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Introduction: The broiler chicken industry has grown rapidly, suggesting that this

sector plays a key role in ensuring global food security. However, to meet future

needs, how chickens are raised must be improved, as probiotics are promising

feed additives.

Methods: We conducted a systematic review of 338 articles retrieved from four

scientific databases to evaluate the effectiveness of different probiotic

formulations in broiler chickens. The analysis focused on body weight gain

(BWG) and feed conversion ratio (FCR).

Results: Themost common probiotics were Bacillus, Lactobacillus, and amixture of

different genera types (Probiotic Mix). The results showed that these probiotic

formulations had a significant positive effect on both BWG and FCR. The

combined effect sizes for BWG were as follows: Lactobacillus (1.08); Probiotic Mix

(0.96); and Bacillus (0.87). The effect sizes for FCR were as follows: Probiotic Mix

(-1.32) Lactobacillus, (-1.22); andBacillus (-1.04). Except for BWG inBacillus category,

there was considerable variation in the results. Researchers have also looked at

factors such as probiotic dose (CFU/kg) and the number of strains in the Probiotic

Mix, but these did not have a significant influence on heterogeneity. When converted

combined effect sizes tometric units (g or kg), Lactobacillus showed the best results,

with a 221.69 (g) increase in BWG and 0.17 (kg) decrease in FCR.

Conclusion: This study demonstrates that probiotic supplementation,

particularly Lactobacillus, improves growth performance and feed efficiency in

broiler chickens. These findings support the inclusion of probiotics in poultry

farming as a strategy to enhance production efficiency and contribute to future

global food security.
KEYWORDS
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1 Introduction

It is estimated that the global human population will reach

approximately 8.7 billion people by 2033 (OECD/FAO, 2024),

leading to provide by animal-based sources (meat, eggs, and milk)

(Drewnowski and Hooker, 2025), and the demand for this type of

protein is expected to increase by 12% by 2033 (OECD/FAO, 2024),

especially in high-income and upper-middle-income countries

(Godber and Wall, 2014).

Animal meat production has grown by 55% over the past two

decades, with chicken meat showing the highest growth rate

compared to pork or beef, reaching 34% of the total meat

production in 2022 (123 million tons) (FAO, 2024). Based on this

growth observed in recent decades, it is evident (unless major

changes occur) that the poultry industry—especially broiler

chicken production—should be one of the key sectors to support

future food security in terms of animal-based protein (Mottet and

Tempio, 2017; Govoni et al., 2021).

However, poultry production is not free from negative

externalities, including environmental degradation and public

health risks (MacMahon et al., 2008; Mottet and Tempio, 2017;

Kheiralipour et al., 2024). One of the primary concerns in poultry

nutrition is the heavy reliance on oats or corn as energy sources and

soybeans as the principal protein provider in feed formulation

(Govoni et al., 2021). These crops are also used in human

nutrition, meaning that the expansion of poultry production

places additional pressure on food markets by affecting the

availability and pricing of these feedstuffs (Mengesha, 2012;

Govoni et al., 2021), a particularly critical issue in low-income

countries (Mengesha, 2012). Thus, improvements in broiler

productivity, including faster growth and better feed efficiency,

will positively influence future food supplies (Kheiralipour

et al., 2024).

A wide range of additives, including growth promoters (e.g.,

zinc bacitracin), exogenous enzymes, organic acids, probiotics, and

prebiotics, have been used in poultry farming with different success

levels to improve productive performance (Castanon, 2007; Munir

and Maqsood, 2017; Abd El-Ghany, 2024; Salahi and Abd El-

Ghany, 2024). Moreover, the use of growth promoters—has been

increasingly questioned due to their contribution to antibiotic

resistance and the potential for residue accumulation in meat

products. Consequently, this type of additive has been banned in

the European Union since 2006 (Castanon, 2007).

Probiotics have emerged as a promising strategy to support the

health and sustainable growth of the global poultry industry (Idowu

et al., 2025). Probiotics are defined as “live microorganisms which,

when administered in adequate amounts, confer a health benefit on

the host” (FAO/WHO, 2001). They play a beneficial role in the

gastrointestinal tract by promoting the stability and protection of

the intestinal ecosystem, enhancing the functionality of microbial

communities, and stimulating the immune response, among other

effects (Markowiak and Śliżewska, 2018; Wieërs et al., 2020; Kogut,

2022; Nourizadeh et al., 2022; Idowu et al., 2025). Furthermore,

probiotics promote host health through various mechanisms,

including strengthening the intestinal barrier by acting on the
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epithelium and mucosal lining, producing antimicrobial

substances, competing with pathogenic bacteria, and regulating

luminal acidity (Barko et al., 2018; Hou et al., 2020). Many of

these mechanisms are directly related to protection against

pathogenic microorganisms (Halder et al., 2024; Idowu et al.,

2025). Additionally, the administration of probiotics has been

shown to improve growth performance and feed conversion in

broiler chickens (Al-Khalaifa et al., 2019; Abd El-Hack et al., 2020;

Yaqoob et al., 2022; Halder et al., 2024).

Research on probiotic additives has encompassed a wide range

of formulations and strategies. It is essential to recognize that the

traditional concept of probiotics, which involves the administration

of viable exogenous bacteria, is formally designated by the Food and

Drug Administration (FDA) as “direct-fed microbials” (DFM)

(Zoumpopoulou et al., 2018). An important aspect of probiotics is

their regulatory requirements. For instance, if a probiotic is

marketed to cure, mitigate, treat, or prevent a disease, the FDA

requires the product to submit an Investigational New Drug

Application (IND). However, if the product is considered a

dietary supplement regulated by the FDA’s Center for Food

Safety and Applied Nutrition, it does not require FDA approval

(Venugopalan et al., 2010). Nonetheless, viable microorganism can

also be administered through fermented feed or via the

consumption of fermented dairy products (Makled et al., 2019;

Bishehkolaei et al., 2021; Abeddargahi et al., 2022; Abdel-Raheem

et al., 2023; Wang et al., 2023).

Probiotic additives can be derived from microorganisms across

various taxonomic groups, including bacteria, yeasts, and molds

(Yaqoob et al., 2022). These additives may be formulated as either

single-strain (mono-strain) or multi-strain combinations,

encompassing different species, genera, kingdoms, or domains

(mono-genus or multi-genus mixtures) (Timmerman et al., 2004).

Furthermore, these formulations can be integrated with non-

nutritional additives such as enzymes, phages, plant extracts, and

notably, prebiotics (Dev et al., 2020; Shaufi et al., 2023; Such et al.,

2023; El-kahal Hassanien et al., 2024; Marchal et al., 2024; Golshahi

et al., 2025). Prebiotics are defined as substrates selectively utilized

by the microbiota, thereby conferring health benefits (Gibson et al.,

2017). A symbiotic refers to an additive that combines both a

prebiotic and a probiotic (Markowiak and Śliżewska, 2018). Several

other terminologies are employed to describe additives closely

related to probiotics, which have been comprehensively reviewed

by Salahi and El-Ghany (2024).

Given the wide diversity of probiotic formulations and

microbiota-modulating additives, the development of a meta-

analysis in the field of probiotics must involve classifying and

organizing these studies to form groups with relatively uniform

formulations, ultimately enabling a comparison of their effects.

The objective of this study was to conduct a systematic review

aimed at selecting articles that assessed the effects of probiotics as

DFM supplements, synbiotics, or probiotics in combination with

other non-nutritional additives on the productive performance of

broiler chickens. The selected studies were subsequently categorized

based on the types of probiotic formulations evaluated and also the

routes of administration.
frontiersin.org

https://doi.org/10.3389/fanim.2025.1679614
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Opazo et al. 10.3389/fanim.2025.1679614
A bibliometric analysis allowed us to identify the probiotic

formulations that have been most frequently evaluated over the past

two decades. This process enabled the selection of multiple

formulations or the most representative groups, ensuring a robust

number of studies for meta-analysis. Consequently, our study

provides a basis for comparing different formulations in terms of

their impact on productive factors, such as body weight gain (BWG)

and feed conversion ratio (FCR). This unique strategy represents a

distinct methodological contribution that sets it apart from previous

systematic reviews on probiotics in broilers.
2 Material and methods

2.1 Search strategy

The systematic review associated with this research examined

the extant scientific literature concerning studies on the utilization

of probiotics and their effects on the productive performance of

chickens, particularly those bred for meat production. This

investigation adhered to the PRISMA 2020 guidelines for

conducting systematic reviews and meta-analyses (Page et al.,

2021). A thorough electronic search was executed using the

databases Scopus (Elsevier), EBSCO, PubMed (NCBI), and Web

of Science (Clarivate), employing the following search equation:

“Probiotic* AND “Growth performance” AND (Poultry OR

Domesticated birds OR Aviculture) AND (Chick* OR Hen OR

Rooster OR Cockerel OR Pullet OR Broiler*)”

The search was updated as of January 2025, with no limitations

imposed on the initial date.
2.2 Study eligibility criteria

2.2.1 Type of birds and housing
Only studies or experimental groups involving chickens (Gallus

gallus) of broiler genetic lines or dual-purpose breeds were included.

The birds had to be in good health and were not exposed to any

pathogenic challenge, either before or during the study.

Additionally, the animals were kept under calm conditions and

free from stress-inducing factors.

2.2.2 Type of intervention
Studies were selected based on the criterion that at least one

experimental group received a daily administration of a probiotic,

symbiotic, or probiotic combined with a non-nutritional additive.

There were no restrictions on the age at which probiotic

formulations were initiated. However, only studies involving

postnatal individuals were included, thereby excluding those in

which probiotics were administered during the embryonic stages.

2.2.3 Types of comparators
The control groups were maintained under identical

environmental and nutritional conditions to the experimental

groups, with the sole distinction being the administration of the
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probiotic or symbiotic formulation. Furthermore, the control group

did not receive antibiotics or any probiotic formulation.

2.2.4 Types of studies
Studies employing a completely randomized design or factorial

arrangement were included. For factorial designs, only studies in

which both the control and experimental groups strictly conformed

to the principles and criteria of this systematic review were selected.

2.2.5 Types of outcomes
Studies selected for inclusion were required to report BWG)

and/or FCR for both control and experimental groups.

Alternatively, studies were considered if they provided sufficient

data within their results to enable the calculation of at least one of

these performance indicators.

BWG   =   final   body  weight   (g)  −   initial   body  weight   (g)

BWG   =  Daily  weight   gain  �   number   of   study   days

FCR   =  
Feed   Intake   (g)

average   of   body  weight   gain   (g)  
2.2.6 Types of probiotics
All studies were included irrespective of the probiotic

formulation employed, encompassing single-strain preparations,

mono-genus or multi-genus mixtures, and formulations with

non-nutritional additives, particularly synbiotic. All genera and

species of microorganisms, including bacteria, yeasts, and molds,

were accepted based on their taxonomy. However, the probiotic

formulation was administered as direct-fed microbes (DFM),

indicating that the organisms had to be in a viable form.

Consequently, studies utilizing probiotics in the form of

fermented feed (except fermented dairy products) or containing

inactivated microorganisms such as postbiotic, were excluded. An

additional criterion is that the probiotic microorganisms used must

not have been genetically modified.
2.3 Data extraction

Two independent reviewers extracted data using a standardized

form. A third reviewer (PS) fully checked all records against the

original article to ensure their accuracy and completeness.
2.4 Probiotics strategies classification

The diverse array of strategies employed in probiotic research

poses a challenge in establishing standardized groupings for meta-

analyses, particularly for determining robust and comparable

combined effects. Consequently, this study necessitated a

classification stage of probiotic strategies at the experimental

group level, with a primary focus on two aspects: the type of
frontiersin.org
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probiotic formulation and route of administration. In this context,

we conducted three separate meta-analyses based on the collected

data, each corresponding to one of the three most frequently

utilized formulation strategies, all administered through the most

commonly employed route.
2.5 Statistical methods used in the meta-
analysis

For each of the selected studies, the mean values for BWG and

FCR, along with their standard deviations, were recorded for each

experimental group, whether control, treated with probiotics, or

symbiotic. In instances in which only the standard error (SE) was

reported in the published data, the standard deviation (SD) was

calculated using the following equation:

SD   =   SE  �  
ffiffiffi
n

p

n = number of replicates

In certain cases, specifically concerning BWG, where this index

was calculated as the difference between final and initial weights, the

standard deviation was estimated by propagating the error from the

variance (Krüger, 2017), using the following equation:

SD   =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
SD12

n1
) + (

SD22

n2
)

r

n = number of replicates

Meta-analyses were performed using the metafor package in

R (Viechtbauer, 2010). Before this, the effect size and its standard

errors were calculated using the escalc command, employing the

standardized mean difference (“SMD”) method (Hedges, 1981).

The meta-analyses utilized a random-effects model via the

Restricted Maximum Likelihood (REML) method (Tanriver-

Ayder et al., 2021). The aggregated effect size was expressed as

the standardized mean difference (SMD) with a 95% confidence

interval. Heterogeneity among studies was assessed using the

parameters tau² and I², and significance was evaluated using

Cochran’s Q test (Higgins et al., 2003). Additionally, for meta-

analyses showing significant heterogeneity, two moderator

va r i ab l e s we re inve s t i ga t ed : the do se o f p rob io t i c

administration, measured as colony-forming units per

kilogram of diet (CFU/kg), and, in probiotic mixture

formulat ions , the number of strains included in the

formulation. This analysis was performed by meta-regression

(Viechtbauer, 2010).

Publication bias was analyzed using the methodology proposed

by Rosenthal (1979), commonly known as the fail-safe N procedure.

Considering that effect size measures (Cohen’s d or Hedges’ g)

represent differences in means expressed in units of standard

deviation (Borenstein et al., 2009), it is possible to estimate an

approximate real productive impact in metric units (grams or kilos)

for both evaluated indices, BWG and FCR. This estimation was

performed by multiplying the combined effect size by the pooled

standard deviation (SD pooled combined) (Guyatt et al., 2019),

using the following formulas:
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difference   in  metric   units(g)  

=   combined   effect   size  �   SDpooled   combined

SDpooled   combined

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ok

i=1(nCi − 1)� SD2
Ci + (nTi − 1)�   SD2

Ti

ok
i=1(nCi + nTi − 2)

vuut

k = number of studies

nCi,   nTi = Sample size (replicates) of each control (C) and

experimental group (T).

SDCi,   SDTi   = Standard deviation of each study for the control (C)

and experimental group (T).

The combined SDpooled formula was proposed to

appropriately weight variability by group size and degrees of

freedom, thereby deriving a normalized SD for the calculation of

metric units.
3 Results

3.1 Identification and screening of full-text
articles

Utilizing the proposed key equations, 1,895 records were

retrieved from searches conducted across four selected databases:

EBSCO, PubMed, Scopus, and Web of Science. The number of

articles retrieved from each database was as follows: EBSCO, 357;

PUBMED, 380; Scopus, 184; Web of Science (WoS), 974. After the

deduplication process, 1,235 unique records were obtained,

spanning from December 1997 to January 2025.

From the 1,235 records obtained, a screening process was

implemented utilizing the title and abstract of each article. This

step excluded review articles, studies that did not involve the

administration of a probiotic formulation, and those that solely

reported in vivo analyses, among other criteria. The filtering process

resulted in the selection of 491 full-text articles for further

examination. Subsequently, a second evaluation was conducted

on these articles by analyzing their complete content. The

exclusion criteria applied in this stage are shown in Figure 1.

Following three screening phases, 338 full-text articles met the

criteria and were included in this systematic review (see Figure 1).
3.2 Experimental groups classification

To ensure consistency in the categorization of probiotic

strategies and their routes of administration, a systematic

classification process was implemented. It is important to

recognize that several studies have encompassed multiple

probiotic formulation strategies and/or administration routes.

Consequently, classification was applied at the level of each

experimental group within the selected studies.

The analysis of experimental groups involving probiotic

administration identified a total of 807 groups (Figure 1).
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Probiotic strategies were classified along two dimensions: type of

formulation and route of administration.

Probiotic formulations were categorized according to the

following criteria: for experimental groups using single-strain

probiotics or mono-genus mixtures, classification was based on

the genus of the microorganism (e.g., Bacillus spp., Lactobacillus
Frontiers in Animal Science 05
spp., or Saccharomyces spp.). In contrast, multi-genus mixtures

were classified under the term Probiotics Mix.

When probiotics were administered in combination with a non-

nutritional additive, the classification included the genus of the

microorganism followed by the term plus (e.g., Bacillus spp. Plus or

Lactobacillus spp. plus). For multi-genus mixtures combined with
FIGURE 1

Flowchart illustrating the identification and screening process of the systematic review analyzing studies on the effects of various probiotic
formulations on broiler productivity performance. The figure also outlines the classification of the experimental groups and the selection of full-text
articles included in the meta-analysis. BWG, Body Weight Gain; FCR, Feed Conversion Ratio.
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such additives, the classification term used was Probiotics Mix

plus (Figure 2A).

The classification results of the probiotic formulation strategy

are shown in Figure 2A. Among the 807 experimental groups

analyzed, the classification categories with the highest proportions

were Bacillus spp. (29.6%, n = 239); Probiotic Mix, 16.6% (n = 164);

and Lactobacillus spp., 14.4% (n = 112) (Figure 2A). These three

classification categories were selected for the development of

separate meta-analyses to assess their combined effects on BWG

and FCR.

In Figure 2A, a classification group labeled “Others<3%” can be

observed, accounting for 16.6% of the total. This category represents

the aggregate of all classification groups, with individual
Frontiers in Animal Science 06
proportions below 3%. A detailed breakdown of this category is

presented in Supplementary Figure 1.

Subsequently, the experimental groups were classified based on

the route of probiotic administration. Among the 807 experimental

groups analyzed, four different administration routes were used:

diet, water, gavage, and nasal spray. The diet administration route

was the most commonly used method overall, representing 87.9% of

the experimental groups in the Bacillus spp. category, 79.5% in the

Probiotics Mix category, and 69.0% in the Lactobacillus spp.

category. Given the importance of this administration route for

the three probiotic formulation groups, it was the only route

selected to normalize the experimental groups (Figure 2B),

allowing for a larger number of experimental groups to be
FIGURE 2

Distribution of probiotic research strategies. (A) Pie chart illustrating the proportions of different probiotic formulation strategies identified among the
807 experimental groups recorded from 338 selected studies. (B) Stacked bar chart showing the distribution of probiotic administration routes
across the same experimental groups.
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included in the subsequent phases. Based on this criterion, 210

experimental groups were selected for the Bacillus spp. group, 124

for the Probiotics Mix group, and 80 for the Lactobacillus spp.

group (Figure 1).

After selecting classification terms and administration routes

for the meta-analyses, it was crucial to assess the quality of the

dispersion data related to BWG and/or FCR indices in each selected

article (Figure 1). High-quality data were identified by the presence

of tabulated values of standard deviation (SD) or standard error of

the mean (SEM) for each experimental group. Unfortunately, only a

small fraction of the studies offered high-quality dispersion data:

29.0% (n = 61) of the experimental groups in the Bacillus spp.

category, 25.8% (n = 32) in the Probiotics Mix category, and 28.7%

(n = 23) in the Lactobacillus spp. category (Figure 1).

Approximately 50% of the articles presented their dispersion data

as pooled SEM, while another 24% reported results only through

graphs or did not provide any dispersion values in their tables.

In the development of the meta-analyses, the total number of

selected experimental groups was utilized for the Probiotics Mix

and Lactobacillus spp. classification categories, comprising 32 and

23 groups, respectively (Figure 1). However, given that 61

experimental groups were identified for Bacillus spp., it was

appropriate to conduct a more homogeneous analysis by selecting

groups based on the most frequently occurring species. Based on

this criterion, 45 experimental groups associated with Bacillus

subtilis, Bacillus coagulans, Bacillus licheniformis, and Bacillus

amyloliquefaciens were selected (Figure 1).

Supplementary Figures 2A-C further enriches the results from

the classification of probiotic formulations by depicting the

proportions of primary species or mixtures (either mono-genus

or multi-genus) as subgroups within each specified classification

category (Bacillus spp., Probiotics Mix, and Lactobacillus spp.). In

the Bacillus spp. classification category (Supplementary Figure 2A),

the subgroups with the largest proportions, listed in descending

order, were B. subtilis (54.4%), B. licheniformis + B. subtilis (10.5%),

B. licheniformis (6.7%), and B. coagulans (6.3%). Within the

Probiotics Mix classification category (Supplementary Figure 2B),

the subgroups with the largest proportions, in descending order,

were: a mixture of A. oryzae, B. bifidum, C. pintolopesii, E. faecium,

L. acidophilus, L. delbrueckii, L. plantarum, L. rhamnosus, and S.
Frontiers in Animal Science 07
salivarius (Protexin™) at 17.4%; a mixture of B. lactis, L. casei, and

L. acidophilus at 3.9%; a mixture of B. subtilis, C. butyricum, and L.

acidophilus at 3.9%; and a mixture of B. subtilis and P. acidilactici at

3.2%. For the Lactobacillus spp. classification category

(Supplementary Figure 2C), the subgroups with the largest

proportions, in descending order, were L. plantarum (23.3%),

L. acidophilus (10.3%), L. salivarius (6%), and L. reuteri (5.2%).
3.3 Meta-analysis of BWG and FCR for
three probiotic formulation categories

The findings of the analysis, conducted using a random-effects

model with heterogeneity estimated via restricted maximum

likelihood (REML), are presented in Table 1. Detailed results are

shown in the corresponding forest plots: for the Bacillus spp. group,

BWG and FCR are illustrated in Figures 3 and 4, respectively; for

the Probiotics Mix group, Figures 5 and 6 display BWG and FCR;

and for the Lactobacillus spp. group, BWG and FCR are presented

in Figures 7 and 8.

Administration of all three probiotic formulation categories to

broiler chickens resulted in significant and statistically robust combined

effects on both BWG and FCR indices (Table 1). Regarding the BWG

index, the combined effects for each probiotic formulation group,

ranked in descending order, were as follows: Lactobacillus spp.

(g = 1.08; 95% CI [0.64, 1.51]; p-value< 0.0001), Probiotic

Mix (g = 0.96; 95% CI [0.61, 1.30]; p-value< 0.0001), and Bacillus

spp. (g = 0.87; 95% CI [0.68, 1.07]; p-value< 0.0001). In terms of the

FCR index, the observed combined effects, ranked in ascending order,

were: Probiotic Mix (g = -1.32; 95% CI [-1.81, -0.83]; p-value< 0.0001),

Lactobacillus spp. (g = -1.22; 95% CI [-2.16, -0.28]; p-value< 0.01), and

Bacillus spp. (g = -1.04; 95% CI [-1.30, -0.77]; p-value< 0.0001).

Substantial heterogeneity was observed in both evaluated

indices for the Probiotic Mix and Lactobacillus spp. categories.

Conversely, in the Bacillus spp. category, significant heterogeneity

was detected only in the FCR index (Table 1). The BWG index for

the Bacillus spp. group demonstrated low Tau² and I² values, and

the heterogeneity test was not significant (p > 0.05) (Table 1).

To facilitate the interpretation of the results, the combined effect

sizes were converted into metric units (g or kg), results presented in
TABLE 1 Meta-analysis results for body weight gain (BWG) and feed conversion ratio (FCR) across three classification categories: Bacillus spp.,
Probiotic Mix, and Lactobacillus spp.

Category Index G Se Zval P-val Ci.lb Ci.ub Tau2 I2(%) Q Qp-val

Bacillus spp.
BWG 0.87 0.10 8.72 2.9E-18 0.68 1.07 4.6E-06 1.0E-03 45.59 0.41

FCR -1.04 0.14 -7.66 1.9E-14 -1.30 -0.77 0.25 35.03 61.97 0.01

Probiotics Mix
BWG 0.96 0.18 5.43 5.7E-08 0.61 1.30 0.47 59.87 76.33 1.0E-05

FCR -1.32 0.25 -5.23 1.7E-07 -1.81 -0.83 0.77 54.37 63.09 1.3E-05

Lactobacillus
spp.

BWG 1.08 0.22 4.89 1.0E-06 0.64 1.51 0.46 43.39 43.87 3.7E-03

FCR -1.22 0.48 -2.55 0.01 -2.16 -0.28 3.85 84.13 87.41 2.1E-10
fro
g, combined effect size (Hedges' g); se, standard error; Q, Heterogeneity test (REML); BWG, Body weight gain; FCR, Feed conversion ratio.
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Table 2. Dietary supplementation with Lactobacillus spp. strains

resulted in an approximate increase of 221.69 g in the body weight

gain of broilers. This was followed by an increase of 197.05 g for

those receiving Probiotic Mix formulations and 152.04 g for those

treated with Bacillus spp., compared with their respective

control groups.
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In terms of the FCR, dietary supplementation with Bacillus spp.

strains resulted in a reduction of approximately 0.10 metric units (g).

Supplementation with ProbioticMix formulations led to a decrease of

0.14 metric units (g), whereas treatments based on Lactobacillus spp.

exhibited the most significant reduction, with a decrease of

0.17 metric units (g) compared with the respective control groups.
FIGURE 3

Forest plot of standardized mean differences (SMD) and combined effect size (Hedges' g) for body weight gain (BWG) in broilers following dietary
administration of Bacillus spp. SMDs represent differences compared with their respective control groups. Q, heterogeneity test (REML), CI,
confidence interval, n.s., not significant, n(articles) = 22, and n(experimental groups) = 45. References cited: Sikandar et al., (2017); Dong et al.,
(2020); Gong et al., (2018); Li et al., (2014) ; Wang and Gu, (2010) ; Bai et al., (2017) ; Li et al., (2019) ; Zhu et al., (2017); Saleh et al., (2020); Park et
al., (2020); Al-Seraih et al., (2022); Qin et al., (2024); Ma et al., (2018) ; Zhou et al., (2010) ; Mazanko et al., (2022) ; Hairui et al., (2024); Popov et al.,
(2024); Liu et al., (2023) ; Molnár et al., (2011); (Li et al., 2016); Aristides et al., (2012) ; Manafi, (2015).
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3.4 Analysis of moderator variables

Except for the BWG index within the Bacillus spp. group, all

heterogeneity analyses conducted using Cochran’s Q test yielded

significant results. Consequently, moderator variable analyses were
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performed for the FCR index in the Bacillus spp. group as well as for

both indices in the probiotic mix and Lactobacillus spp. groups. In

the Probiotics Mix group, two moderators were identified: the

probiotic dose as a colony-forming unit per kilogram (CFU/kg),

and the number of microbial strains included in the probiotic
FIGURE 4

Forest plot of standardized mean differences (SMD) and combined effect size (Hedges' g) for feed conversion ratio (FCR) in broilers following dietary
administration of Bacillus spp. SMDs represent differences compared with their respective control groups. CFU/kg: total number of colony-forming units
of the probiotic formulation per kilogram of diet. Q, heterogeneity test (REML), CI, confidence interval (95%), ** signifies p < 0.01, n(articles) = 19, and n
(experimental groups) = 41. References cited: Al-Seraih et al., (2022); Aristides et al., (2012); Ma et al., (2018); Mazanko et al., (2022); Bai et al., (2017); Li et
al., (2019); Sikandar et al., (2017); Zhu et al., (2017); Zhou et al., (2010); Gong et al., (2018); Molnár et al., (2011); Wang and Gu, (2010); Manafi, (2015); Qin
et al., (2024); Park et al., (2020); Li et al., (2016); Saleh et al., (2020); Hairui et al., (2024); Liu et al., (2023).
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mixture proposed formulation (Figures 5 and 6). For the Bacillus

spp. and Lactobacillus spp. categories, only the probiotic dose

(CFU/kg) was assessed as a moderator (Figures 4, 7, and 8).

Meta-regression tests for moderators did not yield significant

results for any category or index evaluated. Specifically, for the

Probiotics Mix category, the results were BWG-QM(2) = 0.58, p =

0.75, and FCR-QM(2) = 3.50, p = 0.18; for the Bacillus spp. category,

FCR-QM(1) = 0.10, p = 0.75; and for the Lactobacillus spp. category,

BWG-QM(1) = 0.06, p = 0.80, and FCR-QM(1) = 0.03, p = 0.87.
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3.5 Assessment of publication bias

Sensitivity analysis using Rosenthal’s Fail-Safe N method

indicated the following: for the Bacillus spp. category, 763 and

505 unpublished null studies were required to nullify the statistical

significance of the combined effect observed (p< 0.05) for BWG and

FCR, respectively. For the Probiotics Mix category, 155 and 120

unpublished null studies would be needed to overturn the statistical

significance of the combined effect for BWG and FCR, respectively.
FIGURE 5

Forest plot of standardized mean differences (SMD) and combined effect size (Hedges' g) for body weight gain (BWG) in broilers following dietary
administration of Probiotic Mix formulations. SMDs represent differences compared with their respective control groups. CFU/kg: denotes the total
colony-forming units per kilogram of diet, Strains: number of different microbial strains in the probiotic mixture, Q, heterogeneity test (REML), CI,
confidence interval (95%), *** signifies p ≈ 0, n(articles) = 19, and n(experimental groups) = 32. References cited: Saleh et al., (2013); LI, (2023); Khan
et al., (2011); Hossain et al., (2024); Buahom et al., (2018); Salih and Mirza, (2023); Alizadeh et al., (2023); Sobczak et al., (2018); Abdel-Latif et al.,
(2018); Agustono et al., (2022); Yu et al., (2020); Shaufi et al., (2023); Aluwong et al., (2013); Gholami-Ahangaran et al., (2021);Houshmand et al.,
(2011); Derakhshan et al., (2023); Alaedini-Shourmasti et al., (2024); Aziz and Al-Hawezy, (2021) ; Naghibi et al., (2023).
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Finally, for the Lactobacillus spp. category, 100 and 13 unpublished

null studies were necessary to negate the statistical significance of

BWG and FCR, respectively. Overall, these results suggest that the

findings of the meta-analysis were robust against publication bias.
4 Discussion

A notable aspect of this systematic review is the marked increase,

commencing in 2017, in the number of studies examining the use of

probiotic formulations to enhance productive performance in broiler

chickens. Since then, over 50 articles have been published annually,

culminating in a peak of 151 publications in 2024, nearly five times
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the 32 studies reported in 2012. Research on the use of probiotics in

poultry production has attracted increasing interest in recent years, as

described in bibliometric additive–poultry analysis (Wickramasuriya

et al., 2024).

The meta-analysis was conducted within a framework of

experimental groups that were homogeneous in terms of

probiotic formulation strategies and administration routes. The

results of all meta-analyses indicated that the administration of

probiotic formulations (Bacillus spp., Probiotic Mix, and

Lactobacillus spp.) had significant effects (p< 0.05) on productive

performance, as measured by BWG and FCR. Furthermore, the

combined effect sizes observed were classified as large based on

Cohen’s effect size interpretation (Hedges, 2024).
FIGURE 6

Forest plot of standardized mean differences (SMD) and combined effect size (Hedges' g) for feed conversion ratio (FCR) in broilers following dietary
administration of Probiotics Mix formulation. SMDs represent differences compared with their respective control groups. CFU/kg: total colony-
forming units per kilogram of diet, Strains: indicates the number of different microbial strains in the probiotic mixture, Q, heterogeneity test (REML),
CI, confidence interval (95%), *** = p ≈ 0, n(articles) = 15, and n(experimental groups)=24. References cited: Naghibi et al., (2023); Alaedini-
Shourmasti et al., (2024); Aziz and Al-Hawezy, (2021); Hossain et al., (2024); Houshmand et al., (2011); Salih and Mirza, (2023); Agustono et al.,
(2022); Derakhshan et al., (2023); Abdel-Latif et al., (2018); LI, (2023); Gholami-Ahangaran et al., (2021); Khan et al., (2011); Shaufi et al., (2023);
Alizadeh et al., (2023); Saleh et al., (2013).
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An essential component of this meta-analysis was the capacity

to translate the combined effect sizes into metric units, thereby

offering more intuitive value for interpreting the results. For a better

interpretation, it is necessary previously to note that 75% of the

studies selected for the meta-analysis assessed a growth period of 31

to 50 days. Consequently, many of these studies reported an average

final weight close to 1.8–2.5 kg (Al-Dawood and Al-Atiyat, 2022).

The observed weight gain values in this meta-analysis must be

evaluated in the context of the final body weights achieved. Based

on these final weights, the estimated percentage increase BWG,

relative to the control groups (those without probiotic

administration), was between 6.0% and 8.4% for the Bacillus spp.

group, between 7.8% and 11.0% for the Probiotic Mix group, and

between 8.8% and 12.3% for the Lactobacillus spp. group.
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Regarding the feed conversion ratio (FCR), the Probiotic Mix

group demonstrated the highest combined effect size of -1.32.

However, upon conversion to metric units, the Lactobacillus spp.

category exhibited a greater pooled standard deviation (SDpooled)

value of 0.14. This corresponded to an FCR reduction of -0.17,

indicating a more substantial improvement compared to the

Probiotic Mix group, which showed a decrease of -0.14.

Practically, this implies that administering strains or mixtures of

Lactobacillus spp. could reduce the feed required to achieve a 1 kg

increase in body weight by 170 g relative to control groups without

probiotics. This is a highly relevant analysis, as it enables producers

to improve the economic assessment of probiotic administration by

allowing them to contrast the productive gains achieved through its

use with the costs associated with administering it in poultry flocks.
FIGURE 7

Forest plot of standardized mean differences (SMD) and combined effect size (Hedges' g) for body weight gain (BWG) in broilers following dietary
administration of Lactobacillus spp.. SMDs represent differences compared with their respective control groups. CFU/kg: total number of colony-forming
units of the probiotic formulation per kilogram of diet, Q, heterogeneity test (REML), CI, confidence interval (95%), *** = p ≈ 0, n(articles) = 15, and n
(experimental groups) = 23. References cited: Geeta et al., (2021); Chen et al., (2017); Tsega et al., (2024); Chen et al., (2018); Shokryazdan et al., (2017);
Li et al., (2014); Saleh et al., (2020); Trabelsi et al., (2016); Buahom et al., (2018); Chai et al., (2023); Al-Surrayai et al., (2022); Fesseha et al., (2021); Leal et
al., (2023); Altaher et al., (2015); Gyawali et al., (2022).
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FIGURE 8

Forest plot of standardized mean differences (SMD) and combined effect size (Hedges' g) for feed conversion ratio (FCR) in broilers following dietary
administration of Lactobacillus spp.. SMDs represent differences compared with their respective control groups. CFU/kg: total number of colony-
forming units of the probiotic formulation per kilogram of diet, Q, heterogeneity test (REML), CI, confidence interval (95%), *** = p ≈ 0, n(articles) =
13, and n(experimental groups) = 21. References cited: Tsega et al., (2024); Fesseha et al., (2021); Al-Surrayai et al., (2022); Leal et al., (2023); Gyawali
et al., (2022); Chai et al., (2023); Chen et al., (2017); Saleh et al., (2020); Shokryazdan et al., (2017); Altaher et al., (2015); Li et al., (2014); Geeta et al.,
(2021); Chen et al., (2018).
TABLE 2 Conversion of combined effect sizes from the meta-analysis into metric units (g or kg).

Category Index G SDpooled combined Differences in metric units

Bacillus spp.
BWG (g) 0.87 174.77 152.04

FCR (kg) -1.04 0.10 -0.104

Probiotics Mix
BWG (g) 0.96 205.27 197.05

FCR (kg) -1.32 0.11 -0.14

Lactobacillus spp.
BWG (g) 1.08 205.27 221.69

FCR (kg) -1.22 0.14 -0.170
F
rontiers in Animal Science
 13
g, combined effect size (Hedges' g); BWG, Body weight gain; FCR, Feed conversion ratio.
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The primary probiotic formulation strategy assessed for

enhancing the productive performance of broiler chickens, as

identified through a systematic review and classification process,

involved the utilization of strains or mixtures from the Bacillus

genus. Bacillus is classified under the phylum Bacillota (formerly

Firmicutes) (Pallen, 2023), which exhibits the highest prevalence

across various intestinal segments in chickens, including the small

and large intestine (Mohd Shaufi et al., 2015; Rychlik, 2020).

Although Bacillus can be detected within the chicken gut

microbiota (Barbosa Teresa et al., 2005; Mazanko et al., 2022), it

is not considered a dominant genus, and is instead regarded as an

allochthonous member (Cartman Stephen et al., 2008; Tellez et al.,

2012). One of the primary reasons for the extensive use of this genus

as a probiotic is its classification as an exogenous spore-forming

bacterium (Tellez et al., 2012). This attribute confers significant

resistance to low pH, bile salts, and other adverse conditions

encountered within the gastric environment (Setlow, 2006;

Cartman Stephen et al., 2008), thereby enhancing their viability as

probiotic additives and ensuring their survival throughout the

gastrointestinal tract.

Conversely, the genus Lactobacillus, which also belongs to the

phylum Bacillota, is a representative genus within chicken

microbiota, particularly in the small intestine, where it constitutes

up to 3% of the microbial population (Mohd Shaufi et al., 2015;

Rychlik, 2020). A potential reason for the relatively lower interest in

utilizing this genus as a probiotic compared to Bacillus may be

attributed to the fact that certain Lactobacillus strains are more

fastidious regarding cultivation and handling, thereby presenting

greater challenges for their development into a viable commercial

probiotic additive (Hammes and Hertel, 2006).

Although the Lactobacillus genus has received less research

attention compared to Bacillus, our meta-analysis revealed that this

probiotic genus has yielded more substantial combined effects on

both BWG and FCR. Nonetheless, comparative studies involving

different formulations of these genera have not reported statistically

significant differences in performance outcomes (Al-Khalaifa et al.,

2019; Saleh et al., 2023).

The mechanisms through which probiotics may enhance

productive performance include the production of enzymes such

as xylanase, amylase, protease, and phytase (Flores et al., 2016;

Sharma et al., 2020); an increase in villus height and crypt depth in

the intestinal epithelium (Bogucka et al., 2019; Wieërs et al., 2020;

Younas et al., 2025), which expands the surface area for nutrient

absorption; and the promotion of tight junction protein gene

expression in the gut epithelia (Gadde et al., 2017), which could

provide a protective effect that supports epithelial integrity and

enhances nutrient uptake efficiency. The productive variations

observed between different probiotic formulations could be

associated with the differential modulation of these mechanisms;

however, this is an area that requires further research.

Regarding the variation observed across the different studies for

each probiotic formulation, measured as heterogeneity, it was

possible to establish that the only analysis that did not yield

significant results was the BWG index for the Bacillus spp. group.

This outcome suggests that across the various studies administering
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probiotic strains of the Bacillus genus, the overall effects were not

influenced by any moderating variables. This indicates a high level

of consistency in the results across studies, which is a

favorable attribute.

For probiotic formulations showing significant heterogeneity,

potential moderators were examined, such as probiotic dose across

all analyses and, in the case of the Probiotic Mix group, the number

of strains included in the formulation. However, none of the meta-

regression models reached statistical significance, indicating that

these moderators did not explain a substantial portion of the

heterogeneity observed in BWG and FCR outcomes.

Previous studies investigating probiotic dose influence on

probiotic effects, but often report results that are difficult to

interpret, either showing diminished effects at higher doses or no

significant differences between dose levels, which commonly range

from 107 to 1010 CFU/kg (Jin et al., 1998; Mountzouris et al., 2010;

Aluwong et al., 2013; Al-Seraih et al., 2022). These findings are

consistent with the present meta-regression results.

The heterogeneity observed across studies in this meta-analysis

can be attributed to a primary factor: interspecies differences within

the same genus concerning probiotic mechanisms. Variations in the

enzymatic repertoire have been well documented among different

Lactobacillus species (Maske et al., 2021). This variability likely

extends to other mechanisms, including immune response

modulation, bacteriocin production, and other factors influencing

host health. Such differences can even be identified at the strain

level, as the activity of probiotics is unique to their specific strains.

Consequently, the effects observed with one strain cannot be

extrapolated to other strains within the same genus or species

(Marteau, 2011).

Research on multi-genus probiotic mixtures has been

predominantly influenced by commercial formulations, some of

which incorporate up to nine distinct microorganisms, including

bacteria, yeasts, and molds. It is reasonable to assume that multi-

genus formulations might yield superior outcomes compared to

single-strain or single-genus formulations (Tong et al., 2023).

Although multi-genus probiotic mixtures exhibited the strongest

combined effect on the feed conversion ratio (FCR), formulations

containing Lactobacillus demonstrated better results for both

performance indices when expressed in metric units. These

findings challenge the assumption that a greater number of

strains leads to better outcomes, which is also consistent with the

analysis of the moderating variables.

Finally, based on the findings of this study, we consider it

important to highlight the growing normalization of editorial

policies that favor the presentation of data variability as pooled

standard errors. In our review, we found that approximately 50% of

the articles employed this method to report variability in their

tables. However, this practice complicates the direct use of such data

in meta-analyses, particularly when calculating standardized mean

differences (SMDs). This limitation is particularly concerning for

probiotic strategies, for which research output is relatively scarce.

This trend underscores the need for journal editorial boards to

reconsider the acceptance of this reporting format. Alternatively,

the authors could address this issue by presenting the standard
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deviations (SD) or group-specific standard errors of the mean

(SEMs) in tabular form, either within the manuscript or as

Supplementary Material.
5 Conclusions

Among the diverse range of probiotic formulations evaluated

for their effects on the productive performance of broiler chickens,

the most frequently studied are those based on Bacillus, multi-genus

mixtures, and Lactobacillus. All of these probiotic formulations

have demonstrated benefits by significantly increasing body weight

gain (BWG) and reducing feed conversion ratio (FCR). Notably,

although Lactobacillus was investigated less extensively than the

other groups, it exhibited the most pronounced effects when the

combined effect sizes were converted into standard metric units.

The meta-analysis indicated that probiotics significantly enhanced

the productive performance of broilers, which has important

implications for food security. Notably, formulations containing

Lactobacillus produced stronger effects than multi-genus

formulations with a wide diversity of microorganisms, which

remain the most commonly used in the industry, a practice that

should be reconsidered.
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SUPPLEMENTARY FIGURE 1

The pie chart provides a detailed breakdown of the “Other <3%” category

from Figure 2A, illustrating probiotic formulation strategies with individual
proportions below 3%.

SUPPLEMENTARY FIGURE 2

Pie charts illustrating the proportions of subgroups (individual species or
species/genus combinations) within each selected classification group: (A)
Bacillus spp., (B) Probiotics Mix, and (C) Lactobacillus spp. The data

encompassed all experimental groups derived from the prior selection
process, including all probiotic formulations and routes of administration.
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