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Guanidinoacetic acid (GAA) is a precursor of creatine and is an arginine-sparing

compound that may improve energy metabolism and muscle growth. Its

potential in beef cow–calf systems, however, is still poorly understood. This

study evaluated the effects of supplementing pregnant cows with GAA during

late gestation on muscle development and adipogenesis in beef calves. A total of

24 pregnant Brahman cows carrying male or female fetuses received either a

control diet or a diet supplemented with 0.2% GAA from day 180 to day 270 of

gestation. Cows were weighed at the beginning and at the end of the trial to

assess body weight (BW), and daily feed intake was recorded. Blood was

collected on day 227 of gestation for plasma amino acid profiling, and the

carcass traits were assessed via ultrasound. At 45 days of age, muscle biopsies

were collected for mRNA expression and protein abundance. All statistical

analyses were performed in SAS Studio using a mixed model including the

fixed effects of treatment and offspring sex. In cows, GAA supplementation did

not affect the BW, average daily gain, or feed intake (p > 0.05), but increased the

plasma arginine, citrulline, and ornithine levels (p ≤ 0.02) and the final ribeye area

(p = 0.01). The calves from GAA-supplemented cows exhibited increased p-Akt/

Akt (p = 0.03) and p-mTOR/mTOR (p < 0.01) ratios, with treatment × sex

interactions (p = 0.02). The MYOD1 mRNA expression was upregulated (p =

0.01), whereas MYOG remained unchanged (p = 0.14). The PAX7 protein tended

to be higher (p = 0.07) and PAX3 reduced (p = 0.01) in GAA calves. No differences
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were detected for the adipogenic markers. These findings suggest that maternal

GAA supplementation can stimulate muscle development in beef calves without

altering intramuscular adipogenesis, indicating a potential strategy to enhance

muscle growth programming in cow–calf production systems.
KEYWORDS
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1 Introduction

Pregnancy is a nutritionally demanding process, requiring

substantial amounts of ATP to support conceptus development

through biosynthesis, nutrient transport, metabolism, and tissue

remodeling (Aldoretta and Hay, 1995; Johnson et al., 2023; Seo

et al., 2021). In beef cattle production, maternal nutrition directly

influences fetal skeletal muscle development and ultimately affects

the growth efficiency and long-term productivity of the offspring

(Costa et al., 2021; Santos et al., 2022; Barcelos et al., 2022).

Maternal supplementation with protein and energy may result in

different outcomes on postnatal performance by modulating the

energy metabolism and muscle growth (Shokrollahi et al., 2024;

Kladt et al., 2025; Shokrollahi et al., 2025) and by increasing the

intramuscular fat deposition (Marquez et al., 2017; Nascimento

et al., 2024; Sanglard et al., 2023; Carvalho et al., 2022). Moreover,

nutrition strategies or feed additives that enhance placental

vascularization may increase fetal nutrient availability, promoting

a more efficient fetal development and an improved offspring

performance after birth (Reynolds et al., 2023).

Guanidinoacetic acid (GAA) is derived from amino acids and

functions as a direct precursor of creatine, which is an essential

molecule in the energy synthesis of the cell (Ostojic, 2015). In

metabolically active tissues such as the skeletal muscle, the creatine

(Cr)–creatine kinase (CK)–phosphocreatine (PCr) system plays a

crucial role in buffering and shuttling ATP. The uterus, placenta,

and fetus can synthesize creatine and contribute to its

compartmentalization in fetal fluids, which serve as nutrient

reservoirs for fetal development (Sah et al., 2025). Studies have

shown the dynamic expression of the Cr–CK–PCr system at the

maternal–placental interface, with increased creatine biosynthesis

and ATP transport activity during critical phases such as

implantation (Seo et al., 2021; Guingand et al., 2024). Although

creatine supplementation in late-gestation sows did not alter the

Cr–CK–PCr system, the detection of its key components in the

endometrium and fetal muscle highlights the importance of this

system in meeting the elevated energy demands during late

gestation and in supporting fetal development (Lopez et al., 2025).

Due to its thermal instability and high production cost, creatine

has not been widely adopted in animal nutrition as a feed additive

(Baker, 2009). GAA, on the other hand, has been widely studied not

only as a creatine precursor but also as an efficient arginine-sparing
02
molecule (Liu et al., 2015; Sousa et al., 2024; Yan et al., 2021).

Compared with creatine, it presents higher bioavailability due to the

presence of multiple transporters, effectively elevates hepatic and

muscular creatine, shows good thermal stability and lower cost

(Khajali et al., 2020; Giraldi et al., 2024), and has been proven safe in

monogastric species, with no concerns for consumer safety under

approved conditions of use (EFSA, 2022). Arginine is an essential

amino acid particularly relevant in fetal development due to its

involvement in multiple metabolic processes, such as cellular

signaling and protein synthesis (Wu and Morris, 1998;

Morris, 2007).

Although the fetal origins of muscle development and energy

metabolism are increasingly recognized, the role of maternal GAA

supplementation in these processes remains only partially

understood. Sousa et al. (2024), in a companion study conducted

within the same experimental framework, demonstrated that

maternal GAA supplementation can enhance the placental blood

flow through nitric oxide (NO) pathways and highlighted its

biochemical capacity as an arginine-sparing compound. While

these findings provide important mechanistic insights, they were

focused on maternal and placental adaptations and did not address

downstream effects on fetal muscle tissue. Therefore, the present

study uniquely investigates how maternal GAA supplementation

during late gestation influences early skeletal muscle development

and intramuscular adipogenesis in beef calves. This study expands

on these previous findings by directly evaluating postnatal skeletal

muscle and adipogenic pathways, providing novel insights into how

maternal GAA supplementation during late gestation may influence

offspring growth and metabolic programming.
2 Materials and methods

2.1 Animals, treatments, and experimental
design

All animal care and handling procedures were previously

approved by the Animal Care and Use Committee of the

Department of Animal Science at the Universidade Federal de

Viçosa, Viçosa, Minas Gerais, Brazil (protocol 04/2022).

The methodology used in this study has been previously

described by Sousa et al. (2024). A total of 24 pregnant Brahman
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cows (532 ± 15.1 kg) carrying male (n = 12) or female (n = 12)

fetuses were used. Briefly, cows were subjected to a fixed-time

artificial insemination protocol with four attempts using semen

from the same sire. Therefore, four groups of cows were established

based on the days of gestation. After pregnancy confirmation, the

cows were managed as a single herd on Marandu palisade grass

(Urochloa brizantha). On day 170 of gestation, the cows were

housed individually for a 10-day adaptation period and fed a

basal diet ad libitum (Sousa et al., 2024). From day 180 to day

270, the cows received either a control (CON) diet or a diet

s upp l emen t ed w i th 0 . 2% GAA (d ry ma t t e r b a s i s )

(GuanAMINO®; Evonik Operations GmbH, Hanau-Wolfgang,

Germany). GAA (GuanAMINO®; Evonik Operations GmbH,

Hanau-Wolfgang, Germany) was incorporated into the mineral

mixture (Probeef Reprodução Seca; Cargill Nutrição Animal,

Itapira, SP, Brazil). On day 270, the cows were moved to pasture

for calving. Postpartum, the cow–calf pairs remained as a single

herd until weaning (210 days). From day 90 onward, calves had

access to creep-feeding (5.0 g/kg body weight, BW). The

composition of the supplement provided through the creep-

feeding system is shown in Table 1.
2.2 Cows’ performance and metabolic
evaluation

The cows were weighed at the beginning and at the end of the

experiment, following a 16-h fasting period, to determine the initial

body weight (IBW) and the final body weight (FBW) and to

ca lcu la te the average da i ly ga in (ADG) dur ing the

experimental period.

The voluntary feed intake of each cow was individually recorded

daily throughout the experimental period. Concentrate samples

were collected separately for each production batch, while forage

and orts samples were collected daily and stored at −20°C for

subsequent nutrient composition analysis.

On day 227 of gestation, blood samples were taken via jugular

venipuncture into vacuum tubes (Vacuplast®Collect Time, Cotia, SP,

Brazil) containing sodium heparin for analysis of the plasma amino

acid profile and immediately frozen (−20°C) for subsequent analysis.
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Plasma amino acids, such as arginine, citrulline, and ornithine, were

quantified by high-performance liquid chromatography (Xevo™

TQD; Waters Corporation, Milford, MA, USA).

Carcass measurements of the cows were evaluated at the

beginning and at the end of the experiment via ultrasound (Aloka

SSD500II; Mitaka, Tokyo, Japan) using a 3.5-MHz linear probe. The

initial and final ribeye areas (IREA and FREA, respectively) were

measured at the Longissimus lumborum (12th–13th ribs). Images

were analyzed using BioSoft Toolbox® II for Beef (Biotronics,

Ames, IA, USA).
2.3 Calf skeletal muscle sampling

At 45 days of age, Longissimus lumborum muscle samples

(located between the 12th and 13th ribs) were biopsied from the

calves. Briefly, the area was cleaned with 70% ethanol, and then the

incision was made 10 min after local anesthesia (2% lidocaine). The

muscle sample was washed with sterile saline solution (0.9% NaCl).

The muscle samples were immediately snap-frozen and powdered

on liquid nitrogen using a pre-cold mortar and pestle. The samples

were stored at −80°C until mRNA and protein expression analyses.
2.4 Total RNA extraction and mRNA
expression analyses

Total RNA was extracted from 0.1 g of tissue using TRIzol®

(Invitrogen™, Thermo Fisher Scientific®, Hillsboro, OR, USA)

following the manufacturer’s recommendations. The total RNA

was quantified with a NanoDrop spectrophotometer (Thermo

Fisher Scientific®, Waltham, MA, USA), ensuring an optimal

260:280 ratio between 1.8 and 2.0, and the integrity was assessed

in a 1% agarose gel. The RNA samples were reverse-transcribed into

cDNA using the High-Capacity cDNA Reverse Transcription Kit

(Applied Biosystems, Foster City, CA, USA). The primers (Table 2)

for the amplification of the target and endogenous genes were

designed using PrimerQuest Software (PrimerQuest–design qPCR

assays | IDT; idtdna.com) with sequences obtained from GenBank

(GenBank Overview; nih.gov). Real-time quantitative PCR was

performed in the thermal cycler QuantStudio 3 (Applied

Biosystems, Foster City, CA, USA) using the SYBR Green

detection method (Applied Biosystems, Foster City, CA, USA) and

the SYBR™ Green PCR Master Mix (Invitrogen™, Thermo Fisher

Scientific®, Hillsboro, OR, USA). The results of gene expression were

calculated according to the methods described by Steibel et al. (2009).
2.5 Protein extraction and Western blotting
analyses

Total protein was extracted from 0.1 g of tissue in 1 ml of lysis

buffer [10 mM of Tris–HCl (pH 7.6), 150 mM of NaCl, 1% of Triton

X-100, 0.5% sodium deoxycholate, 1% sodium dodecyl sulfate

(SDS), and 1% of protease inhibitor cocktail mammalian cells and
TABLE 1 Nutrient composition of the supplement (Probeef® Bambini
Creep) provided to the calves through the creep-feeding system.

Item Level

Dry matter (DM), g/kg as fed 826.2

Organic matter, g/kg (DM basis) 704.7

Crude protein, g/kg (DM basis) 237.9

NDFapa, g/kg (DM basis) 307.0

Ether extract, g/kg (DM basis) 9.3
Guaranteed mineral levels per kilogram of the supplement: 33 g of calcium (max), 18 g of
calcium (min), 3.1 mg of cobalt (min), 60 mg of cooper (min), 1 mg of chromium (min), 3 g of
sulfur (min), 2,000 mg of fluoride (max), 6 g of phosphorus (min), 2.8 mg of iodine (min),
3,000 mg of magnesium (min), 112 mg of manganese (min), 0.5 mg of selenium (min), 10 g of
sodium (min), and 181 mg of zinc (min).
aNeutral detergent fiber corrected for ash and protein.
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tissues] (Sigma-Aldrich®, St. Louis, MO, USA), and the lysate was

sonicated. The total protein content was estimated using the

Bradford protein assay (Bio-Rad, Hercules, CA, USA), aliquoted,

and stored at −80°C. The proteins were separated using a 10% SDS-

PAGE gel loaded with 40 mg of protein per sample, transferred into

a 0.45-mm nitrocellulose membrane (Bio-Rad, Hercules, CA, USA)

using a semi-dry Trans-Blot Turbo Transfer System (Bio-Rad,

Hercules, CA, USA), and blocked for 1 h at room temperature

with 3% bovine serum albumin (BSA) (Sigma Aldrich®, St. Louis,

MO, USA) in 1× Tris-buffered saline (TBS1×; 50 mM Tris–HCl, pH

7.5, 150 mM NaCl) (Sigma Aldrich®, St. Louis, MO, USA).

Subsequently, the membranes were incubated for 12 h at 4°C

with primary antibodies (Table 3) diluted in blocking solution.

After 12 h of incubation, the membranes were washed three times

for 5 min with Tris-buffered saline and 0.1% Tween® (TBST) and

incubated with a secondary antibody (Table 3) diluted in blocking

solution for 1 h at room temperature. The membranes were then

washed with TBST three times for 7 min, revealed with the ECL

Plus Western Blotting Detection System (GE HealthCare,

Buckinghamshire, UK), and the images generated with the

ChemiDoc XRS+ System (Bio-Rad, Hercules, CA, USA) and

evaluated using Image Lab Software (Bio-Rad, Hercules, CA,

USA). For internal control, two reference samples from the same

tissue and experiment were loaded on each gel. The internal control

that had a greater band intensity (expressed in optical densitometry

units) was used to normalize the remaining samples as described by

Cruzen et al. (2014).
2.6 Statistical analysis

The protein abundance data were analyzed using a mixed model

that included the fixed effects of maternal treatment (CON or GAA)

and sex and the random effect of gestation group. The variables

were assessed for homoscedasticity of the error variances between

treatments using Levene’s test. Prior to the final analysis, the

residuals were evaluated for normality. For each analysis, data
Frontiers in Animal Science 04
points were removed one at a time until absolute Studentized

residuals were lower than 3 and had non-significant (p > 0.01)

Shapiro–Wilk’s test for normality (only one data point was

excluded in the analysis of PPARg protein abundance). Expected

means were generated from the final models and separated using

Tukey’s test when significant (p < 0.05).

Prior to the analysis of the RT-PCR data, the CT values were

adjusted (adjCT) for their respective primer efficiency and back-

transformed to the log2 scale. Afterward, the adjCT data were

analyzed according to the linear mixed model below, following

the strategy proposed by Steibel et al. (2009), where the data on the

target and endogenous control genes are analyzed simultaneously.

Treatment and sex effects were assessed through orthogonal

contrasts, as in Steibel et al. (2009). Expected adjCT were

computed as − DadjCT, such that the differences between the

levels of treatment and sex were estimated as − DDadjCT and

then used to compute the gene ratio expression (GRE) as:

GRE = 2−DDCT

Estimates of GREs were separated using contrasts when

significant (p < 0.05).

When pertinent, the IBW and IREA were used as covariates. If

the effect of these variables was found to be non-significant, the

model was reparameterized by excluding them. All analyses were

performed in SAS Studio 3.81 (Enterprise Edition, SAS Institute

Inc., Cary, NC, USA).
3 Results

3.1 Maternal performance and metabolism

The complete results on the performance of cows were

thoroughly discussed by Sousa et al. (2024). In brief, the IBW (p

= 0.78) and the FBW (p = 0.69) did not differ between treatments,

nor did the ADG (in kilograms per day) during the experimental

period (p = 0.79) (Table 4).

In addition, no differences were observed in the voluntary

intake (in grams per kilogram of BW) of dry matter (p = 0.65),

organic matter (p = 0.65), crude protein (p = 0.64), or neutral

detergent fiber (p = 0.37) (Table 4).

The plasma concentrations of arginine (p = 0.01), citrulline (p =

0.02), and ornithine (p = 0.01) were greater in GAA cows compared

with the CON (Figure 1).

Regarding the carcass ultrasound measurements (in

millimeters), no differences were observed in the IREA (p = 0.20)

between groups. However, the cows from the GAA group showed

greater FREA (p = 0.01) compared with the CON group (Table 4).
3.2 Protein abundance and mRNA
expression of the muscle development
markers in offspring

Calves born to GAA-supplemented cows exhibited a greater p-

Akt/Akt ratio compared with those in the CON group (p = 0.03). A
TABLE 2 List of primers for mRNA expression by RT-qPCR.

Gene
symbol

NCBI
accession no.

Primer

Target genes

MYOD1 NM_001040478.2
F:TTCCGACGGCATGATGGACTAG
R: AAGTGCGGTCGTAGCAGTCCC

MYOG NM_001111325.1
F:TACAGACGCCCACAATCTGCAC
R: AGCGACATCCTCCATGTGATG

PPARg NM_181024.2
F: TGGAGACCGCCCAGGTTTGC
R: AGTTGGGAGGACTCGGGGGTG

ZFP423 NM_001101893.1
F: TCCGTGACAGCATCAGGAGG
R: CACGCTGTTCCTGTCTTCCA

Endogenous gene

18s NM_001304989.2
F: CCAGTAAGTGCGGGTCATAA
R: CCATCCAATCGGTAGTAGCG
F, forward; R, reverse.
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treatment × sex interaction was observed (p = 0.02), where the

GAA-supplemented male calves had a higher p-Akt/Akt ratio than

the CON males, while no differences were detected between the

female calves from both groups (Figure 2).

Similarly, the phospho-mechanistic target of rapamycin (p-

mTOR)/mechanistic target of rapamycin (mTOR) ratio was higher

in calves from the GAA-supplemented cows than in those from the

CON group (p = 0.004). A significant treatment × sex interaction was

found (p = 0.02), with the GAA-supplemented female calves showing

a greater p-mTOR/mTOR ratio than the CON females, whereas no

differences were observed among males (Figure 3).
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The protein abundance of PAX3 was greater in CON calves

compared with GAA calves (p = 0.01). A treatment × sex interaction

was observed (p = 0.02), where CON males exhibited higher PAX3

abundance than GAA males, but no differences were observed

among females. A tendency for greater PAX7 abundance was

found in GAA calves compared with CON calves (p = 0.07), with

no treatment × sex interaction detected (Figure 4).

Regarding mRNA expression, the expression of MYOD1 was

significantly higher in GAA calves than in CON calves (p = 0.01),

whereas the expression ofMYOG did not differ between groups (p =

0.14) (Figure 5).
TABLE 3 List of antibodies used in the Western blotting analysis.

Antibody Host Dilution Manufacturer Catalog no.

Primary antibodies

Akt Rabbit monoclonal IgG 1:1,000 Cell Signaling 9272S

p-Akt Rabbit monoclonal IgG 1:1,000 Cell Signaling 9271S

DLK1 Rabbit polyclonal IgG 1:500 Boster Biological Technology® A00513-4

mTOR Rabbit monoclonal IgG 1:1,000 Cell Signaling 2972S

p-mTOR Rabbit monoclonal IgG 1:1,000 Cell Signaling 2971S

PAX3 Rabbit polyclonal IgG 1:500 Boster Biological Technology® A00285-1

PAX7 Mouse monoclonal IgG 1:1,000 NeoBiotechnologies 5081-MSM1-P0

PDGFRa Rabbit polyclonal IgG 1:2,000 Thermo Fisher Scientific® 500–2694

PPARg Rabbit polyclonal IgG 1:500 Boster Biological Technology® PA1320

Secondary antibodies

HRP Goat anti-rabbit IgG 1:5,000 Thermo Fisher Scientific® A16096

HRP Goat anti-rabbit IgG 1:5,000 Boster Biological Technology® BA1054

HRP Goat anti-mouse IgG 1:5,000 Boster Biological Technology® BA1050
FIGURE 1

(A–C) Least squares mean ± SEM of the maternal plasma concentration (in micromoles per liter) of arginine (A), citrulline (B), and ornithine (C).
Differences (*) were considered when p ≤ 0.05.
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3.3 Protein abundance and mRNA
expression of the fibroadipogenic and
adipogenic markers in the skeletal muscle
of calves

No differences were observed between the GAA and

CON groups in the protein abundance of DLK1 (p = 0.10),

PPARg (p = 0.10), or PDGFRa (p = 0.29) (Table 5).
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Similarly, the mRNA expression of PPARg (p = 0.95) and

ZFP423 (p = 0.39) did not differ between groups (Table 5).
4 Discussion

Given the energy demands on gestation and the central role of

creatine in cellular energy buffering, strategies that modulate creatine

metabolism, such as GAA supplementation, have been extensively

studied in different species and production phases (Yan et al., 2021;

Esser et al., 2018). In our study, cows that received GAA

supplementation during late gestation exhibited greater ribeye area

compared with the non-supplemented cows, despite no differences

in the ADG or dry matter intake between treatments. This finding

suggests that GAA supplementation may have attenuated the extent

of maternal tissue mobilization typically observed during late

gestation, possibly by enhancing the efficiency of energy

metabolism and reducing the metabolic burden on maternal

reserves. Despite the observed changes, it must be noted that,

ruminal degradation may have limited the systemic availability of

dietary GAA, as only 47%–49% is estimated to escape the rumen

intact (Speer et al., 2020). This constraint has been highlighted in

studies employing post-ruminal GAA infusion, which demonstrated

that bypassing ruminal degradation significantly enhances the

creatine supply in cattle (Ardalan et al., 2020). These findings

underscore the importance of the delivery method in determining

the physiological response to GAA supplementation. It is

noteworthy that, in the present study, the serum and urinary

creatine concentrations remained unchanged (Sousa et al., 2024).

Previous research has shown that newly synthesized creatine is

rapidly taken up by high-demand tissues such as the muscle and

the brain, with the plasma creatine levels typically returning to

baseline within 1–3 h post-synthesis or supplementation (Wyss and
TABLE 4 Least squares mean ± SEM of the maternal performance and
carcass ultrasound measurements.

Item
Experimental treatment

p-value
CON GAA

Maternal performance

IBW (kg) 528 ± 22.6 537 ± 22.5 0.78

FBW (kg) 599 ± 7.90 603 ± 7.90 0.69

ADG (kg/day) 0.67 ± 0.08 0.69 ± 0.08 0.79

Intake (g/kg of body weight)

Dry matter 14.3 ± 1.05 14.7 ± 1.04 0.65

Organic matter 13.4 ± 1.01 13.6 ± 0.99 0.65

Crude protein 1.77 ± 0.14 1.81 ± 0.14 0.64

Neutral detergent
fiber

6.85 ± 0.35 7.12 ± 0.35 0.37

Carcass ultrasound

IREA (mm) 65.4 ± 2.75 61.2 ± 2.78 0.20

FREA (mm) 58.1 ± 1.75 62.9 ± 1.70 0.01
CON, control; GAA, guanidinoacetic acid; IBW, initial body weight; FBW, final body weight;
ADG, average daily gain; IREA, initial ribeye area; FREA, final ribeye area.
FIGURE 2

(A) Least squares mean ± SEM of the protein abundance of the phosphoprotein kinase B (p-Akt)/protein kinase B (Akt) ratio in the skeletal muscle of
calves born to beef cows supplemented with guanidinoacetic acid (GAA) (n = 12) or the control (CON) (n = 12) at late gestation. Differences (*) were
considered when p ≤ 0.05. (B) Least squares mean ± SEM of the protein abundance of the p-Akt/Akt ratio in the skeletal muscle of calves born to
beef cows supplemented with GAA or CON at late gestation, showing the interaction between treatment and sex. Differences (A, B) were
considered when p ≤ 0.05.
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Kaddurah-Daouk, 2000; Brosnan and Brosnan, 2007). In addition,

the kidneys reabsorb a significant portion offiltered creatine, limiting

urinary excretion unless the tissue stores are saturated

(Asiriwardhana et al., 2024). Given that the cows in this study

were at late gestation, a stage marked by substantially elevated energy

and nutrient demands due to the exponential growth of the fetuses, it

is plausible that any increase in the systemic creatine supply was

rapidly utilized by maternal and fetal tissues to support the

intensified metabolic activity. This heightened demand may help
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explain the absence of detectable changes in the blood and urinary

creatine concentrations following GAA supplementation. Although

creatine was likely rapidly utilized to meet the heightened metabolic

demands of late gestation, the concurrent increases in plasma

arginine, ornithine, and citrulline suggest a metabolic adaptation

favoring efficient resource allocation. These elevations indicate a

reduced need for arginine as a substrate for endogenous GAA

synthesis, as supported by the observed downregulation of hepatic

AGAT activity (Sousa et al., 2024). Moreover, the greater plasma
FIGURE 3

(A) Least squares mean ± SEM of the protein abundance of the phospho-mechanistic target of rapamycin kinase (p-mTOR)/mechanistic target of
rapamycin kinase (mTOR) ratio in the skeletal muscle of calves born to beef cows supplemented with guanidinoacetic acid (GAA) (n = 12) or the
control (CON) (n = 12) at late gestation. Differences (*) were considered when p ≤ 0.05. (B) Least squares mean ± SEM of the protein abundance of
the p-mTOR/mTOR ratio in the skeletal muscle of calves born to beef cows supplemented with GAA or CON at late gestation, showing the
interaction between treatment and sex. Differences (A, B) were considered when p ≤ 0.05.
FIGURE 4

(A) Least squares mean ± SEM of the protein abundance of paired box 3 (PAX3) in the skeletal muscle of calves born to beef cows supplemented
guanidinoacetic acid (GAA) (n = 12) or the control (CON) (n = 12) at late gestation. Differences (*) were considered when p ≤ 0.05. (B) Least squares
mean ± SEM of the protein abundance of PAX3 in the skeletal muscle of calves born to beef cows supplemented with guanidinoacetic acid (GAA) (n
= 12) or control (CON) (n = 12) at late gestation, showing the interaction between treatment and sex. Differences (A, B) were considered when p ≤

0.05. (C) Least squares mean ± SEM of the protein abundance of paired box 7 (PAX7) in the skeletal muscle of calves born to beef cows
supplemented with GAA (n = 12) or CON (n = 12) at late gestation. Differences were considered when p ≤ 0.05.
frontiersin.org

https://doi.org/10.3389/fanim.2025.1671346
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Kladt et al. 10.3389/fanim.2025.1671346
ornithine and citrulline concentrations may have enhanced arginine

regeneration through the urea cycle, thereby supporting higher

systemic arginine availability.

Citrulline also serves as a precursor for de novo arginine

synthesis and participates in the arginine–NO pathway, which

directly supports NO production. The elevated plasma arginine

and citrulline concentrations observed in the GAA-supplemented

cows may have contributed to the increased NO synthesis, as

confirmed by the higher serum NO in GAA cows (Sousa et al.,

2024). As NO is a crucial vasodilator that enhances placental blood

flow (Morris, 2007; Elmetwally et al., 2022), its increase may have
Frontiers in Animal Science 08
supported the greater placental vascularization observed in GAA

cows (Sousa et al., 2024). This increased placental blood flow may

enhance the nutrient delivery to the fetus, with glucose being the

primary substrate transferred (Baumann et al., 2002).

In previous studies, arginine supplementation not only

increased the plasma insulin concentrations but also activated the

IGF-1/insulin/Akt/mTOR signaling pathway, which is the main

pathway involved in protein synthesis and muscle growth (Dou

et al., 2023; Yao et al., 2008). This mechanistic link provides a

potential explanation for the greater activation of Akt and mTOR

observed in calves born to GAA-supplemented cows. Two primary

mechanisms may underline this effect: firstly, the increased nutrient

availability, potentially driven by the higher creatine concentrations

derived from GAA, which could elevate the levels of IGF-1, a key

upstream regulator of Akt (Liu et al., 2021; Li et al., 2022); secondly,

the greater availability of arginine itself, which can directly activate

mTOR in a NO-dependent manner (Wang et al., 2018a).

Nevertheless, the lack of direct measurements of IGF-1 or insulin,

as well as the downstream markers of energy metabolism such as

mitochondrial function and ATP content, represents a limitation of

the present study.

Beyond nutrient availability, intrinsic fetal factors such as sex

and the developmental stage appear to modulate the responsiveness

of fetal tissues to maternal supplementation strategies. Earlier studies

have reported sex-related differences in muscle development, with

male fetuses displaying greater myogenic gene expression (Gionbelli

et al., 2018) and enhanced muscle growth during the same

developmental window (Barcelos et al., 2022). More recently, Sah

et al. (2025) provided evidence that the creatine biosynthesis
FIGURE 5

Least squares mean ± SEM of the mRNA expression of myogenic differentiation 1 (MYOD1) (A) and myogenin (MYOG) (B) in the skeletal muscle of
calves born to beef cows supplemented with guanidinoacetic acid (GAA) (n = 12) or the control (CON) (n = 12) at late gestation. Differences (*) were
considered when p ≤ 0.05.
TABLE 5 Least squares mean ± SEM of the protein abundance and
mRNA expression of the fibroadipogenic and adipogenic markers in the
skeletal muscle of the offspring per treatment.

Item
Maternal treatments

p-value
CON GAA

Protein abundance

DLK1 0.50 ± 0.23 0.97 ± 0.48 0.10

PDGFRa 0.38 ± 0.09 0.54 ± 0.11 0.29

PPARg 0.77 ± 0.10 1.02 ± 0.10 0.10

mRNA expression

PPARg 13.07 ± 1.06 13.14 ± 1.06 0.95

ZFP423 3.99 ± 1.14 3.07 ± 1.13 0.39
CON, control; GAA, guanidinoacetic acid.
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pathway and its regulatory enzymes are modulated in a sex- and

stage-specific manner, with female offspring exhibiting higher

expression of creatine transporters and biosynthetic enzymes in

distinct tissues and gestational stages. These findings reinforce the

need to investigate whether maternal GAA supplementation

interacts with fetal sex to modulate muscle energy metabolism.

In the present study, sex-specific treatment interactions were

also observed, with Akt activation being more pronounced in GAA

males and mTOR activation higher in GAA females. However, these

findings cannot be fully explained by the current knowledge on sex-

related differences in muscle development and creatine metabolism.

Evidence from placental and fetal biology supports the existence of

sexual dimorphism in mTOR regulation, but the mechanistic basis

remains poorly understood. For instance, Akhaphong et al. (2021)

reported sex-dependent differences in a genetic model with

placental mTOR deletion, although the underlying regulatory

pathways were not clarified. Similarly, Sedlmeier et al. (2021)

showed sexually dimorphic expression of placental mTOR and

amino acid transporters in response to maternal diet, but without

a definitive mechanistic explanation. Beetch and Alejandro (2021)

also emphasized the need for mechanistic studies to clarify how

placental mTOR perturbations drive sexually dimorphic metabolic

outcomes. Collectively, these findings indicate that sex-specific

regulation of mTOR signaling is evident, but incompletely

understood, with epigenetic regulation remaining a plausible

contributor. Thus, while our study revealed distinct sex-specific

interactions for Akt and mTOR, the mechanistic basis of these

observations could not be determined and must be acknowledged as

a limitation.

Due to the key role of the Akt/mTOR signaling pathway in

regulating satellite cell function and myogenesis (Zhang et al.,

2015), we evaluated whether maternal GAA supplementation, in

addition to altering the energy metabolism in calf skeletal muscle,

would also influence cell commitment toward the myogenic lineage.

In myogenesis, PAX3 primarily governs early skeletal muscle

formation in the embryo, whereas PAX7 takes precedence in

postnatal muscle growth and adult muscle progenitor

proliferation to a more differentiated state (Buckingham and

Relaix, 2015). Moreover, MYOD1, an early myogenic regulatory

factor, is crucial for committing progenitor cells to the myogenic

lineage and stimulating myoblast proliferation (Jennings et al.,

2016; Berkes and Tapscott, 2005). Previous findings have shown

that GAA supplementation enhances myogenic differentiation and

muscle growth by increasing the expression of MYOD1, which

facilitates myoblast expansion and early differentiation (Wang et al.,

2018b; Yan et al., 2021). A study conducted with broiler embryos

supplemented in ovo with creatine pyruvate showed increased

expression of MYOD1 and PAX7 (Zhao et al., 2017). In our

study, however, we observed a tendency of elevated PAX7 protein

abundance in the GAA group, in addition to a greater expression of

MYOD1, indicating a potentially expanded satellite cell pool, which

is essential for postnatal muscle growth and regeneration. Taken

together, increased activation of the Akt/mTOR pathway,

particularly with sex-specific patterns, and the upregulation of the

satellite (PAX7) and myogenic (MYOD1) marker indicate a
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potential enhancement of the myogenic commitment and

expansion phase.

Considering that maternal supplementation during late gestation

can improve maternal body condition and the uterine environment,

as well as stimulate the fibroadipogenic progenitor cells and promote

adipogenic differentiation in the offspring (Du et al., 2013; Duarte

et al., 2014; Du et al., 2015, 2023; Du, 2023), and given that GAA

functions as a direct precursor of creatine, a key molecule for ATP

production, together with our observation of the higher final REA in

GAA-supplemented cows, we hypothesized that maternal GAA

supplementation during this period could potentially influence the

commitment of fibroadipogenic progenitor cells toward mature

adipocytes. Nevertheless, no significant differences were observed in

the expression of the key fibroadipogenic markers DLK1, PPARg,
PDGFRa, and ZFP423 between calves born to GAA-supplemented

dams and those in the CON group. This lack of detectable effect may

reflect the prioritization of the Cr–CK–PCr system in meeting the

high energy demands of maternal and fetal tissues during late

gestation (Lopez et al., 2025). Consequently, GAA appears to act

more efficiently as an arginine-sparing strategy, enhancing the

downstream pathways such as Akt/mTOR signaling and NO-

mediated metabolism rather than directly modulating the classical

adipogenic signaling in fetal skeletal muscle.
5 Conclusions

Maternal GAA supplementation during late gestation in beef

cows may reduce the mobilization of maternal reserves, as well as

enhance placental function, through the sparing of arginine for NO

synthesis and improved vascularization. These systemic changes

were accompanied by the activation of Akt/mTOR signaling and the

upregulation of key myogenic markers (MYOD1 and PAX7) in the

offspring, indicating evidence of early molecular responses that

suggest a potential enhancement in muscle growth programming.
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