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Microorganisms, crucial for environmental equilibrium, could be destructive,

resulting in detrimental pathophysiology to the human host. Moreover, with the

emergence of antibiotic resistance (ABR), the microbial communities pose the

century’s largest public health challenges in terms of effective treatment

strategies. Furthermore, given the large diversity and number of known

bacterial strains, describing treatment choices for infected patients using

experimental methodologies is time-consuming. An alternative technique,

gaining popularity as sequencing prices fall and technology advances, is to use

bacterial genotype rather than phenotype to determine ABR. Complementing

machine learning into clinical practice provides a data-driven platform for

categorization and interpretation of bacterial datasets. In the present study, k-

mers were generated from nucleotide sequences of pathogenic bacteria

resistant to antibiotics. Subsequently, they were clustered into groups of

bacteria sharing similar genomic features using the Affinity propagation

algorithm with a Silhouette coefficient of 0.82. Thereafter, a prediction model

based on Random Forest algorithm was developed to explore the prediction

capability of the k-mers. It yielded an overall specificity of 0.99 and a sensitivity of

0.98. Additionally, the genes and ABR drivers related to the k-mers were

identified to explore their biological relevance. Furthermore, a multilayer

perceptron model with a hamming loss of 0.05 was built to classify the

bacterial strains into resistant and non-resistant strains against various

antibiotics. Segregating pathogenic bacteria based on genomic similarities

could be a valuable approach for assessing the severity of diseases caused by

new bacterial strains. Utilization of this strategy could aid in enhancing our

understanding of ABR patterns, paving the way for more informed and effective

treatment options.
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1 Introduction

Microorganisms/microbes are the oldest known life forms on

Earth, dating back to approximately 3.42 billion years (Schopf et al.,

2018). As the support system of the biosphere, these ubiquitous

organisms are paramount for the survival of more complex

organisms. They are involved in various intricate interactions

including breakdown of biological components, food spoilage,

climate change, and operation of basic metabolic cycles in plants

(Omkar Khade, 2024). In addition to exercising these functions,

several microorganisms have been reported as potential candidates

for causing detrimental effects on other life forms. Such microbes that

cause harm to the host form the class of pathogenic microorganisms.

Salmonellosis, listeriosis, campylobacteriosis, yersiniosis, tuberculosis,

gonorrhea, and syphilis are some of the life-threatening infections in

humans caused by pathogenic microorganisms. In addition to the

number of increasing infections by these microbes, another

threat known as antibacterial resistance (ABR) has now taken a

global turnover exhibiting the possibility of a future pandemic.

A number of bacterial species have been identified as resistant

to the available antibiotics that pose a threat to humanity in the

near future (Ventola, 2015).

Several ecologists have come up with a broad spectrum of

molecular techniques to investigate microbial communities (Davey

and O’toole, 2000; Douterelo et al., 2014; Agrawal et al., 2015; Braga

et al., 2016). These techniques aided not only in understanding the

diversity among microbes but also in the characterization and

selection of treatment strategies to overcome diseases caused by the

pathogenic forms. With the extensive diversity and considerable

number of known strains, characterization based on experimental

techniques makes it expensive, labor-intensive, and time-consuming

(Nemati et al., 2016; Qu et al., 2019). This reduces the potential for

meta-analysis. Owing to the enormous amounts of data collected,

microbiology has now emerged into a field with big data

competencies (Falony et al., 2015; Kyrpides et al., 2016; Goodswen

et al., 2021). Utilization of machine learning (ML) techniques for

analysis of data has become a proven strategy in acquiring insights

about microorganisms (Aida et al., 2022; Jiang et al., 2022; Munjal

et al., 2022; Wu and Gadsden, 2023). Comprehensive studies on drug

target prediction, drug resistance against antimicrobial drugs,

prediction of disease outbreaks, and exploration of microbial–host

interactions are now being carried out using ML techniques (Cazer

et al., 2021; Kim and Ahn, 2021; Salim et al., 2021; Sudhakar et al.,

2021; Kuang et al., 2022; Joshi et al., 2024). K-mer analysis and deep

learning have been previously carried out to identify 16S short-read

sequences from amplicon and shotgun data (Fiannaca et al., 2018).

The tool MARVEL based on Random Forest algorithm aided in the

prediction of dsDNA bacteriophage sequences from metagenomic

studies (Amgarten et al., 2018).

Genetic programming, Random Forest, and logistic regression

were previously used for the classification of microbes associated with

bacterial vaginosis (Beck and Foster, 2014). Recently, another study

showcased a new approach to analyze microbial–disease association

through integration of multiple data sources (Fan et al., 2019).
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Similarly, a method for the diagnosis of malarial parasite(s) and for

gastrointestinal parasite diagnosis was developed through binary

image classification using convolutional neural network (Rajaraman

et al., 2018; Mathison et al., 2020). Utilization of an support vector

machine-based model for the prediction of secretory proteins from

malarial parasites using amino acid compositions was another study

that introduced ML in microbiology (Verma et al., 2008). Prediction

of parasite load in the absence of quantitative polymerase chain

reaction trained on clinical records of Leishmania infantum-infected

dogs also indicated the application ofML in microbiology (Torrecilha

et al., 2017). Certain studies have also investigated antimicrobial

resistance (AMR) using ML-based approaches and have developed

methods to classify genomes into resistant and susceptible against

specific antibiotics (Drouin et al., 2016; Naidenov et al., 2019; Hyun

et al., 2020). A study also presented the mapping of Acinetobacter

baumannii, Streptococcus pneumoniae, Staphylococcus aureus, and

Mycobacterium tuberculosis into three classes: susceptible,

intermediate, and resistant (Davis et al., 2016). Similar studies by

numerous research groups led to the development of methods for

prediction of minimum inhibitory concentration (MIC) (Nguyen

et al., 2018; Mujeeb et al., 2020; Umar et al., 2020; Valizadehaslani

et al., 2020; Khan et al., 2021).

The current study employed ML-based algorithms and

nucleotide sequences of pathogenic bacteria with humans as

host and resistant to known antibiotics for clustering into

groups of microorganisms sharing similar genomic features.

Thereafter, a prediction model was developed to predict the

cluster that is closest to the organism in question. Furthermore,

the study includes the development of a multi-label classifier

capable of predicting the antibiotic that the organism is resistant

to, based on the cluster information. The clustering model was

evaluated using the Silhouette coefficient, the Calinski–Harabasz

index, and the Davies–Bouldin index (Caliński and Harabasz,

1974; David and Davies, 1979; Rousseeuw, 1987). The prediction

models were evaluated on the basis of sensitivity, specificity, and

5-fold cross-validation (CV) accuracy. Although microbial

infections involve the interplay of several molecular features, the

pathogenic features corresponding to a certain pathogen remain

unique to that pathogen (Voter et al., 2020; Liu et al., 2021;

Parthasarathi et al., 2021). Here, the genes corresponding to the

features selected in the prediction model were also identified that

shed light on the biological importance of the features in

distinguishing one strain from another. This study would aid in

coming up with improved strategies for the segregation of

pathogenic bacteria. Furthermore, based on genomic similarities

and differences with other well-studied microorganisms, it may

aid in assessing the severity of the disease produced by the

bacterium. Furthermore, incorporating ML-based algorithms

into clinical practice not only is viable, reproducible, and

resilient, but also aids in the production of clinician-friendly

outcomes. Overall, the computational prediction analyses

directed the benefit of ML in clustering pathogenic bacterial

forms, which may aid in the development of better strategies to

improve treatment options.
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2 Materials and methodology

The workflow of the study is depicted in Figure 1.
2.1 Data collection

A list of pathogenic bacteria resistant to antibiotics was

obtained from the Pathosystems Resource Integration Center

(PATRIC) database (Gillespie et al., 2011). The complete

genomes for the microbes were downloaded from National

Center for Biotechnology Information’s (NCBI) RefSeq database

(Tatusova et al., 2016) (Supplementary File).
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2.2 Generation of k-mer matrix from
nucleotide sequences

Customized Python scripts were used to fragment the

genomes into k-mers of length 8, 10, 12, and 14 nucleotides on

a subset of bacterial sequences. The list of k-mers was filtered to

remove duplicates. Thereafter, k-mers were mapped to the

sequences, and a matrix containing the details on the presence

and absence of the k-mers in each pathogenic strain was

generated. R (v3.4.4) libraries seqinr and Biostrings were used to

generate the matrix (Charif and Lobry, 2007; Pagès et al.). The

clustering was performed on the subset for each k-mer length

using the methodology as mentioned in Section 2.3. Thereafter,
FIGURE 1

Depiction of workflow for building a prediction model for the identification of pathogenic organisms sharing similar characteristics.
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the optimum k-mer length for further processing was defined by

taking into consideration the number of k-mers obtained, the

amount of time required to process the k-mers, the intermediate

file sizes, and the goodness of clustering.
2.3 Segregation of pathogenic microbes

The distance between the species was calculated using Jaccard

distance matrices. Thereafter, the values in the distance matrix were

scaled and used as input to perform principal component analysis

(PCA) (Prokopenko et al., 2016). Principal component 1 (PC1) was

used as input to segregate the organism strains into different clusters

using the unsupervised machine learning algorithm—Affinity

propagation (Frey and Dueck, 2007). This allowed clustering of

organism strains based on their genomic sequence similarities.

Thereafter, the Silhouette coefficient, the Calinski–Harabasz index,

and the Davies–Bouldin index were used to calculate the goodness of

clustering obtained. The Silhouette coefficient ranges from −1 to +1

and a value close to +1 indicates a better-defined cluster. Higher

values of the Calinski–Harabasz index indicate better separation

between clusters while a lower Davies–Bouldin value corresponds

to better separation between clusters. The scikit-learn library from

Python v3.10 was used to segregate the organisms into different

clusters (Fabian Pedregosa). Seaborn and matplotlib libraries were

used for graphical visualizations (Hunter, 2007; Waskom, 2021).
2.4 Development of prediction model to
predict the cluster of an organism

The clusters formed using the Affinity propagation algorithm

were further used as class labels in supervised Random Forest

algorithm to develop a prediction model. The binary matrix with

the information on the presence and absence of k-mers along with

the clusters was given as input to the Random Forest algorithm. The

dataset was split into a train and test set in the ratio 80:20. Feature

selection was performed using the Random Forest algorithm, and

the k-mers (features) with a score > 0.0001 were selected as most

informative k-mers. The train set was further divided into a train

and a validation set and the hyperparameters were tuned on the

validation set using Python v3.10 library GridSearchCV (Lavalle

et al., 2004). The model was evaluated based on sensitivity and

specificity. The model was built using customized scripts written in

Python v3.10 using the scikit-learn library. The model was then

saved using the joblib library (Varoquaux, 2023).
2.5 Determining the biological significance
of the most informative k-mers in
cluster prediction

The k-mers selected in the Random Forest model were further

analyzed to determine their biological significance. Standalone Basic

Local Alignment Search Tool (BLAST) (v2.15.0) was used to align the

k-mers with the customized database generated using the gene
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sequences from various reference genomes of bacterial strains

downloaded from the Database of Essential Genes (DEG)

(Luo et al., 2021) (last update, 2020 September 1) (Camacho et al.,

2009). The alignments with 100% identity using the “blastn-short”

parameter of Standalone BLAST were saved (Camacho et al., 2009).

The list of genes obtained after alignment was compared with the list of

known AMR genes obtained from the Comprehensive Antibiotic

Resistance Database (CARD) (Alcock et al., 2023).
2.6 Development of prediction model of
microbes resistant towards antibiotics

Furthermore, the data collected from the PATRIC database on

resistance of a strain towards different antibiotics were used along with

the clustering output to develop a multi-label prediction model for

predicting the putative antibiotics that may not be useful in treatment

against a specific bacterial strain. Given a nucleotide sequence, the

model calculated several genomic features including GC content and

mononucleotide counts of each of the strains. This information was

merged with the clustering output, and a binary matrix with details on

whether an organism strain is resistant to a specific antibiotic was

generated. A multi-label classification model was built assuming that

resistance against each antibiotic was independent of the fact that a

strain is resistant to the other antibiotics. A multi-layer perceptron

(MLP) with the calculated features representing the input layers,

multiple hidden layers, and an output layer representing the

resistance to antibiotics was generated. The Rectified Linear Unit

(ReLU) activation function was applied for the hidden layers and the

binary cross-entropy loss and the Adam version of stochastic gradient

descent method was implemented for weight updation (Fukushima,

1975; Diederik and Kingma, 2017). The sigmoid activation function

was implemented for the output layers. The model was built using

customized scripts written in Python v3.10 utilizing the keras and

scikit-learn libraries (Chollet, 2015). 5-fold CV with hamming loss as

the accuracy measure was used to grade the performance of the

prediction model. Hamming loss evaluates individual label prediction

rather than label combination. A lower hamming loss would thus

indicate a better model.
3 Results

3.1 Collection of data

A list of 710 strains from seven genera of pathogenic bacterial

strains resistant to 63 antibiotics was obtained from the PATRIC

database. The bacterial complete genome sequences were

downloaded from the NCBI RefSeq database. Table 1 summarizes

the number of strains included in the present study.
3.2 k-mer matrix generation

The k-mers of length 10 nucleotides (10-mers) were selected as

the optimum size of k-mers (Supplementary File). A total of
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2,136,154 10-mers were obtained from the 710 strains. Filtering out

redundant and 39,032 10-mers that contained nucleotides other

than adenine, guanine, thymine, and cytosine yielded 1,048,573

unique 10-mers. A binary matrix with the dimensions

710:1,048,573 was obtained, consisting of rows representing

strains, columns representing 10-mers, and cells with binary

values signifying the presence or absence of the 10-mer in the

individual strain.
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3.3 Clustering pathogenic bacteria

The distance between the pathogenic bacterial strains on the

basis of the presence and absence of 10-mers was calculated using

Jaccard distance matrices (Figure 2). The bacterial strains were

clustered into seven clusters. A Silhouette coefficient of 0.82, a

Calinski–Harabasz index of 93,672.21, and a Davies–Bouldin index

of 0.19 were obtained (Supplementary Table 1; Figure 3).
FIGURE 2

Heatmap representing the distance between the different bacterial strains calculated using Jaccard distance matrix with binary matrix of 10-mers as input.
TABLE 1 Total number of strains from different genera included in the study.

Total Acinetobacter Escherichia Mycobacterium Pseudomonas Salmonella Staphylococcus Streptococcus

710 39 42 99 137 28 305 60
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3.4 Supervised ML model from the
clusters obtained

The dataset with information on the presence and absence of 10-

mers as features and the clusters as class labels was split into a train and

a test set in the ratio 80:20. This accounted for 568 data points in the

train set and 142 data points in the test set. Thereafter, the train set was

further split into a train and a validation set in the ratio 80:20, resulting

in 454 data points in the train set and 114 data points in the validation

set. A total of 876 10-mers were selected as the most informative 10-

mers using the Random Forest algorithm for feature selection. A

Random Forest model with a maximum depth of 6, minimum

samples leaves set to 2, minimum samples split set to 5, number of

estimators set to 100, and criterion set as Gini was generated. 5-fold CV

on the validation set using the set parameters resulted in an accuracy of

96.49%. Testing the model on the test set resulted in an overall

sensitivity of 0.98 and a specificity of 0.99. Table 2 mentions the

individual class sensitivity and specificity.
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3.5 Biological significance of 876 10-mers

All the 876 10-mers mapped to 26,058 entries from DEG that

corresponded to 81 bacterial strains, 5,179 unique genes, and 8,752

unique proteins including putative and hypothetical proteins

(Supplementary Table 2). Table 3 summarizes the number of 10-

mers mapped to the strains from species included in the

current study.

A total of 703 10-mers mapped to 30 genes known to cause

AMR from CARD. Of those, 448 10-mers belonged to the

organisms considered in the current study and mapped to 22

AMR genes. The 10-mers corresponding to Escherichia coli

mapped to 13 AMR-related genes, namely, emrK, emrY, evgA,

evgS, gadX, kdpE, marA, mdtA, mgrB, msbA, pgpB, rpsJ, and

srmB. Certain 10-mers mapped to AMR-related genes in only one

species, namely, efpA, mgtA, and mtrA mapped exclusively to M.

tuberculosis-related 10-mers, and acrB mapped exclusively to

Salmonella enterica-related 10-mers. Similarly, there were AMR-

related genes that mapped exclusively to E.coli, Pseudomonas

aeruginosa-, and S. pneumoniae-related 10-mers (Supplementary

Table 3). Figure 4 summarizes the number of 10-mers mapped to

individual AMR genes in specific species.
3.6 Prediction model for identifying
putative antibiotic resistance in
bacterial strain

The 710 bacterial strains used in the study were resistant

towards 63 different antibiotics. Figure 5 summarizes the top 10

antibiotics found most commonly resistant among different strains

in the present study. Supplementary Table 4 summarizes the list of

bacterial strains resistant to the 63 antibiotics.
FIGURE 3

Bar plot representing the number of strains clustered in strains from various genera.
TABLE 2 Sensitivity and specificity of individual cluster prediction.

Cluster Sensitivity Specificity

0 1.00 1.00

1 1.00 1.00

2 1.00 1.00

3 0.99 0.95

4 1.00 1.00

5 1.00 1.00

6 0.99 0.96
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The length of the different strains ranged from 391,326 base

pairs (bps) to 7,267,567 bps with an average length of 4,017,469 bps.

The strains belonging to P. aeruginosa species had the largest

genomes along with a high GC content. However, the strains

belonging to E. coli had high “A” and “T” mononucleotide counts

(Supplementary Table 5). The MLP model with 20 hidden layers

was developed. The hamming loss calculated using repeated 5-fold

CV was 0.05, indicating the prediction to be false 5% of times.
4 Discussion

Advances in the processing capacity, improvements in the

classical data processing algorithms, and the availability of

bacterial whole genome sequences (WGS) in public databases

allow for a retrospective population study of many bacterial

populations. Identifying patterns in the genomic sequences

resulting in mosaic structures poses challenges in comprehending

and visualizing the diversity and similarities within and across

various bacterial strains. However, increasing interest in the

quantitative techniques to predict phenotypes from genotypes

beginning with bacterial WGS are becoming popular. The

pathogenicity and ABR could be the key phenotypes for
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predict ing cl inical outcomes and est imating possible

treatment options.

The present study emphasizes on the utilization of ML-based

techniques to examine the relatedness in the different bacterial

strains. Clustering analysis was performed to segregate the

pathogenic forms based on their genomic similarities. Various

species undergo horizontal gene transfer in the evolution process

to increase their chances of survival (Burmeister, 2015). The most

evident advantage of horizontal gene transfer is that a cell can

acquire a beneficial gene that originated in another cell. The

emergence of new beneficial genes is likely extremely rare;

therefore, stealing a gene from a neighbor should be considerably

faster than waiting for it to evolve independently (Vogan and Higgs,

2011). Moreover, it would also allow a cell to reclaim a gene that had

been lost by another member of the population (Vogan and Higgs,

2011). Horizontal gene transfer can also acquire beneficial features

that aid adaptation to new environments, such as metabolic and

antibiotic resistance genes (Hall et al., 2020). This enables

organisms to become interdependent, ensuring cooperation in

preserving their relationship (Hall et al., 2020). This phenomenon

could be visualized in the present study as the strains from

Escherichia, Salmonella, Mycobacterium, and Pseudomonas did

not form single clusters. The strains belonging to E. coli and S.

enterica clustered together, indicating the strains within these

species to share similarities. Among the 10-mers selected, 854 10-

mers mapped to Salmonella strains while 876 k-mers mapped to

Escherichia strains. All the 10-mers belonging to Salmonella

overlapped with the k-mers from Escherichia. A total of 342 genes

identified based on the selected 10-mers were common among the

two organisms (Supplementary Table 2). The two species are a part

of the same family—Enterobacteriaceae. According to evolutionary

rate estimates derived from 5S and 16S rRNA sequence analysis,

Escherichia and Salmonella species diverged from a common

ancestor (Bisi-Johnson et al., 2011). They are estimated to have

separated from the common ancestor approximately 140 million

years ago (Ochman andWilson, 1987; Hu et al., 2010). Despite their

contrasting lifestyles, there has been no significant rewiring at the
FIGURE 4

Scatter plot indicating the number of 10-mers mapped to ABR drivers in strains of different genera.
TABLE 3 Number of 10-mers mapped to reference species included in
the current study.

Species No. of 10-mers Genes Proteins

Acinetobacter baumannii 834 120 491

Escherichia coli 876 1,092 1,841

Mycobacterium tuberculosis 801 983 1,119

Pseudomonas aeruginosa 788 652 765

Salmonella enterica 854 525 606

Staphylococcus aureus 816 816 649

Streptococcus pneumoniae 673 241 194
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level of local regulons involved (Peyman Zarrineh et al., 2014).

There is notable conservation in signaling pathways and

stress sensing across these phylogenetically similar species

(Peyman Zarrineh et al., 2014). Moreover, a similarity of 76% to

100% between their housekeeping genes makes them evolutionarily

closely related species (Sharp, 1991; Samuel et al., 2004; Hu et al.,

2010). They are foodborne pathogens and create complex

biofilms that contribute to their virulence, antibiotic resistance,

and surface survival (Milho et al., 2019). Interspecies interactions

occur in mixed biofilms, resulting in diverse consequences for each

species (Milho et al., 2019).

Furthermore, two clusters, cluster 3 and cluster 6, had a mixture

of Mycobacterium and Pseudomonas pathogenic strains. These two

clusters comprised a small fraction of strains joining the opponent

cluster. Species collaborate when they are mutually advantageous,

when their interests are aligned, and when each individual improves

the fitness of the other, thus encouraging the advancement of diverse,

unique phenotypes or interactions (Hall et al., 2020). One of the most

common forms of prokaryote cooperation is the secretion of products

required to build biofilms, digest complex chemicals, and modulate a

host’s immune response, among other important functions (Hall

et al., 2020). Genes involved in such benefit production can be

transmitted between organisms, opening up new possibilities for

collaboration and adaptation (Hall et al., 2020).

Currently, there are no studies indicating an evolutionary

relationship between Mycobacterium and Pseudomonas bacteria.

However, there is evidence of the two pathogens interacting to co-

colonize the same infection niches and create a mixed-species biofilm

that enhances both their immune system and antibiotic resistance

(Camus et al., 2022). Further studies are needed to understand their

evolutionary and clinical phenotype implications. Another interesting

finding from this study was that strains belonging to S. aureus

segregated to two separate clusters, indicating the within-species

diversity. In the course of evolution, it undergoes both horizontal
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and vertical gene transfer events that have resulted in the genetically

diversified bacterial population (Furqan Awan et al., 2021). Their

diversity makes them resistant towards almost all the antimicrobial

drugs used (Mlynarczyk-Bonikowska et al., 2022).

The obtained clusters paved the way for the introduction of a

strategy based on the Random Forest algorithm to segregate the

strains into organisms sharing similar genomic features. The

proposed model attempts to integrate genomic sequences of the

disease-causing microbes and further cluster them into groups of

pathogens sharing similar characteristics. Along with developing

the model, the study also identified key 10-mers that were capable of

differentiating the strains into clusters. This could significantly

accelerate the processing time required to deliver the output in

terms of cluster identification. The majority of 10-mers mapping to

genes in each organism varied across organisms.

Of the 876 10-mers, majority of them mapped to gltB gene in

Acinetobacter baumannii. It codes for glutamate synthase subunit

alpha. Glutamate is one of the carbon sources that can support

growth of Acinetobacter species, making glutamate synthetases an

important protein in these organisms (Ren and Palmer, 2023).

Majority of 10-mers corresponding to E. coli mapped to toxB

gene. toxB is a virulence gene present in the virulence plasmid of E.

coli species. It functions in enhancing bacterial adhesion and in

inhibiting host lymphocyte activation (Tozzoli et al., 2005).

The fas gene stood out within 10-mers inM. tuberculosis strains.

Biosynthesis of fatty acids regulated by FAS-I polypeptide is crucial

in the formation of mycobacterial cell wall components, specifically

mycolic acids that form a protective lipid layer on the cell wall.

This is required for the survival of the bacterium in the host

environment (Kinsella et al., 2003; Apoorva Bhatt et al., 2007).

rpoB gene was the most common gene in the 10-mers mapped to

P. aeruginosa and S. aureus. The list of 10-mers mapped were

different in both the species, although there were some overlaps.

These two species form one of the most commonly observed clinical
FIGURE 5

Funnel plot representing the top 10 antibiotics identified to be resistant by the bacterial strains.
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polymicrobial communities that lead to the emergence of antibiotic-

resistant strains (Pajon et al., 2023). rpoB gene is a DNA-directed

RNA polymerase, and studies have reported that mutations in

this gene lead to resistance against rifampin, an antibiotic used

against multidrug-resistant bacterial strains (Yee et al., 1996;

Guo et al., 2021). In S. enterica-related 10-mers, majority of them

mapped to ftsK. It is involved in cell division and peptidoglycan

biosynthesis. Mutations in ftsK could result in increased

susceptibility against b-lactams and ciprofloxacin-related

tolerance (Curiao et al., 2016). The gene spr0328 was identified as

the topmost gene in S. pneumoniae. It encodes for a conserved

hypothetical protein with a role in cell wall surface anchorage.

The protein was one of the selected candidates for a study related to

vaccine testing due to its ability to raise immune response in

infected patients (Olaya-Abril et al., 2013).

The mapping of 10-mers to ABR genes led to the exploration of

developing an MLP-based model to predict the antibiotics that a

specific strain could be resistant to due to its genomic properties.

This could thus aid in tracking ABR strains in a time-efficient

manner. The 10-mers identified in the present study could open up

new avenues in the field of drug designing-based studies. However,

the present study is based on a limited number of sequences,

although the same model could be implemented to a larger

bacterial cohort based on sequence availability.

Amid growing advances in whole genome sequencing and

applications of ML-based techniques, the characterization of

pathogenic microbial communities could become a rapid process

in the near future. The current study demonstrates one such

strategy in identifying bacterial strains based on the presence

and absence of 10-mers in their genomes. A subset of 10-mer

sequences across the strains in the present study could also act as

signatures to explore the diversity through understanding their

biological significance. Furthermore, the MLP model enabled the

classification of strains to ABR and non-ABR strains against various

antibiotics. Overall, the computational prediction analyses

demonstrated the advantage of ML to uncover the ABR

determinants that might facilitate the exploration of better

treatment options. However, the study is a data-driven approach,

and thus, outcomes of the study may appear in the form of

overfitting or underfitting.
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