blood electrolytes) of the cattle

occurred as a result of sustained high Temperature Humidity

Index (THI). Heat index used in our study is similar, or identical,

to THI. Although impacts of sustained hot weather are known to
FIGURE 9

Three-day continuous patterns using activity metric for cow ID 704 in Trial 1 during period P1, with detected patterns highlighted.
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adversely affect feedlot cattle (Hahn, 1999) and cattle being

transported in ships (Norris et al., 2003), little research has been

conducted on the effect of consecutive days of hot weather (heat

wave) on cattle grazing rangelands. This study uses data mining

techniques to show that cattle behavior is affected by consecutive

days of hot weather. Cattle in this study moved slower during the

primary grazing bouts after two or more days of hot weather (high

THI). Islam et al. (2021) suggested that GPS tracking could be used

to remotely monitor cattle for heat stress. More time spent near

shade and reduced activity might indicate that thermal conditions

might be approaching levels that could adversely affect cattle.

Nyamuryekung’e et al. (2021) reported that cattle moved slower

during hot weather, but did not examine the effects of consecutive

days of hot weather. Wade et al. (2024) found that the distance

travelled by sheep each day decreased during a period of hot

weather lasting three days.

Using period P1 (morning and evening grazing bouts) is more

effective in detecting the relationship between hot weather and a

change in behavior compared to period P2 (daylight) in both trials.

Especially in Trial 1, most animals exhibited a three-day continuous

pattern reduced movement rate during period P1, when hot weather

persisted for three days. This could be because period P1 focuses on
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the two primary grazing bouts rather than all activity during

daylight. Cattle typically reduce feed intake as a response to heat

stress (Alves et al., 2020). The slower movement rates during the

primary grazing bouts may reflect decreased grazing intensity and

possibly reduced forage intake that would be expected as a response

to high cumulative head.

In contrast to our expectations, we did not see reductions in

activity or distance travelled from water after consecutive days of

hot weather. It is unlikely that the cattle during the study period

experienced heat stress. Temperature and humidity levels during

the study were likely not great enough to induce heat stress. Instead,

the cattle appeared to change at least some of their behaviors during

grazing after 2 or more consecutive hot weather. The cattle were still

moving during the early morning and evening periods (typical

grazing bouts), but at slower rates. Our method for determining

activity was based on a threshold of moving or resting over a 10-

minute period. Cattle slowed down, but not perhaps the reduced

rate was not enough to cross the threshold level and impact

calculated activity levels. Distance travelled from water was

evaluated as an indirect indicator of water intake. However, this

metric may not be sensitive enough to monitor drinking activity.

Cattle locations were recorded at 10-min intervals, but the typical
FIGURE 10

Three-day continuous pattern using distance traveled from water metric for cow ID 229 in Trial 1 during period P1, with detected patterns
highlighted.
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TABLE 2 Percentage of cows with patterns during period P1 in Trial 1 for the behavioral metrics: average daily movement rate, average daily activity and average daily distance travelled from water.
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TABLE 4 Comparison of movement rate changes between the closest cool day within seven days or the closest medium weather day before the first
day of the three-day (or four-day) continuous pattern and the third day (or fourth day) of the three-day (or four-day) continuous pattern during
period P1 in Trial 1, including minimum, maximum and mean values for the frequency of decreased movement rates, average of movement rate
decrease (prior to until the end), and overall movement rate difference (prior to versus hot period) for animals with three-day (or four-day) continuous
patterns, along with the number of animals n having the minimum and maximum values.

Comparison metrics Measures Three-day continuous pattern Four-day continuous pattern

Frequency of Decrease in Movement Rate

Minimum 53% (n=1) 55% (n=2)

Maximum 100% (n=9) 100% (n=4)

Mean 87% 82%

Average Decrease in Movement Rate (m/min)

Minimum Min: 2.17 (n=1) 2.38 (n=1)

Maximum Max: 8.0 (n=1) 8.64 (n=1)

Mean 4.57 5.43

Average Difference in Movement Rate
(m/min)

Minimum 0.61 (n=1) 1.26 (n=1)

Maximum 8.0 (n=1) 8.37 (n=1)

Mean 3.93 4.37
F
rontiers in Animal Science
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FIGURE 11

Average movement rates of cows with two-day continuous patterns and the average rates of cows without continuous patterns (two-day, three-day
and four-day) in period P1 of Trial 2. Daily maximum heat index helps identify hot periods.
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FIGURE 12

Average movement rates of cows with three-day continuous patterns and the average rates of cows without continuous patterns (two-day, three-
day and four-day) in period P1 of Trial 2. Daily maximum heat index helps identify periods of hot weather.
FIGURE 13

Three-day continuous patterns using the movement rate metric for cow ID 9128 in Trial 2 during period P1, with detected patterns highlighted.
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time cattle spend drinking at the tank is only 1 or 2 minutes (Tobin

et al., 2021b). Cattle may have drank multiple time while spending

time near water, that our GPS tracking might not detect. More

direct measures of remotely monitoring water intake such as flow

meters or rumen boluses may be needed to evaluate the impact of

consecutive days of hot weather on water intake for cattle

grazing rangelands.

Compared to Trial 1 where most of animals (90.91%) showed a

three-day continuous pattern, only about half of animals (42.86%)

shows three-day continuous pattern in Trial 2. This may be because

hot weather occurred less frequently in Trial 2 compared to Trial 1.

During four months of Trial 1, the breaks between hot days was

often shorter than during trial 2 (Figures 3, 4).

Movement rate was a more efficient metric than activity and

distance travelled from water when analysing the relationship

between cattle behavioral changes and continuous hot weather in

both trials. In Trial 1, during the hot weather from Julian dates 236

to 244, animals with three-day and four-day continuous patterns

had a consistently low average movement rates compared to

animals without any these patterns (Figures 5, 6). It should be

note that, in the summary comparison between Figures 5 and 6, the

average movement rate of animals without patterns appears to be

lower than that of animals with patterns. However, this does not
Frontiers in Animal Science 18
impact our analysis because out method was applied to individual

animals. The key focus of the comparison is not on the absolute

values of movement rates, but rather changes and consistency of

behavior (movement rate) of individual animals. This property,

observed during the hot weather periods, indicates that animals that

were not designated as having a pattern did not meet the minimum

support threshold of 0.2 during period P1. In other words, the three-

day or four-day continuous pattern did not occur frequently

enough to be detected as having a pattern, which explains the

difference between the two groups. When examining individual

cows, such as cow ID 105, which exhibited three-day (Figure 7) and

four-day (Figure 8) continuous pattern, the movement rate metric

identified these patterns frequently throughout the hot weather

periods. On the other hand, when using the activity metric for cow

ID 704 (Figure 9), the three-day continuous pattern was more

variable. For cow ID 229 (Figure 10), the distance travelled from

water metric did not reveal any connections between hot weather in

July and cow behavior. During the longest seven-day continuous

hot weather in Trial 2 from Julian dates 214 to 220, animals with

two-day and three-day continuous patterns also exhibited

consistently low average movement rates compared to those

without any continuous patterns (Figures 11, 12). Once again, the

key point is the consistency of individual animal responses between
FIGURE 14

Two-day continuous patterns using movement rate metric for cow ID 9128 in Trial 2 during period P1, with detected patterns highlighted.
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FIGURE 15

Two-day continuous patterns using activity metric for cow ID 67 in Trial 2 during period P1, with detected patterns highlighted.
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TABLE 6 Percentage of cows with patterns during period P2 of Trial 2
using the behavior metrics: average daily movement rate, average daily
activity and average daily distance travelled from water. Identification
numbers (ID) of cows displaying patterns are listed.

Patterns

Average
daily

movement
rate

Average
daily

activity

Average daily
distance travel
from water

Four-day
continuous
pattern

0% 0% 0%

Three-day
continuous
pattern

0% 0% 0%

Two-day
continuous
pattern

42.86%
Animal ID:
67,515,830

42.86%
Animal ID:
685,515,9128

0%

No Four-day,
Three-day
and Two-day
continuous
pattern

57.14%
Animal ID:

685,9128,51,996

57.14%
Animal ID:
67,51,996,830

100%
Animal ID:

67,685,515,9128,51,996,830
Cows that have three-day continuous patterns also have two-day continuous patterns.
TABLE 5 Percentage of cows with patterns during P1 in Trial 2 for the
behavior metrics: average daily movement rate, average daily activity
and average daily distance travelled. Identification numbers (ID) of cows
that display patterns in Trial 2 are listed.

Patterns

Average
daily
movement
rate

Average
daily
activity

Average daily
distance traveled
from water

Four-day
continuous
pattern

0% 0% 0%

Three-day
continuous
pattern

42.86%
Animal ID:
67,515,9128

0% 0%

Two-day
continuous
pattern

71.43%
Animal ID:
67,515,9128,
996,830

28.57%
Animal ID:
67,685

0%

No Four-day,
Three-day and
Two-day
continuous
patterns

28.57%
Animal ID:
685,51

71.43%
Animal ID:
515,9128,
51,996,830

100%
Animal ID:

67,685,515,996,9128,51,830
Cows that have three-day continuous patterns also have two-day continuous patterns.
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the two groups. When examining individual cows, for example cow

ID 9128, using movement rate metric, three-day and two-day

continuous patterns (Figures 13, 14) were frequently observed

across the hot weather period. However, using activity metric for

cow ID 67 (Figure 15), the two-day continuous pattern did not

appear across all hot weather such as the hot period at the end

of August.

Evaluation of changes in individual animals rather than using

absolute metric values for detection of livestock behaviors has been

recommended in several studies. Tobin et al. (2024) reported that

individual sheep and individual accelerometers varied and that

algorithms that evaluated changes of individuals would account for

these sources of variation. Chang et al. (2022) reported that the accuracy

of detecting cattle rumination improved 86% to 98% when using an

individual animal model compared to a generic model for all animals.

Using data mining, Trieu et al. (2025) was able to detect bovine

ephemeral fever by evaluating the accelerometer streams of individual

heifers and cows. In this study, the data mining approach must evaluate

the changes in movement rates and other behavior metrics on an

individual basis, because measured rates, activity and distances travelled

from water vary among cows in both cool and hot weather. We are not

aware of any studies that have used this data mining approach to study

cumulative impacts of consecutive days of hot weather on cattle

movements and activity. Data mining may be useful to identify

patterns in cattle behavior that may be difficult to identify using

traditional statistical techniques. The use of data mining for

evaluating patterns in cattle behavior and responses to variable

weather conditions deserves further exploration.

The mean values for both average decrease movement rates

prior to and at the end of the hot period and the average difference

in movement rate (before and during hot periods) that occurred in

Trial 2 were lower than those in Trial 1. This is likely because Trail 2

had a shorter duration, and the length of hot weather periods were

shorter. Cows may have varying tolerances to hot weather, and the

movement rate often decreased by around 4 to 5 m/min with a

maximum of 8 m/min during consecutive days of hot weather and
Frontiers in Animal Science 20
patterns were detected (Trial 1). The mean value in frequency of

decreased movement rates for three-day continuous pattern is

higher than or equal to that of two-day and four-day continuous

patterns. Additionally, the mean values for both the average

decrease and the average difference in longer continuous patterns

are slightly higher than in shorter ones. In Trial 1, the four-day

continuous pattern shows a higher mean for both the average

decrease in rate (prior to until the last day) and difference

(average decrease in rate) compared to the three-day continuous

pattern. Similarly, in Trial 2, the three-day continuous pattern

shows a slightly higher mean values for decrease and difference

than the two-day continuous pattern (Tables 4, 7). The smaller

sample size in Trial 2 compared to Trial 1 also could potentially

affect differences in movement rates between the two studies.

However, the very low binomial probability values observed in

both Trials 1 and 2 during period P1 based on movement rate

behavior indicate that the detected continuous patterns in our work

are unlikely to have occurred by chance and are therefore

considered statistically significant. As a result, these findings

support our identification of frequent sequential patterns between

consecutive day of hot weather conditions and cattle behavior.

When considering both trials, these findings suggest that continued

hot weather (long heat waves) may have a greater impact on grazing

cattle than shorter heat waves.
6 Conclusion

In this study, GPS tracking and weather data were utilized to

examine how hot weather affects cattle behaviors. K-means

clustering was applied to categorize weather conditions into three

levels (cool, medium, hot), while metrics from GPS tracking

(movement rate, activity, and distance travelled from water) were

categorized into four levels (low, slight, medium, high). CM-SPAM

algorithm in data mining was applied to identify the relationship

and successfully detected that consecutive hot days negatively affect
TABLE 7 Comparison of movement rate changes between the closest cool day within seven days or the closest medium weather day before the first
day of the two-day (or three-day) continuous pattern and the second day (or third day) of the two-day (or three-day) continuous pattern during
period P1 in Trial 2, including minimum, maximum and mean values for the frequency of decreased movement rate, average of movement rate
decrease (prior to until the end), and overall movement rate differences (prior to versus hot period) for animals with two-day (or three-day)
continuous patterns, along with the number of animals n having the minimum and maximum values.

Comparison metrics Measures Two-day continuous pattern Three-day continuous pattern

Frequency of Decrease in Movement Rate

Minimum 78% (n=1) 75% (n=1)

Maximum 100% (n=3) 100% (n=2)

Mean 92% 92%

Average Decrease in Movement Rate (m/min)

Minimum 1.4 (n=1) 1.4 (n=1)

Maximum 5.52 (n=1) 5.18 (n=1)

Mean 3.76 3.78

Average Difference in Movement Rate
(m/min)

Minimum 1.4 (n=1) 1.4 (n=1)

Maximum 5.52 (n=1) 5.18 (n=1)

Mean 3.18 3.23
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cattle behavior, particularly reducing movement rate during the

typical morning and evening grazing bouts. The data mining

algorithm identified long-term responses, including two-day,

three-day, or four-day continuous patterns in cattle movement in

response to consecutive hot weather. Movement rates during the

morning and evening grazing bouts decreased during 2 to 4 days

consecutive days of hot weather. Data mining approaches may be a

useful tool for evaluating behavioral impacts of heat waves.

Ranchers should be aware that consecutive days of hot weather

may have a greater impact on cattle behavior than a single day of

hot conditions.
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Trotter, M. G. (2022). Detection of rumination in cattle using an accelerometer ear-tag:
A comparison of analytical methods and individual animal and generic models.
Comput. Electron. Agric. 192, 106595. doi: 10.1016/j.compag.2021.106595

Fournier-Viger, P., Gomariz, A., Campos, M., and Thomas, R. (2014). “Fast vertical
mining of sequential patterns using co-occurrence information,” in Advances in
Knowledge Discovery and Data Mining: 18th Pacific-Asia Conference, PAKDD 2014,
Tainan, Taiwan, May 13-16, 2014. Proceedings, Part I 18. Eds. B. T., Z.-H. Z., A. L. P. C.,
H.-Y. K., V. S. Tseng and Ho, Cham, Springer. 40–52. doi: 10.1007/978-3-319-06608-
0_4

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., and Thomas, R. (2017).
A survey of sequential pattern mining. Data Sci. Pattern Recogn. 1, 54–77.

Gonzalez-Rivas, P. A., Chauhan, S. S., Ha, M., Fegan, N., Dunshea, F. R., andWarner,
R. D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality:
A review. Meat. Sci. 162, 108025. doi: 10.1016/j.meatsci.2019.108025

Gorczyca, M. T., and Gebremedhin, K. G. (2020). Ranking of environmental heat
stressors for dairy cows using machine learning algorithms. Comput. Electron. Agric.
168, 105124. doi: 10.1016/j.compag.2019.105124

Hahn, G. L. (1999). Dynamic responses of cattle to thermal heat loads. J. Anim. Sci.
77, 10–20. doi: 10.2527/1997.77suppl_210x

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques. 3rd
ed (San Francisco: Morgan Kaufmann Publishers Inc).

Islam, M. A., Lomax, S., Doughty, A., Islam, M. R., Jay, O., Thomson, P., et al. (2021).
Automated monitoring of cattle heat stress and its mitigation. Front. Anim. Sci. 2,
737213. doi: 10.3389/fanim.2021.737213

Kilgour, R. J., Uetake, K., Ishiwata, T., and Melville, G. J. (2012). The behaviour of
beef cattle at pasture. Appl. Anim. Behav. Sci. 138, 12–17. doi: 10.1016/
j.applanim.2011.12.001

Knight, C. W., Bailey, D. W., and Faulkner, D. (2018). Low-cost global positioning
system tracking collars for use on cattle. Rangeland. Ecol. Manage. 71, 506–508.
doi: 10.1016/j.rama.2018.04.003

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., and Bochtis, D. (2018). Machine
learning in agriculture: A review. Sensors 18, 2674. doi: 10.3390/s18082674

Mia, N., Sarker, T., Halim, M. A., Alam, A., Ali, M. S., Rahman, M. M., et al. (2025).
Machine learning overview and its application in the livestock industry.Meat. Res. 5, 1-
10. doi: 10.55002/mr.5.1.109

Mluba, H. S., Atif, O., Lee, J., Park, D., and Chung, Y. (2024). Pattern Mining-Based
pig behavior analysis for health and welfare monitoring. Sensors 24, 2185. doi: 10.3390/
s24072185
Frontiers in Animal Science 22
Napolitano, F., De Rosa, G., Chay-Canul, A., Álvarez-Mac\’\ias, A., Pereira, A. M. F.,
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