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Antimicrobial resistance in bacteria has been associated with significant

morbidity and mortality in hospitalized patients. In the era of big data and of

the consequent frequent need for large study populations, manual collection of

data for research studies on antimicrobial resistance and antibiotic use has

become extremely time-consuming and sometimes impossible to be

accomplished by overwhelmed healthcare personnel. In this review, we

discuss relevant concepts pertaining to the automated extraction of antibiotic

resistance and antibiotic prescription data from laboratory information systems

and electronic health records to be used in clinical studies, starting from the

currently available literature on the topic. Leveraging automatic extraction and

standardization of antimicrobial resistance and antibiotic prescription data is an

tremendous opportunity to improve the care of future patients with severe

infections caused by multidrug-resistant organisms, and should not be missed.
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Introduction

Antimicrobial resistance in bacteria has been associated with

significant morbidity and mortality in hospitalized patients

(Courvalin, 2016; Bassetti et al., 2017). Both development of

severe infection and treatment of severe infection caused by

multidrug-resistant (MDR) bacteria are active fields of clinical

research through observational, surveillance studies assessing the

epidemiology of MDR organisms, and through either observational

studies or randomized controlled trials investigating efficacy and

safety of old and new antibiotics for the treatment of MDR

infections (Karaiskos et al., 2019; Kanj et al., 2022; Gill et al., 2024).

Collection of data for the studies mentioned above is usually

performed manually, through collection of relevant demographics,

clinical, therapeutic, microbiological, and prognostic information

that is necessary for correctly evaluating epidemiology of MDR

organisms and for assessing factors favorably or unfavorably

impacting diagnosis or prognosis, by means of appropriate

statistical models (Maraolo et al., 2021; Giacobbe et al., 2023a).

However, in the era of big data and of the consequent frequent

(although not an absolute rule) need for large study populations,

manual collection of data for research studies has become extremely

time-consuming and sometimes impossible to be accomplished by

overwhelmed healthcare personnel (Giacobbe et al., 2020). Against

this backdrop, automated extraction of data from electronic health

records (EHRs) and laboratory information systems (LISs) is

attracting increasing attention for the possibility of rapidly and

automatically collecting the large amounts of data necessary for

training and evaluating complex statistical or machine learning

models, at the same time relieving healthcare personnel from the

difficult (or sometimes impossible) task of manually collecting

thousands of variables (Puing et al., 2019). However, the

automated extraction should be of high-quality, accurate,

reproducible, and standardized, which could prove not so easy

tasks, although essential in line with FAIR principles (Findability,

Accessibility, Interoperability, and Reusability) (McEwen and

Fedorka-Cray, 2002; Huys et al., 2007; Wilkinson et al., 2016).

In the present narrative review, we discuss relevant concepts

pertaining to the automated extraction of antibiotic resistance and

antibiotic prescription data from LISs and EHRs to be used in

clinical studies, starting from the currently available literature on

the topic (see Table 1).
Methods

On November 5, 2023, a literature search was conducted on

PubMed using the keywords (EHR OR EHRs OR “electronic health

record” OR EMR OR “electronic medical record” OR EPR OR

“electronic personal record” OR “laboratory information system*”)

AND (antibiotics OR antibiogram OR antibiotic OR antimicrobial

OR “antimicrobial resistance” OR “antibiotic stewardship”) AND

(“data extraction” OR “data extracted” OR “data retrieval” OR

“information extraction” OR “information extracted” OR

“information retrieval” OR “data mining”) NOT review and
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carefully evaluating the references of the articles retrieved. The

resulting papers were manually screened by checking their title,

abstract and full text. Inclusion criteria were: (i) publication after

2018; (ii) focus on antibiotic resistance or antibiotic prescription

data from LISs or EHRs; and (iii) involvement of automatic data

extraction from LISs or EHRs. We considered focus on genetic data

as the only exclusion criterion. Given the availability of dedicated

research in the literature (McEwen and Fedorka-Cray, 2002; Huys

et al., 2007), a separate specific paragraph in the manuscript has
TABLE 1 Results of the literature search.

Authors Data
Type

Information on the automatic
extraction process

Brotherton
et al.
(Brotherton
et al., 2020)

Structured Not specified

Chao et al.
(Chao
et al., 2018)

Structured VigiLanz software

Grundmeier
et al.
(Grundmeier
et al., 2018)

Structured
Unstructured

Machine learning classifier models: logistic
regression, random forest

Hawes et al.
(Hawes
et al., 2018)

Unstructured POLAR

Inglis et al.
(Inglis
et al., 2021)

Unstructured Manual,
Natural Language Processing

Koller et al.
(Koller
et al., 2019)

Unstructured MOMO

Macy et al.
(Macy
et al., 2021)

Structured Not specified

Simoes et al.
(Simões
et al., 2018)

Structured SQL and Java ETL module

Teodoro et al.
(Teodoro
et al., 2012)

Structured Java ETL module

Tunio et al.
(Tunio
et al., 2023)

Structured Automatic,
Manual

Verberk et al.
(Verberk
et al., 2023b)

Unstructured Natural Language Processing

Vermassen
et al.
(Vermassen
et al., 2020)

Unstructured Natural Language Processing

Yigzaw et al.
(Yigzaw
et al., 2020)

Structured SMILe, SQL
POLAR, Population Level Analysis and Reporting; MOMO, Monitoring of Microorganism;
SQL, Structured Query Language; ETL, Extract Transform Load; SMILe, Snow Medrave
Interaction Library Extension.
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been dedicated to automated extraction of antibiotic resistance data

in veterinary medicine. Eventually, 13 articles were selected for

discussion in the present review.
Data extraction from electronic
health records

There are several possible methods to deal with information

extraction from datasets, more specifically from EHRs. The wide

range of adopted solutions is a direct consequence of the

heterogeneity of the data structure: EHRs present a peculiar

framework which varies by country and state, and may vary even

by hospital within a limited geographic area (Ciampi et al., 2016).

Moreover, EHRs often contain both structured and unstructured

data, which require different extraction procedures, and may

include missing data that need management (Tayefi et al., 2021).

Although different methodologies have increasingly become

available for automatic extraction of data, manual extraction is

still used much more frequently (Cuningham et al., 2020; Inglis

et al., 2021; Tunio et al., 2023). Manual extraction is extremely time-

consuming. However, it is applicable to any type and form of data.

For this reason, it is frequently preferred to automatic extraction,

since automatic extraction algorithms are heavily contingent on the

data type and specialized personnel are needed to develop and

use them.

Automatic extraction algorithms show substantial differences

depending on whether the data handled are structured or

unstructured. The automatic extraction of structured data requires a

clear understanding of the schema of the sources, fields and

relationships within data (Giacomini and Nappo, 2006). Specific

queries are necessary to extract specific data. Then, the extracted

data may undergo transformation and normalization to adhere to a

standard format, and validation checks are implemented to ensure data

integrity (e.g., checks for data type consistency and range validation).

Against this background, challenges such as incomplete or inaccurate

data are also frequently present (Austin et al., 2021). Therefore, the

management of both missing values and data redundancies should also

better be carefully defined and implemented a priori.

Algorithms dedicated to the extraction of information from

unstructured data, which refers to data lacking a predefined,

organized format like traditional databases, often present a more

tangled framework. The absence of a rigid structure requires a more

sophisticated approach, involving dedicated algorithms to navigate

through the inherent variability and complexity present in

unstructured data sources that present a richer and more intricate

analytical context. This is because, to deal with data without a

definable structure a priori, algorithms must be able to figure out,

for example, where to find the information of interest, and this

requires a deep understanding of the data (Zaman et al., 2020). For

all articles retrieved and included in the present review, the

unstructured data type was free text. The discipline that deals

with understanding and managing free text data is called Natural

Language Processing (NLP), which deals with making the natural

language understandable to machines (Chowdhary, 2020). Many

steps are often required to perform an appropriate extraction.
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Usually, the free texts dataset undergoes pre-processing, which

involves cleaning, transforming, and organizing raw data to

enhance quality and suitability for further processing. Typically,

this step is followed by entity recognition and use of machine

learning models. Challenges include ambiguity and variability, with

variations in approaches (Casey et al., 2021; Reading Turchioe et al.,

2022; Zhang et al., 2022).

As mentioned above, depending on the structure of the dataset

and the specific data type, various tools can be used for the

extraction of data, and different solutions can be adopted. For

example, several data management tools were employed for the

extraction of antibiotic resistance and antibiotic prescription data in

the articles included in the present review, such as VigiLanz

software, POLAR, MOMO, ETL (Extract, Transform, Load)

module, SMILe and SQL. A more detailed description of these

tools is available in Table 2 (Teodoro et al., 2012; Klass et al., 2013;

Chao et al., 2018; Grundmeier et al., 2018; Hawes et al., 2018;

Simões et al., 2018; Koller et al., 2019; Pearce et al., 2019; Brotherton

et al., 2020; Vermassen et al., 2020; Yigzaw et al., 2020; Macy et al.,

2021; Verberk et al., 2023b; VigiLanz, 2023; Medexter Healthcare).
The relevance of standard terminologies

To properly perform automatic information extraction, it is

crucial to have a standardized data type whenever possible, in order

to minimize ambiguity and enable interoperability and operational

efficiency (Navigli and Velardi, 2005). In particular, the adoption of

Standardized Clinical Terminology emerges as a pivotal element.

This standardized terminology provides a common language to

describe clinical information, minimizing ambiguity in the data and

enabling optimal operational efficiency. According to the World

Health Organization (WHO), a Standardized Clinical Terminology

is a “compilation of terms used in the clinical assessment,

management and care of patients, which includes agreed

definitions that adequately represent the knowledge behind these

terms and link with a standardized coding and classification

system” and “Use of standardized terminology will result in better

and safer patient care and more efficient health services” (Executive

Board 118, 2006). Some of the papers included in the present

narrative review adhere to defined terminology standards,

employing a number of standardized languages to codify clinical

terminologies and facilitate the automatic extraction process.

The Anatomical Therapeutic Chemical (ATC) Classification

System, maintained by the WHO, organizes drugs into a hierarchy

with five levels. At the top of the system, there are fourteen main

groups, or 1st levels, categorized by anatomy or pharmacology.

Each main group is further divided into 2nd levels, which can be

either pharmacological or therapeutic groups. The 3rd and 4th

levels further refine into chemical, pharmacological or therapeutic

subgroups, while the 5th level specifically identifies the chemical

substance (WHOCC, 2023). Therefore, since the ATC Classification

is an international system used to classify drugs, in the context of

the study conducted by Hawes et al. (2018), ATC codes were

adopted to categorize antibiotics in a standardized way, thus

providing a common basis for the data analysis.
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TABLE 2 Automatic extraction tools.

Tool Description Limitations Comments

VigiLanz
software

Web-based
Clinical
Decision
Support System
(CDSS), queries
to extract data
from
various sources

Complex
integration with
other systems,
constraints
related to
privacy and
security, costs

For the essential tasks of
patient identification and
automatic data extraction,
Chao et al. (2018)
employed the capabilities
of the VigiLanz software.
VigiLanz is a clinical
surveillance software and
healthcare solution
designed both for data
extraction and monitoring.
It operates as a web-based
clinical support tool that
can be used both to query
healthcare data from
multiple sources such as
pharmacy and LIS and
facilitating the monitoring
within healthcare settings
(Klass et al., 2013). For the
objectives of their study,
the authors employed
VigiLanz to extract and
analyze data from different
domains, which include
administrative,
pharmaceutical and
microbiological records.

POLAR Natural
Language
Processing
applied in free
text note

Ambiguous use
of words and
acronyms,
spelling errors
in the original
free-text,
references to
real world
entities and
third persons
raising
privacy
concerns

In the study conducted by
Hawes et al. (2018), the
authors’ primary purpose
was to extract data that is
routinely collected from
EHRs in general practice.
Accordingly, the goal was
to use these data to
understand and describe
how physicians prescribe
antibiotics. The authors
opted for a software,
known as POLAR
(Verberk et al., 2023b).
This program is designed
to convert general
practitioners’ clinical text
notes from EHRs into
Systemized Nomenclature
of Medicine-Clinical
Terms (SNOMED-CT)
codes, adding a layer of
semantic richness to the
data. At the core of
POLAR’s functionality lies
its implementation of
sophisticated NLP
algorithms, designed and
used to analyze the
grammatical structure of
the clinical sentence and
test a variety of sentence
formations against the
SNOMED-
CT descriptions.

Custom
SQL
module

Relational
databases
management

Limited to
relational
databases,

SQL is a domain-specific
programming language
designed for managing and

(Continued)
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TABLE 2 Continued

Tool Description Limitations Comments

performance
issues

manipulating relational
databases. It provides a
standardized way to
interact with databases,
allowing users to perform
tasks such as querying
data, updating records,
inserting new data, and
managing database
structures. SQL is used by
Database Management
Systems (DBMs) to
communicate with and
manage relational
databases, making it an
essential tool for
developers, data analysts,
and
database administrators.

MOMO
tool

Manage
laboratory data

Costs In the article by Koller
et al. (2019), the main goal
of the authors was to
address and solve
identification challenges
within the analysis of
microbiology results. Their
focus was on increasing
the accuracy and efficiency
of this process by
implementing a
collaborative approach
between human
intervention and
automation. For the
purpose of microbiology
data extraction and
analysis, the authors used
the MOMO tool
(Vermassen et al., 2020).
MOMO is a
microbiological analysis
tool with strong clinical
features and it can import
data from the hospital
microbiological LIS and
also from EMRs. MOMO
systematically evaluates
incoming textual
identifiers, such as sample
details, detection methods,
microbes, and antibiotics
to align them with existing
thesaurus entries. Its main
function is to ensure
compatibility and provide
different analysis options.

Custom
Java
ETL
module

Extract,
transform and
load tool

Complexity,
poor scalability

A Java ETL module is a
software component
designed to facilitate the
extraction of data from
source systems, its
transformation into a
desired format, and the
subsequent loading of that
data into a target database
or data warehouse. The

(Continued)
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Yigzaw et al. (2020) also employed the use of the ATC

Classification System and, in addition, they used the International

Classification of Primary Care, 2nd edition (ICPC-2). ICPC-2 is a

classification system used to organize patient data and clinical

activities in General/Family Medicine and primary care settings.

This classification system helps the organization of various aspects,

including the reason for the patient encounter, problems or

diagnoses addressed, interventions undertaken and the structured

arrangement of these data into a framework of episodes of care

(WHO, 2003). In their work, Yigzaw et al. (2020) decided to use the

ATC and ICPC-2 classification systems to systematically organize

the acquired information, diagnosis and medical prescriptions from

both the EHRs and the research databases used to store data.

The International Classification of Diseases, 9th Revision (ICD-

9) has been developed by WHO with the aim to provide a

standardized system to classify injuries, diseases and causes of

death (ICD - ICD-9, 2023). The coding structure is represented

with up to five digits, similarly to the 10th Revision (ICD-10) which,

however, surpasses ICD-9 in greater detail and granularity of coded

elements (ICD-10 Version: 2019). The coding structure of this

newer revision is alphanumeric code with up to seven characters,

enabling better accuracy to accommodate progress in technology

and medical knowledge. These Standardized Clinical Terminologies

have been exploited in the study of Chao et al. (2018), specifically

ICD-10 codes are utilized to define a cohort of healthy individuals,

excluding children with particular previous conditions. The ICD-10
TABLE 2 Continued

Tool Description Limitations Comments

Java ETL module typically
leverages Java
programming language
libraries and frameworks
to perform these tasks. It
involves defining
extraction rules to retrieve
data from diverse sources,
applying transformation
logic to standardize or
modify the data as needed,
and finally loading the
processed data into a
destination repository. The
extraction phase involves
connecting to various data
sources such as databases,
files, or Application
Programming Interfaces
(APIs), and pulling the
relevant datasets. The
module often incorporates
error handling
mechanisms to manage
issues that may arise
during the ETL process.
This module has been
employed for extracting
clinical data from different
sources (patient data,
microbiology laboratory
and pharmacy data) in the
paper of Simoes et al
(Simões et al., 2018). The
aim of the paper was the
development of HAITooL,
a real-time surveillance
and clinical decision-
support system; to extract
the data, a web-based
information system was
developed to support a
Structured Query
Language (SQL) Server
that extracts and
aggregates the different
data types. Although not
explicitly reported in the
text, Teodoro et al. (2012)
have graphically described
the data extraction process,
from which it can be seen
that a Java ETL module
was used in this case too.

SMILe Data extraction
from
different EHRs

Costs The purpose of the article
by Yigzaw et al. (2020) was
to present a distributed
architecture, designed to
provide physicians with
feedback on their clinical
performance by comparing
it with that of their
colleagues in different
healthcare institutions,
and, at the same time,
safeguarding the privacy of
patients, physicians, and

(Continued)
TABLE 2 Continued

Tool Description Limitations Comments

the healthcare institutions
involved. A key aspect of
this distributed
architecture is the ability
to monitor antibiotic
prescriptions at the group
level. Since multiple health
facilities are involved,
using different systems to
collect and store data, the
authors needed to find a
way to overcome the
problem of heterogeneity
in these data. Therefore, to
address the heterogeneity
of EHRs from different
healthcare institutions,
Yigzaw et al. used the
SMILe tool. The SMILe
tool, operating within a
healthcare facility, daily
retrieves data from the
local Electronic Health
Record system. This data
undergoes transformation
and loading into the
research database. The
research database adheres
to a standardized data
model defined in
SQL format.
POLAR, Population Level Analysis and Reporting; SQL, Structured Query Language; MOMO,
Monitoring of Microorganism; ETL, Extract Transform Load; SMILe, Snow Medrave
Interaction Library Extension.
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codes are used also in the paper of Grundmeier et al. (2018),

focusing on the task of switching the coding system from ICD-9 to

ICD-10: descriptive words coupled with classification codes are

used as input features because of the transition. The study highlights

the complexity of accurately mapping between ICD-9 and ICD-10

codes, mainly for conditions where antibiotics are indicated. The

one last of the papers analyzed where the ICD standard has been

utilized is the study of Vermassen et al. (2020) where ICD-9 codes

were used to define which patients had septic shock.

Another Standardized Clinical Terminology which is widely

used and established is Systematized Nomenclature of Medicine -

Clinical Terms (SNOMED CT), which is a complete clinical

terminology developed for use in EHRs and other health

information systems. It goes above and beyond coding diseases

and procedures to represent clinical constructs and the links

between them (SNOMED CT). SNOMED CT is a tree-like

hierarchical structure where concepts are represented by univocal

numeric codes. It can be employed in order to map and/or

normalize various local terminologies and codes, facilitating a

univocal understanding of these terms during the extraction

process. In their work, Teodoro et al. (2012) discuss the usage of

standard terminologies, including SNOMED CT along withWHO’s

Anatomical Therapeutic Chemical (WHO-ATC) (WHOCC - ATC/

DDD Index, 2023) and Universal Protein Resource (UniProt/

NEWT) (UniProt, [[NoYear]]), in the ARTEMIS system. These

terminologies have been mapped to the DebugIT Core Ontology

and local concepts not covered within them are normalized against

them using automatic classification tools.
Free text management

Dealing with free text, it is not known a priori where the

information of interest is located. Therefore, in addition to the

extraction of natural language fields from the datasets of interest,

NLP algorithms are typically implemented to properly use the

information, as presented in several articles (Grundmeier et al.,

2018; Vermassen et al., 2020; Inglis et al., 2021; Verberk et al.,

2023b). EHRs developers are delivering an increasing number of

tools, with the aim of supporting surveillance tasks, which usually

utilize structured data (Hoffman and Podgurski, 2013), yet these

kinds of tools are unable to manage unstructured data (such as

free text).

Verberk et al. (2023a) initially described and validated a semi-

automated surveillance algorithm for post-operative surgical site

infections in multiple hospitals. In another paper (Verberk et al.,

2023b), they proposed an improvement of the algorithm, including

NLP as an add-on to free text clinical notes. To extract timely

information, they implemented a list of keywords, considered as

features, which also included the names of the antibiotics. This way,

all texts of the clinical notes were compared with the list of

keywords and each match was counted.

Vermassen et al. (2020) aimed to use NLP to identify patients

with septic shock from clinical text notes from EHRs. The free text

fields considered were “reason for admission”, “current medical

history”, “daily notes”, “conclusion of admission”. Four dictionaries
Frontiers in Antibiotics 06
were created to apply NLP. The first dictionary contained only the

term “septic shock”; the second dictionary contained terms related

to infection; the third dictionary contained terms related to the need

for vasopressors; the fourth dictionary contained terms related to

increased lactate levels. The authors implemented two search

strategies: (i) an explicit strategy, which only used the first

dictionary, so patients were labeled as suffering from septic shock

if this term was found in the text fields of the medical record; (ii) a

combined strategy, where all four dictionaries were used and

patients were labeled with septic shock if the explicit term was

retrieved or if a dictionary-matching term for infection,

vasopressors, or lactate was retrieved.

The aim of the study from Inglis et al. (2021) was to define

machine learning models able to classify penicillin adverse drug

events (ADRs) and evaluate the risk of true allergy, utilizing the

free-text fields of EHRs. Once these fields were retrieved, the

information about prescriptions and other crucial features was

manually extracted.
Clinical data heterogeneity

Antibiotic data encompass a wide range of information,

including but not limited to classes of antibiotics, mechanisms of

action, resistance patterns, and efficacy of different antibiotics

against specific pathogens. Understanding the complexities of

antibiotics is crucial to make informed decisions in clinical

practices and public health interventions. All but one of the

papers contained antibiotic-related data, and all but one included

general clinical data, while the other data types are strictly

dependent on the specific purpose of the paper in question.
Automatic extraction in
veterinary medicine

The threat of antibiotic resistance in the medical domain cannot

be completely separated from that in the veterinary one. As widely

demonstrated in numerous studies (Guardabassi et al., 2004; Lloyd,

2007; Allen et al., 2010; Graveland et al., 2010), animals have the

ability to acquire and transmit MDR pathogens. This constitutes a

potential channel for the exchange of antimicrobial resistance

(AMR) with humans. The articles by Hur et al. (2022) and by

Tharmakulasingam et al. (2023) explored the automatic extraction

of antibiotic data in the veterinary field. It is worth noting that these

studies focused deeply on automatic extraction, explaining in detail

the tools created specifically for this purpose.

The study by Hur et al. (2022) aimed to describe the use, dose

and common indications of antibiotic use, using NLP techniques to

extract and analyze the information present in clinical records. In

particular, NLP was applied to the free text fields of clinical notes,

with the aim of extracting the relevant information mentioned

above. The authors employed state-of-the-art NLP models,

specifically VetBert (Hur et al., 2020) [the veterinary adaptation

of ClinicalBert (Huang et al., 2020)]. This transformer model

identified the reason for administering antimicrobials directly
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from the free text fields. By blending the information from

structured data with the information extracted from the free-text

fields through the above NLP techniques, the authors were able to

calculate dose, duration, and indication for antimicrobial use.

The article by Tharmakulasingam et al. (2023) illustrates a novel

way to predict development of AMR in bacteria. They used a 1D-

Transformer, which helped to understand information about

antibiotic use. A peculiarity of this model was indeed that an

attempt was made to explain its predictions. The authors thus

employed an explainable Transformer model, attempting to explain

the model’s decisions in order to be understood and interpreted.

Explainability (whenever completely interpretable models cannot

be used or are less accurate in predictions) could be crucial,

especially in medical fields, since trust in the model’s suggestions

is essential for adoption by healthcare professionals. The article

suggests using explainable AI (XAI) techniques, such as the Multi-

Baseline Integrated Gradient approach, to enhance understanding

of how the model reached its predictions and make it more

transparent to users.
Discussion

The automation of data extraction can strongly benefit from the

possibility of standardization of health information systems as it

could efficiently use the data communication structures between

hospital systems and those of the Health Information Infrastructure

(Ozaydin et al., 2020). First of all, it is necessary that the tools used

for extraction are as unobtrusive as possible, often based on services

that allow the exchange of data even between tools from technically

different platforms (Gazzarata and Giacomini, 2016). However, it is

not sufficient for there to be a technically effective possibility of

transmitting data between different systems, it is essential that there

is an understanding of the information at a higher level, therefore

the use of technical interoperability tools, such as Fast Healthcare

Interoperability Resources (FHIR) messages and similar (Wulff

et al., 2021; Duda et al., 2022), but also knowledge sharing

systems at a higher level (Blobel et al., 2023).

One of the key points to achieve a correct reuse of the data

automatically extracted from health information systems is the

adequate management of terminology. It was seen in previous

sections how, in almost all projects taken into consideration in this

review, standardized vocabularies were correctly used to manage the

project’s internal terminology. However, at the same time it was clearly

seen that the choice of vocabularies used is quite wide, due to the

legitimate choice on the part of the specific communities that carried

out each project to use that terminological collection that they consider

most efficient for their purpose. Therefore, for a correct comparison

between the results of individual projects, we believe it is extremely

important to use the mapping services of international bodies such as

the Unified Medical Language System (UMLS) centered in the USA

https://www.nlm.nih.gov/research/umls/index.html, or the similar

initiative set up in Europe such as Athena (https://athena.ohdsi.org/

search-terms/start). However, these mappings must be maintained

over time because the different vocabularies are frequently updated.

Terminological services developed on international standards or
Frontiers in Antibiotics 07
machine learning technologies can be useful in these operations

(Gazzarata et al., 2017; Kang et al., 2021).

Finally, the ability to create large, accurate, and standardized

datasets of automatically extracted data concerning both antibiotic

susceptibility (in bacteria causing the infection) and antibiotic use (in

humans with the infection) should be coupled with improvements in

the automatic extraction of other clinical features (e.g., information

related to the acute phase of the disease, baseline comorbidities, other

concomitant infectious and non-infectious conditions) (Giacobbe et al.,

2023b; Giacobbe et al., 2023c). In turn, standardization of this process

would allow to exploit the aid of either classical statistical models or up

to date machine learning algorithms for accurately investigate clinically

relevant associations between features and selected outcome of interests

(e.g., diagnosis of a specific antimicrobial resistant infection, prognosis

of a specific antimicrobial resistant infection), thereby improving

identification of factors able to improve either diagnosis of

treatment. Creating such large and accurate datasets through classical

manual collection is likely nearly (or totally) impossible in the current

big data era. Consequently, improving automatic extraction and

standardization of antimicrobial resistance and antibiotic data is a

tremendous opportunity for improving care of future patients with

severe infections caused byMDR organisms, and should not be missed.
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