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Introduction: Human body communication (HBC) utilizes the human body as a
medium of communicating data. Considerable research has been done to
characterize HBC channels to optimize communication techniques. However,
dynamic HBC channels have been less studied.

Methods: An approach for developing dynamic models of the human body
channel for galvanic communication is presented using multiphysics finite
element analysis (FEA). An analytical framework is formulated that utilizes
stochastic ABCD network parameters to explore and model dynamic HBC
channel segments. Channel segments were subjected to mechanical forces
using the finite element method (FEM) to reveal their impact on the current
density and electric field.

Results: Linear regression modeling shows a strong relationship between applied
force, current frequency, and channel response, with R² metrics exceeding 0.99.
The dynamic nature of the channel reflects the need for stochasticmodeling. This
study examined candidate probability density functions (PDFs) to describe
channel fading for the ABCD network parameters. Lognormal and Weibull
distributions fit the magnitudes best while the generalized Pareto, generalized
extreme value, and logistic distributions fit the phases best. Empirical modeling
validated the accuracy of the lognormal distribution fits found using the FEM.

Discussion: The dynamic channel was characterized utilizing multiphysics FEM
modeling, empirical modeling, and ABCD network parameters. This information
is invaluable for EM dosimetry analysis and risk assessment in body area network
(BAN) device design, as well as device optimization, because stochastic HBC
parameters emulate the dynamic nature of the human body channel.
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1 Introduction

Human body communication (HBC) utilizes the human body as a medium for
communicating data (IEEE SA, 2008). HBC can be considered as an alternative to
short-range RF communication when used for medical telemetry in body area networks
(BANs) (Pereira et al., 2015). Research has shown that HBC achieves greater spectral
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efficiency, higher data rates, better security, and better power
efficiency than radio-frequency (RF)-based BANs (Bae et al.,
2012b; Cho et al., 2014; Seyedi and Lai, 2014; Ali et al., 2019;
Sujaya and BhanuPrashanth, 2021). However, channel models are
essential for analyzing and optimizing BAN performance. These
models can be leveraged to develop application-specific physical
layer (PHY) technologies (including, but not limited to, automatic
gain control (AGC), channel equalization, and auto-encoders) that
can be used to improve the performance of BAN transceivers to
achieve better error performance, better receiver sensitivity, a higher
data rate, better channel resilience, and power efficiency (Ali et al.,
2019; Zhang et al., 2016b; Pereira et al., 2015). Furthermore, human
body state (e.g., electrode location/state, action performed by body
parts, and blood analyte concentration such as glucose) correlates
with the channel response (Wang et al., 2016; Zhang et al., 2016a;
Maity et al., 2018; Takamatsu et al., 2021; Roopnarine and Rocke,
2024; Tang et al., 2023; Chen et al., 2016; Ahmed et al., 2019). This
type of data is crucial in medical use cases that require the
monitoring of patients’ medical condition or athletes’ physical
state to optimize their performance (Bouazizi et al., 2017; Smith,
2011; Dhamdhere et al., 2010). Thus, channel models are essential
for BAN optimization, medical state determination, and RF safety.

Extensive research has developed channel models for the two
main categories of HBC communication techniques: electric field
HBC (eHBC), which involves modulating electric fields to
communicate through galvanic and capacitive coupling, and
magnetic HBC (mHBC), which involves modulating magneto-
quasistatic fields through magnetic induction (e.g., Callejon et al.,
2012a; Pereira et al., 2015; Ogasawara et al., 2014; Seyedi and Lai,
2014; Rocke and Persad, 2015; Wen et al., 2022; Ahmed et al., 2019;
Chen et al., 2016; Vizziello et al., 2024; Noormohammadi et al.,
2021). Each communication technique has its advantages. For
example, mHBC offers channel resilience since the magnetic
permeability of most materials is the same; capacitive coupling
has a greater frequency range of operation that offers higher data
rates; both mHBC and capacitive coupling allow for electrodes to be
either on or close to the body, offering more versatility with regards
to use cases; galvanic coupling offers more channel resilience against
the body’s environment as it requires electrodes to be in contact with
the body (Rocke and Persad, 2015; Pereira et al., 2015; Seyedi and
Lai, 2014;Wen et al., 2022). This paper focuses onmodeling galvanic
coupling because this form of communication is standardized for
HBC. However, this research can be easily extended to other HBC
techniques.

Channels models can be derived from three methods.

1. Empirical measurements, which can provide channel response
graphs over frequency/distance, channel response equations,
statistical fitting to fading characteristics, coherence
bandwidths, and coherence times (Seyedi and Lai, 2014;
Zhang et al., 2016a; Maity et al., 2018; IEEE SA, 2008; Tang
et al., 2023; Chen et al., 2016).

2. Analytical exploration, which can provide channel response
equations and circuit models (Seyedi and Lai, 2014; Callejon
et al., 2012a; Maity et al., 2018; Bae et al., 2012a).

3. Numerical simulations, which can provide channel response
graphs over frequency/distance, channel response equations,

and the visualization of electric fields and current distributions
in the tissue (Callejon et al., 2014; Ahmed et al., 2019).

However, relatively limited emphasis has been placed on the
effect of the dynamic state of the human body on the channel
response. Analytical solutions typically explore the propagation of
signals through the human body using Maxwell’s equations (Bae
et al., 2012a). However, these solutions are closed-form and limited
to standard geometries; they cannot model dynamic behavior that
may cause irregular tissue deformations. In the literature surveyed,
mostly empirical measurements were found to model dynamic
channel behavior for HBC (Maity et al., 2018; Zhang et al.,
2016b; Zhang et al., 2016a; Seyedi and Lai, 2014; Tang et al.,
2023; Chen et al., 2016). Nonetheless, the fading characteristics
found provide no insight into the electric field and current
distribution of the body under such conditions. Furthermore, no
study was found on the impact of externally applied forces to the
skin on the body’s channel response in the HBC band
(18.375–23.625 MHz). Maity et al. (2018) demonstrated channel
loss and variability increases with decreasing pressure applied to
electrodes through an empirical measurement study. However, that
study was limited to the 1Hz-1 MHz frequency range and did not
quantify the electrode pressures applied. HBC is standardized in the
HBC band for galvanic communication (IEEE, 2012). Consequently,
for standardized communication, HBC models must include the
HBC band. Numerical solutions offer insight into complex
structures by evaluating the foundation equations that defined
the physics of a model proposed for experiments (Rocke and
Persad, 2015).

Finite element method (FEM) analysis a type of numerical
solution that allows the dynamic characterization of biological
phenomena (Guo et al., 2011) and electro-quasistatic field
visualization for defined HBC use cases (Callejon et al., 2014;
Noormohammadi et al., 2021; Datta et al., 2021; Ahmed et al.,
2019). This gives insight into the electrical transmission mechanism
through human tissue, which is invaluable when considering radio
frequency (RF) safety and transceiver optimization techniques. For
example, Callejon et al. (2014) simulated current density and electric
field strength across the tissue layers in the arm for different channel
lengths and inter-electrode distances across 1 kHz to 1 MHz.
However, for this study, the electric field visualizations of the
cross-section of the arm shown did not include the HBC band.
Ahmed et al. (2019) extended this work by considering different
tissue thicknesses and bending angles, looking at the electric
potential at the Rx for these dynamic conditions. Current density
visualizations were provided at the 10 kHz frequency for some
geometries where the thickness of the tissue composition was varied.
Additionally, this study did not consider the HBC band. Datta et al.
(2021) showed the electric field across and around an overly
simplified geometry of the human body for capacitive coupling
communication technique for frequencies under 1 MHz. They also
investigated the variation of received voltages for different body
postures and electrode configurations. However, there was no
indication of the incorporation of the mechanical tissue
properties which, when included, can affect the resultant bio-
impedance of the body postures observed (Albulbul and
Chan, 2012).
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Mechanical deformations in dynamic channels lead to signal
variations, commonly referred to as “fading”. This paper aims to
identify and model the nature of these fading mechanisms.
Consequently, to observe the electrical transmission mechanism
for galvanic communication under dynamic channel conditions, this
study addresses the above-mentioned research gaps through the
following contributions.

• Novel framework: introduces a comprehensive framework
that integrates multiphysics FEA with stochastic ABCD
parameters for dynamic HBC analysis.

• Tissue deformation impact: highlights the role of tissue
deformation on current distribution and EM parameters in
galvanic communication.

• Linear relationship model: develops a regression model
linking applied force, frequency, and channel response for
improved HBC understanding.

• Stochastic characterization: identifies optimal probability
distributions for ABCD parameters.

• Empirical validation: corroborates FEM model findings with
empirical data, demonstrating the relevance of lognormal
distribution in dynamic states.

• Broader applications: adapts the framework for various HBC
communication modes and dynamic conditions, enhancing
research applicability.

• Safety and design standards: insights contribute to compliance
with safety standards and the optimization of wearable and
implanted device designs.

This paper is organized as follows. Section 2 introduces the
ABCD network parameter framework, outlines FEM model

characteristics, and describes the empirical modeling approach.
Section 3 presents the simulated and empirical results and
analyzes them. Section 4 presents the conclusions made based on
the results observed. This study extends Roopnarine et al. (2024).

2 Materials and methods

2.1 System model

Galvanic coupling involves the application of a deferentially
modulated signal through transmitter electrodes (Tx) directly in
contact with the body (Figure 1). This induces galvanic currents,
which are collected by receiver (Rx) electrodes also in direct contact
with the body (Pereira et al., 2015).

Fading—the variation of channel gain—is related to bio-
impedance since it affects the channel response. Several studies
show that the electric field of the propagated signal is distributed
through the different tissue layers (Callejon et al., 2012a; Callejon
et al., 2012b, Callejon et al., 2014; Wang et al., 2016; Ahmed et al.,
2019). Consequently, circuit-based analytical HBC channel models
have been developed that incorporate the electrical parameters of the
human body (Callejon et al., 2012a; Wang et al., 2016; Seyedi and
Lai, 2014; Callejon et al., 2012b).

Bio-impedance, and by extension the channel response, is affected by
the body’s state. Gabriel et al. (1996) demonstrated that the body’s circuit
parameters depend on its electrical properties—tissue conductivity and
permittivity. However, these properties are dependent on non-
deterministic, time-varying factors such as channel geometry—for
example, skin thickness, skin deformation (Albulbul and Chan, 2012;
Maity et al., 2018), body posture (Datta et al., 2021) and presence of
needle punctures (White et al., 2013)—and body chemical
composition—for example, blood glucose concentration (Andersen
et al., 2019). Bio-impedance is also different for different sections of
the body and for subsections such as the dermis and epidermis skin layers
(Tsai et al., 2019; Gabriel, 1996). The state of these sections also influences
bio-impedance, such as if skin is wet or dry (Gabriel et al., 1996). The
body’s biological condition (e.g., biological state of liver ischemia)
influences bio-impedance (Tronstad and Strand-Amundsen, 2019).

The ABCD network parameters are essential for analyzing and
optimizing human body communication (HBC) systems. The A and D
parameters represent input and output voltage ratios that are vital in
assessing signal gain and loss. At the same time, B and C describe the
voltage–current relationship, thus revealing impedance and loading
effects. Understanding these parameters enables the accurate modeling
of signal propagation, efficient energy transfer, and enhanced reliability
in dynamic environments. Integrating ABCD parameters into the
channel model provides a robust framework for improving HBC
performance and guiding design strategies.

ABCD network parameters are used in this study because of their
effectiveness in modeling segmented systems as a transmission line.
Callejon et al. (2012a) demonstrated that the human body can be
modeled as a static transmission line consisting of a series of cascaded
two-port networks to analyze signal propagation. Our research extends
this by introducing ABCD parameters, leveraging the premise that two-
port networks can model the channel response of individual tissue
segments. This segmented approach allows for the cascading of
segments to represent the entire channel as a lossy transmission line,

FIGURE 1
Electrode configuration for galvanic coupling HBC.

FIGURE 2
Transmission line representation for the ith body segment.
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as in transmission line theory (Notaros, 2010; Ulaby et al., 2010). Thus,
any cascade can then be used to represent the entire length of the
channel. The stochastic model is based upon the traditional use of
deterministic ABCD parameters to model transmission lines (Callejon
et al., 2012a; Ulaby et al., 2010; Notaros, 2010). Our approach involves
extending this ABCD framework by introducing stochasticity to the

ABCD parameters of each of these tissue segments, acknowledging the
inherent randomness in tissue properties. This enables us to explore the
resulting PDFs that describe the transmission parameters of the entire
channel under dynamic conditions, thereby providing insights into
dynamic channel fading.

Accordingly, the human body channel is seen as non-deterministic
and time-varying. This work proposes that the human body bemodeled
as a lossy transmission line divided into differential segments, such that
the ith body segment, Δwi, is depicted in Figure 2. Hence, each
differential segment of the human body channel, Δwi, is modeled as
an ABCD 2-port network shown in Equation 1.

Γi � Awi Bwi

Cwi Dwi
[ ] � RiYi + 1 Ri

Yi 1
[ ]

� RiGi + 1( ) + jBi Ri

Gi + jBi 1
[ ].

(1)

The circuit parameters chosen are based on the work of Callejon
et al. (2012a) where:

• Yi � Gi + jBi, the segment admittance consisting of the
aggregate tissue conductance, Gi, and susceptance, Bi,
which are responsible for coupling between the conductive
pathways of the segment; and

• Ri, the series resistance of the segment which is responsible for
signal propagation between cells.

FIGURE 3
Geometry design for the proposed FEM model through (A) transverse section view and (B) plan view.

TABLE 1 Geometry dimensions for the FEM model proposed.

Dimension Value (mm)

P 50

H 1.6

K 340

L 25

E 10

F 8.5

M 27.5

T 37.5

S 1.5

X 10

Y 10
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This on-body segmented model allows for the representation of
fading caused by random channel response variations that stem
from bio-impedance fluctuations. Γi is a 2 × 2 matrix representing
the ABCD parameters for the ith segment. Each element in Γi is a
complex-valued random process with probability density functions
(PDFs) dependent on Ri, Gi and Bi (designated as fRi, fGi and fBi

respectively). Thus, Γi is a random process continuous-valued,
discrete-parameter random matrix, consisting of random
processes Awi, Bwi, Cwi and Dwi, with index set i � {1, . . . , N},
where N is the number of Δwi segments that aggregate to form the
channel. The channel length under observation is L � ∑N

i�1ΔwLi,
where ΔwLi is the length of the ith segment.

ABCD network modeling allows for the entire human body
channel under observation to be represented as an aggregate two-
port network equivalent to the cascade of theN differential Δwi two-
port networks. This forms the resultant HBC network
representation under matrix multiplication, as shown in Equation 2:

Γ � ∏N
i�1

Γi � A B
C D.

[ ] (2)

Thus, Γ is the end-to-end channel ABCD matrix as a result of
cascading all the Γi ‘s in the channel.

This approach can be extended to the other HBC
communication modes (i.e., capacitive coupling and galvanic
coupling) through modification of the Δwi equivalent circuit to
reflect the signal pathways in the channel.

2.2 Multiphysics finite element dynamic
HBC model

The FEM model was derived using COMSOL multiphysics
software through geometry design, material assignment,
multiphysics selection, boundary condition assignment, mesh
selection, domain configuration, and result processing
configuration.

TABLE 2 Mechanical properties used for the FEM model.

Mechanical
property

Skin Fat Muscle Blood vessel

Poisson’s ratio, ] 0.495 (Kearney et al., 2015; Liang and Boppart,
2010)

0.49 (ClinMed International Library,
n.d.; Wang et al., 2021)

0.47 (Wang et al., 2021; Takaza
et al., 2013)

0.49 (Karimi et al.,
2016)

Young’s modulus, E (Pa) 500,000 (Pawlaczyk et al., 2013; Pailler-Mattei
et al., 2008; Agache et al., 1980)

3800 (Comley and Fleck, 2010;
Nightingale et al., 2003)

50,000 (Lima et al., 2018) 500,000 (Ebrahimi,
2009)

Density, ρ (kg/m3) 1109 (ITIS Foundation, 2024; Chawla et al.,
2006)

911 (ITIS Foundation, 2024) 1090 (ITIS Foundation, 2024;
Chawla et al., 2006)

1060 (ITIS
Foundation, 2024)

FIGURE 4
3D view of the channel divided into Δw segments.

FIGURE 5
Electrode locations used for empirically deriving the stochastic,
dynamic channel model.
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2.2.1 Geometry and model parameters
The geometry modeled is a multi-layered cuboid section of human

tissue consisting of four tissue components—skin, fat, muscle, and a
blood vessel—with Tx and Rx electrode pairs placed on-body (Figure 3).
Themodel dimensions are captured in Table 1. These tissue component
thicknesses are within the range of the true human anatomical
dimensions, similar to Callejon et al. (2012a), Wegmueller et al.
(2007), Persad and Rocke (2020), and DeSaix et al. (2013). The
dielectric properties of the tissue components (i.e., permittivity, ϵ,
and conductivity, σ) were chosen based on the Cole–Cole model by
Gabriel et al. (1996) to capture their frequency response when subject to
electro-quasistatic fields in the HBC band (Gabriel, 1996).

The mechanical properties of the tissue components (i.e.,
Young’s modulus, E, Poisson’s ratio, ], and density, ρ) were
chosen based on the mechanical properties of human tissue used
and derived in the literature surveyed. This is captured in Table 2.

2.2.2 Model equations
The FEM model proposed was derived using COMSOL Multi-

physics 5.5 through the physics of electrical currents, electrical

circuits, and solid mechanics. The electrical currents and circuit
physics are deployed through the AC/DC module which solves the
current conservation equation based on Ohm’s law—and, by
extension, Kirchhoff’s conservation laws for the voltages,
currents, and charges associated with the circuit elements—using
the scalar electrical potential as the dependent variable, as shown in
Equations 3–5.

∇.J � Qj,v, (3)
J � σE + jωD + Je, (4)

E � −∇V (5)
where J is current density [A/m2], Qj,v is an external current source
[A/m3], σ is the electrical conductivity [S/m], Je is an externally
generated current density [A/m2], E is the electrical field intensity
[V/m], V is scalar electrical potential [V], D is electrical
displacement [C/m2], and ω is angular frequency [rad/s].

In accordance with the convention for galvanic communication,
a differential signal was applied across the Tx electrodes by setting
the Dirichlet boundary condition to a voltage of amplitude V0 � 1V

FIGURE 6
Current passing through various cross-sectional planes of the tissue components at 21 MHz, located at (A) Tx electrodes, (B) 10 cm from the Tx
electrodes, (C) 20 cm from the Tx electrodes, and (D) 30 cm from the Tx electrodes.
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of frequencies in the HBC band. V0 is specified as peak voltage
(COMSOL Multiphysics, 2019). The channel was surrounded by an
external layer of air (a sphere surrounding the channel of radius
272mm) configured as electric insulation by setting the Neumann
condition, n.J � 0, where n is the surface normal. Thus, the air
domain was considered an external unbounded domain. A resistor
component is assigned between the Rx electrodes to read the
electrical parameters necessary to derive the ABCD parameters
for developing the FEM model. Separate reference nodes for the
Rx and Tx pairs were configured, with Dirichlet boundary
conditions of 0V through the relevant physics, to ensure that the
Tx and Rx ports were decoupled.

The solid mechanics physics is deployed through the structural
mechanics module, which solves equations of motion together with
a constitutive model for a solid material to compute displacements,
stresses, and strains as shown in Equation 6.

0 � ∇. FS( )T + FV, F � I + ∇u, (6)
where F is the deformation gradient, S is second Piola–Kirchhoff
stress [N/m2], FV is the force per unit volume vector [N/m3], I is the
unit tensor, and u is the displacement field [m].

Each tissue component was configured to be linear elastic material
to emulate the effects of applying practical, small-signal external stresses
expected under normal operating conditions. The bottom surface of the
FEM channel model, under the muscle tissue component, was

configured to be a fixed constraint (i.e., its displacements are zero in
all directions) to model the multi-layered tissue’s contact with bone. A
boundary load, or force Ftot in [N], was applied on the upper surface of
the FEM model, on the skin tissue component, to emulate pushes and
pulls on themodel’s surface fromhuman activities (Lee and Jung, 2017).

2.2.3 Model computation
The simulation software discretizes the channel into finite elements

using physics-controlled meshing sequences, which create meshes that
consist of different element types and size features, to solve the
applicable model equations defined in Section 2.2.2. When these
model equations are solved, the relevant field parameters can be
extracted to formulate the FEM model.

Recall that this FEM model focusing on the HBC band as
galvanic communication is standardized at those frequencies
(IEEE, 2012). The electrical length of the human body and signal
frequency in the HBC band show that the communication scenario
observed satisfies that of electro-quasistatics. However, as the signal
frequency becomes larger, the quasistatic assumption may not hold,
as propagation and inductive effects may become more significant.
Thus, to avoid invalidating the quasistatic assumption, the
frequencies are kept under 100 MHz. With galvanic
communication, the electrical field is mostly localized to the
human body (Callejon et al., 2014). The dimensions of the
external layer of air were selected based on the extent of the

FIGURE 7
The percentage of electric field intensity, E [V/m], when subjected to different forces. for the tissue components (A) skin, (B) blood, (C) fat, and
(D) muscle.
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electrical field observed by Callejon et al. (2014) and to
accommodate the geometric deformations applied in this study.

2.2.4 Simulations
The channel was deformed with forces applied on the skin’s

surface, ranging in magnitude from −30 N to 30 N in 1 N

increments. These force magnitudes were selected based on
research from typical activities involving the human body, such
as pinching, gripping an object (Lee and Jung, 2017; Wells and
Greig, 2001), tactile forces (Tang et al., 2015), indentations from
micro-needles (Groves et al., 2012), and internal muscle activations
(Steenbrink et al., 2009). All of these activities exert forces on the

FIGURE 8
The percentage of current density, J [A/m2], when subject to different forces. for the tissue components (A) skin, (B) blood, (C) fat, and (D)muscle.

TABLE 3 Coefficients to regression fitting the magnitude and phase response of the inverse of the ABCD parameters with respect to force applied, F, and
frequency, f , of the form γ � mAF +mBf + C.

ABCD parameters, γ Equation coefficient R2

mA mB α

1/A Magnitude 1.66 × 10−8N−1 9.00 × 10−14 Hz−1 3.19 × 10−7 0.994

Phase −2.38 × 10−3 rad −8.29 × 10−9 rad −1.66 rad 0.999

1/B, (S) Magnitude 3.69 × 10−11 Ω−1N−1 3.27 × 10−16Hz−1N−1 −8.66 × 10−10Ω−1 0.995

Phase −2.27 × 10−3rad −8.25 × 10−9rad 2.03rad 0.999

1/C, (Ω) Magnitude 7.18 × 10−6 S−1N−1 2.19 × 10−11S−1Hz−1 3.53 × 10−4 S−1 0.993

Phase −2.49 × 10−3rad −8.33 × 10−9rad −2.21rad 0.999

1/D Magnitude 1.65 × 10−8 N−1 8.97 × 10−14 Hz−1 3.18 × 10−7 0.994

Phase −2.38 × 10−3rad −8.30 × 10−9rad 1.48rad 0.999
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skin in various directions. In reality, the skin is subject to forces in
multiple directions. Thus, this study applied mechanical forces to
simulate pressing and pulling forces on the tissue.

For each of these deformations, the Tx electrodes were excited
with V0 of frequencies in the HBC band (18.375–23.625 MHz in
0.25 MHz increments). Each voltage was injected with two different
load resistances (1Ω and 1000Ω) between the Rx electrodes to
compute ABCD parameters. This data was used to determine the
relationship between the ABCD network parameters, force applied,
F, and frequency of the voltage used, f.

The electric field, current density, and voltage field distributions
were simulated on the cross-sectional plane corresponding to the Tx
electrodes in the x − y plane of the channel at different channel
lengths (0cm, 5 cm, 15 cm, and 30 cm) over different frequencies
(18.375MHz, 21.125MHz and 23.625MHz) under different
deformation forces (−30N,-15N, 0N, +15N and +30N).
Insights into the electric field penetration of the channel were
acquired by determining the average electric field magnitude and
current density magnitude for each tissue component under
different deformation forces (−30N,-15N, 0N, +15N, and
+30N). Negative forces represent pressing forces onto the skin
while positive forces represent pulling on the skin.

The channel was divided into Δw segments, each composed of
all tissue components, 1 cm × 5 cm × 3.75 cm (Figure 4). The ABCD
parameters were determined, using the currents and voltages at
input and output ports recorded from the simulation for eachΔw

segment as well as the whole channel between the Tx and Rx
electrodes; A is the reverse voltage transfer ratio (or inverse
channel gain), B is the short circuit resistance, C is the open
circuit conductance, and D is the reverse current transfer ratio.
These values were subsequently used to perform dispersion and
correlation analyses between Δw segments.

2.3 Empirical dynamic HBC model

The objective of this section is to empirically examine the
distributions that the ABCD parameters tend toward under
typical forces applied during every day dynamic activities. This
analysis serves to validate the channel response distributions
obtained through numerical simulations—one of the areas for
further study identified by Roopnarine and Rocke (2021).

Thus, in addition to previously simulations, the candidate PDFs
were examined through channel measurements of typical dynamic
conditions expected in HBC use cases. The conditions studied in both
simulation and empirical research were aligned to ensure consistency in
the scenarios being tested. Multiple scans with averaging were used
during measurements to control for experimental error, improving the
reliability of the results. Transmit (Tx) and receive (Rx) electrodes,
spaced 10 mm apart, were placed on a human subject in the general
locations shown in Figure 5 (arm, wrist, and wrist-arm). These
electrodes were connected to the Anritsu MS46122B vector network

FIGURE 9
Best fit PDFs found for a sample Δw segment’s ABCD parameter elements in Γi (A) A, (B) B, (C) C, and (D) D.
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analyzer (VNA), which was used to measure the S-parameters (S11, S12,
S21, and S22 through reflection and transmission mode configurations)
of the channel in the general locations isolated. The Tx and Rx ports
were decoupled using FTB-1-1+ Baluns. The VNA connections are also
shown in Figure 5. These S-parameters were measured with a human in
various states:fist clenching, writing, a bicep curl without weight, a bicep
curl with weight, rotating ankle, walking, and marching. In these states,
forces were naturally applied to the skin, affecting channel behavior.
These S-parameters were then converted to ABCD parameters in
alignment with the analytical framework outlined in Section 2.1
(Blattenberger, 2023). The VNA was calibrated to offset the effect
the connector probes have on the channel response. Additionally,
averaging was used to minimize measurement noise. These
measurements were taken across the HBC band
(18.375MHz, 21.125MHz and 23.625MHz). Additionally, the
output power of the VNA was set to 0dBm to comply with the
ICNIRP standard for general exposure for humans (International
Commission on Non-Ionizing Radiation Protection ICNIRP, 1998).

After acquiring the data, both the empirical and simulated results
were compared following simulation validation. This comparison helped
identify candidate distributions for dynamic fading, capturing the
stochastic nature of the dynamic HBC channel. The agreement
between the simulated and measured data helped ensure that the
identified PDFs could reliably represent the channel dynamics under
typical HBC conditions.

3 Results and discussion

The results and analysis are broken into field-based analysis and
analysis of the stochastic dynamic HBC channel model.

3.1 EM-based field analysis

Electromagnetic (EM)-based field analysis is an important aspect of
electromagnetic EM dosimetry and risk assessment. In wearable and
implanted system design, simulating the distribution of electric field
intensity in the different tissues is essential for i) understanding the
potential effects of EM radiation on human health, ii) ensuring
compliance with applicable safety standards, iii) optimizing device
design, and iv) facilitating personalized dosimetry analysis.

Figure 6 shows the current passing through a cross-sectional
plane of the tissue components located at distances 0, 10, 20, and
30 cm (i.e., at the Rx electrodes) from the Tx electrode. These results
show that the tissue current density decreases as the distance from
the Tx increases, consistent across all tissue components, similar to
observations made by Callejon et al. (2014) at frequencies outside of
the HBC band. Additionally, the applied force significantly impacts
the distribution of current density in each tissue component.
Although changes in the applied pressing force cause relatively
minor variations in current density, pulling force deformations

FIGURE 10
Best-fit PDFs found for the cascaded elements of Γ of channel length 30 cm (A) A, (B) B, (C) C, and (D) D.
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FIGURE 11
Best fit PDFs from empirically derived data from dynamic HBC scenarios for magnitudes of (A) A, (B) B, (C) C, and (D) D.

TABLE 4 Best-fit PDFs found for the Δw segments for the ABCD parameter elements in Γi .

Distribution Frequency PDF selected as the best fit for elements

A B C D

Magnitude

Lognormal 9 25 11 18

Normal 0 0 0 0

Rician 2 0 0 1

Rayleigh 0 0 0 0

Weibull 19 5 19 11

Phase

Extreme value 4 2 2 5

Generalized extreme value 7 5 10 2

Generalized pareto 14 20 11 13

Logistic 1 3 1 4

Normal 3 0 1 3

Rayleigh 0 0 1 1

Tlocationscale 1 0 3 2

Weibull 0 0 1 0

Frontiers in Antennas and Propagation frontiersin.org11

Roopnarine and Rocke 10.3389/fanpr.2025.1509439

https://www.frontiersin.org/journals/antennas-and-propagation
https://www.frontiersin.org
https://doi.org/10.3389/fanpr.2025.1509439


notably increase the current density across all tissue components,
except near the Tx electrodes. This is likely because deformation
alters the geometry of the skin, increasing the cross-sectional area
through which current flows, which in turn reduces resistance and
impacts the current distribution.

Figure 7 shows the percentage of the electric field intensity, E, for
deformed tissue components of skin, blood, fat, andmuscle respectively
over the entire channel length. These results show that, excepting
muscle tissue, increasing a downward force on all tissues decreases
the percentage of E across all tissue components. In contrast, increasing
the downward force in the muscle increases the percentage E.
Furthermore, with the exception of blood, changes in the percentage
E remain relatively flat across frequency. Most of E is concentrated in
the fat, followed by muscle, skin, then blood. Knowing the E-field
distribution across these different tissue layers allows for better
optimization of the communication system design process as well as
RF safety completeness checks (International Commission on Non-
Ionizing Radiation Protection ICNIRP, 1998).

Figure 8 shows the percentage of electric current density, J, for
tissue components skin, blood, fat, and muscle, respectively, over the
entire channel length. Similar to E, with the exception of muscle
tissue, the percentage current density decreases with increasing
downward force on all tissues. Increasing the downward force in
muscle increases the percentage J. Furthermore, changes in the
percentage J remain relatively flat across frequency across all tissues.
Most of J is concentrated inmuscle, followed by skin, fat, then blood,
similar to the static study of Callejon et al. (2014).

3.2 Stochastic ABCD model for dynamic
HBC channel

Several trends were observed from analyzing theABCD network
parameters for the 30 cm channel length as a whole and considering
the Δw segments. The ABCD network parameters, force applied, F,
and frequency used,f exhibited a linear relationship (of general
form shown in Equation 7) derived in Table 3.

γ � mAF +mBf + α (7)
The equations derived for magnitude and phase fitting for the

ABCD network parameters for the 30 cm channel length were fitted
using linear regression to map the channel response as a function of the
frequency and force applied. These fits demonstrated an impressive R2

goodness of fit metric. R2 is a statistical measure used to determine how
well a regression model fits with the observed data (Kutner et al., 2005;
Draper and Smith, 1998). Thus, the channel response and force applied
demonstrated a linear relationship.

The use of 1/A, 1/B, 1/C, and 1/D highlights how dynamic
conditions impact the full range of parameters in HBC channels. A,
the inverse channel gain, and B, representing impedance, help capture
how movement and tissue deformation affect signal attenuation and
impedance variations. Similarly, C, which represents the transfer of
current, and D, the reflection coefficient, are also crucial for modeling
signal behavior under dynamic conditions. Changes in 1/C and 1/D
offer insights into how current transfer and signal reflection are
influenced by body motion and varying tissue properties, providing
amore comprehensive understanding of channel fading, signal loss, and
impedance shifts in real-world HBC scenarios.

The correlation matrix for the magnitude and phases of theABCD
network parameters of all the Δw segments are shown in
Supplementary Figures S1 and S2 respectively (located in the
Supplementary Data Sheet S1). The results intuitively show that
closer Δw segment’s ABCD network parameters are more
correlated, with higher relative correlation coefficients, than Δw
segments spaced further apart. By definition, A is the inverse
channel gain. From Supplementary Figure S3 (located in
Supplementary Data Sheet S1), the force applied to the skin affects
the correlation of the channel response between segments such that
increasing the force, either in positive or negative directions, results in a
stronger correlation between closer Δw segments. The general trend
observed when a force of 0N is applied is the same when varying force.
This correlation information plays a critical role in modeling the overall
channel, particularly for simulations like Monte Carlo methods. The
analysis of Δw segments provides essential insights into how different
body segments interact with under varying conditions. This allows
researchers to accurately model the relationship between adjacent
segments, which can then be extended to model the full
transmission path from the transmitter (Tx) to the receiver (Rx). By
understanding the correlation between these segments, researchers can
combine multiple segments in a correlated manner to derive a more
realistic and dynamic channel model. This is essential for generating
accurate received signal models, which are vital for performance
analysis, design optimization, and ensuring robust communication
in human body communication (HBC) scenarios.

The best-fit PDFs were determined for each of the ABCD
parameters for each Δw segment using the Akaike information
criterion (AIC), the Bayesian information criterion (BIC) and
NLogL goodness of fit metrics, and the ABCD parameters derived
for each channel variation as a separate sample. With regards to the
magnitude, the results show that the Weibull distribution fits A and C
parameters best while the lognormal fits the B and D parameters best.
With regards to the phase, the results show the generalized Pareto
distribution fits best for allABCD parameters. Figure 9 shows a sample
PDF plot of the magnitude of theABCD parameter elements for one of
the Δw segments.

When all the segments were cascaded to form Γ, the best fit PDFs
for both magnitude and phase elements were found. Regarding the
magnitude, the results show that the lognormal distribution fit best
for all ABCD parameters. The multiphysics simulation-based
approach thus provides further support for the findings of
Roopnarine and Rocke (2021), in which Monte Carlo analysis of
the ABCD cascade was done for assumed distributions for the Δw
segments. Lognormal distributions typically model phenomena
where a significant number of individual effects, not strictly
independent, all act on a signal (Saunders and Aragón-Zavala,
2007). Regarding the phase, the results show that the generalized
extreme value distribution fits the A and C parameters best, while
the logistic distribution fits the B and D parameters best. Figure 10
illustrates the PDF plots of the magnitude of the ABCD parameter
elements for the cascaded elements of Γ.

The empirically derived fading characteristics from dynamic HBC
scenarios investigated for Γ can be found in Figure 11. Here, the best fit
PDFs for the ABCD parameters were found by accounting for the
dynamic channels investigated. Under these conditions, forces were
applied to the skin through these natural positions. The results show
that the lognormal distribution fits the ABCD parameters of the overall
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channel. This corroborates the simulated data as the top fitting
distribution match.

Consequently, there is an established relationship between applied
forces and the channel response in theHBC band. This was proven using
the FEM framework that incorporates the ABCD network parameters in
Tables 3 and 4. This same FEMmodel allows the current, current density,
and electric field intensity across body tissues under the dynamic
conditions (i.e., channel length and applied force variations) to be
observed from Figures 6–8. Channel variability (from looking at these
electrical parameters in the FEMmodel produced) for galvanic coupling
in the HBC band has been observed when the channel is subject to
dynamic conditions. Further, there is a correlation between adjacent
surface body segments and tissue layer under these dynamic channel
conditions in the results produced from the FEM model in
Supplementary Figures S1 and S2. Finally, the empirical model
produced strengthens the credibility of the FEM model.

4 Conclusion

A framework for multiphysics finite element analysis of dynamic
HBC channels was presented, incorporating the use of stochastic
ABCD network parameters. The approach was demonstrated for a
galvanic communication scenario, for which tissue deformation was
simulated to model the dynamic human body channel. The results
showed that applied force affected the distribution of the current,
current density, and electric field intensity across the different tissue
layers of the channel—important elements in EM dosimetry and risk
assessment studies. A linear regression model was formulated that
shows the relationship between applied force, frequency of current,
and the channel response. This framework can be used to consider
other HBC communication modes such as capacitive and magnetic
coupling as well as different dynamic conditions, such as different
types of forces, environment, body posture, and activities including
sitting/standing/walking states.

The dynamic nature of the channel reflected the need for
stochastic modeling. Thus, the best PDFs for each of the ABCD
parameters for segments and the combined channel were
determined. For the segments, the results show that the Weibull
distribution fits best for A and C magnitudes and lognormal for B
and D magnitudes. The generalized Pareto distribution fits best for
phases of all ABCD parameters. For the overall channel, the results
show that the lognormal distribution fits best for the magnitudes.
Generalized extreme value fits best for A and C phases and logistic
for B and D phases. Based on empirical modeling, it has been
observed that the lognormal distribution provides the best fit for the
magnitudes A, B, C, andD in various dynamic states experienced by
the human body. This finding serves to reinforce the validity and
accuracy of the FEM model used in the study. Consequently, the
dynamic channel was characterized by FEM modeling, empirical
analysis, and ABCD network parameters.
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