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Salmonella is a foodborne pathogenic bacterium that causes salmonellosis

worldwide. Also, Salmonella is considered a serious problem for food safety

and public health. Several antimicrobial classes including aminoglycosides,

tetracyclines, phenols, and b-Lactams are used to treat Salmonella infections.

Antibiotics have been prescribed for decades to treat infections caused by

bacteria in human and animal healthcare. However, intensive use of antibiotics

resulted in antibiotic resistance (AR) among several foodborne bacteria including

Salmonella. Furthermore, multi-drug resistance (MDR) of Salmonella has

increased dramatically. In addition to MDR Salmonella, extensively drug

resistant (XDR) as well as pan drug resistant (PDR) Salmonella were reported

globally. Therefore, increasing AR is becoming a serious universal public health

crisis. Salmonella developed many mechanisms to ensure its survival against

antimicrobials. The most prominent defense mechanisms against these

antibiotics include enzymatic inactivation, expelling drugs from the cell

through efflux pumps, altering the structure of drugs, and changing or

protecting the targets of drugs. Additionally, the formation of biofilms and

plasmid-mediated AR by Salmonella, enhancing its resistance to various

antibiotics, making it a challenging pathogen in both healthcare and food

industry settings. This review focuses exclusively on providing a detailed

overview of the mechanisms of AR in Salmonella.
KEYWORDS

Salmonella mechanisms, antibiotic resistance, multi-drug resistance, efflux pumps,
biofilm formation, plasmid-mediated resistance, antibiotic target modification,
drug inactivation
1 Introduction

Salmonella is a member of the Enterobacteriaceae family, a facultative anaerobic,

Gram-negative, rod-shaped bacterium that causes the foodborne disease salmonellosis

(Andersen et al., 2015; Punchihewage-Don et al., 2022, 2024). The Salmonella genus

primarily comprises two species: Salmonella bongori and Salmonella enterica. S. enterica is
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categorized into six subspecies including Salmonella enterica subsp.

arizonae, diarizonae, enterica, indica, houtenae, and salamae. These

subspecies are further divided into serogroups based on the

immunoreactivity of cell surface structures, the O (the outermost

layer of the bacteria’s surface) and H (thin, thread-like structures

found in the flagella) antigens (CDC, 2011, 2022; Ryan et al., 2017;

Ferrari et al., 2019; Popa and Papa, 2021). Based on the

immunoreactivity of cell surface structures of Salmonella, over

2,500 different serovars have been identified to date (WHO, 2018).

Broadly, Salmonella can be further categorized into typhoidal

and non-typhoidal types. Typhoidal Salmonella, which includes

Salmonella enterica serovar Typhi, Sendai, and Paratyphi A, B, C,

are host-adapted to humans and cause systemic and sometimes life-

threatening infections such as typhoid and paratyphoid fever,

depending on the serovar that invades human cells (Gal-Mor

et al., 2014; Smith et al., 2016; Punchihewage-Don et al., 2021;

Schultz et al., 2021; Plumb et al., 2023). In contrast, non-typhoidal

Salmonella, such as Salmonella enterica serovar Enteritidis and

Typhimurium, typically cause gastroenteritis and can infect a

wide range of hosts. Some serovars are host-specific (e.g., S.

Dublin in cattle and S. Choleraesuis in pigs), while many serovars

can infect a variety of hosts worldwide, causing disease in both

humans and animals (WHO, 2018; CDC, 2022). Non-typhoidal

Salmonella directly causes mild, severe, or life-threatening

foodborne poisoning in humans (WHO, 2018). Notably,

Salmonella infections are transmitted through a wide range of

contaminated products such as raw/uncooked or undercooked

meat and poultry or poultry products, fresh fruits and vegetables

as well as unpasteurized milk and other dairy products (FDA, 2020;

Punchihewage-Don et al., 2021).

The rapid development in antibiotic resistance (AR) among

pathogenic Salmonella strains in recent years has had a significant

impact (Punchihewage-Don et al., 2023). This is because antibiotic-

resistant Salmonella is directly linked to a rise in human deaths,

extended hospital stays, and increased treatment costs due to the

failure of therapies (Jajere, 2019). According to the Centers for

Disease Control and Prevention (CDC), each year in the United

States, Salmonella is linked to roughly 1.35 million cases of

infection, leads to 26,500 hospital admissions, and results in 420

deaths (CDC, 2023). Furthermore, among these cases, the CDC

estimates that about 212,500 are due to drug-resistant non-

typhoidal Salmonella each year, leading to roughly 70 deaths.

Additionally, these infections incur a significant financial burden,

amounting to an estimated $400 million in direct medical costs

annually (CDC, 2019, 2023). Diarrhea, fever, and stomach cramps

are the common symptoms of salmonellosis. Antibiotics are used as

a treatment in severe cases of salmonellosis (CDC, 2023). A broad

spectrum of antibiotics such as b-lactams, aminoglycosides,

tetracyclines, quinolones, cephalosporins, and trimethoprim-

sulfamethoxazole are used to combat Salmonella. The improper

and overuse of antibiotics contributes to the development of AR in

pathogenic bacteria (Akinyemi and Ajoseh, 2017; Millan, 2018).

Moreover, the reason for the emergence of AR is that bacteria

change their response to these antibiotics (WHO, 2023).
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Antibiotics help to prevent and fight against infections caused

by bacteria such as salmonellosis, pneumonia, tuberculosis,

gonorrhea, etc. (WHO, 2023). Overuse of antibiotics has

resulted in the development of pathogenic bacteria that are

resistant to antibiotics, including multi-drug resistant (MDR)

strains. The reasons for AR for not only the overuse and misuse

of antibiotics. Several other reasons can confer AR, such as poor

infection prevention and control. Individuals, policymakers, health

professionals, the healthcare industry, and the agricultural sector

are responsible for minimizing the influence and limiting the spread

of AR (WHO, 2023). Some strains of Salmonella have developed

resistance to several classes of antibiotics such as aminoglycosides,

b-lactam antibiotics, chloramphenicol, quinolones, tetracyclines,

sulphonamides, and trimethoprim (Urban-Chmiel et al., 2022).

Table 1 describes the summary of the Salmonella AR mechanisms.

There are two major molecular mechanisms involved in AR:

intrinsic resistance and acquired resistance. Intrinsic resistance,

also known as natural or innate resistance, is a natural property of

certain bacterial species that makes them resistant to specific

antimicrobial agents. This type of resistance is genetically

predetermined and persistent, as it is an inherent feature of the

organism’s genome (Tanwar et al., 2014; Abebe et al., 2016;

Reygaert, 2018). Intrinsic resistance is a universal trait within a

bacterial species, independent of previous antibiotic exposure, not

related to horizontal gene transfer, and controlled by

chromosomal genes (Cox and Wright, 2013). Mechanisms of

intrinsic resistance include producing enzymes that neutralize

antimicrobial compounds, structural barriers that prevent

compounds from reaching target sites, reduced permeability of

the bacterial outer membrane, natural activity of efflux pumps,

and the lack of appropriate target sites for antibiotics. Bacteria

with intrinsic resistance often employ these mechanisms to

withstand the effects of antimicrobial agents (Cox and Wright,

2013; Olivares Pacheco et al., 2013; Abebe et al., 2016;

Reygaert, 2018).

In contrast, acquired resistance refers to the ability of bacteria to

become resistant to antibiotics through genetic changes. This type

of resistance develops in previously susceptible bacteria and can

occur through genetic mutations or acquisition of resistance genes

from other resistant bacteria (Reygaert, 2018; Mancuso et al., 2021;

Chin et al., 2023; Harris et al., 2023). Mechanisms of acquired

resistance include modification of antibiotic target sites, production

of enzymes that inactivate antibiotics, and enhanced efflux of

antibiotics from bacterial cells. Acquired resistance can spread

through horizontal gene transfer involving processes like

transformation, transposition, and conjugation (Culyba et al.,

2015; Abebe et al., 2016; Reygaert, 2018; Mancuso et al., 2021;

Harris et al., 2023). Both single-drug resistant and MDR pathogenic

microorganisms developed resistance mechanisms as their

surveillance strategy (Andersen et al., 2015).

Notably, over the years, most Salmonella have evolved

resistance mechanisms to numerous antibiotics (Akinyemi and

Ajoseh, 2017; CDC, 2019). As a result, AR in Salmonella is a

rising problem in the food industry as well as the health sector
frontiersin.org
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TABLE 1 Brief categorization of clinically important antibiotics, resistance genes, resistance mechanisms and mode of action of Salmonella.

n Resistance
mechanisms

References

the ▪ Sulfonamides antibiotic
mainly inhibit
dihydropteroate synthase
(DHPS).

▪ Dihydropteroate synthase is
the crucial enzyme in the
folate pathway of bacteria.

(Wang et al., 2022b)
(Akinyemi and Ajoseh, 2017)

(Jeśman et al., 2011)
(Ovung and

Bhattacharyya, 2021)

▪ Mutation in the Quinolones
Resistance Determining
Region (QRDR) GyrA, GyrB,
parC, parE.

▪ Modification of the
target site.

(Wang et al., 2022b)
(Akinyemi and Ajoseh, 2017)
(Urban-Chmiel et al., 2022)

(Cosby et al., 2015)
(Aldred et al., 2014)
(Pham et al., 2019)

▪ Preventing the interaction
between the target PBP and
the drug.

▪ The presence of efflux
pumps that can extrude b-
lactam drug.

▪ Hydrolysis of the drug by
• b-lactamase enzymes

(Mak̨a and Popowska, 2016)
(Wang et al., 2022b)

(Akinyemi and Ajoseh, 2017)
(Urban-Chmiel et al., 2022)

(Reygaert, 2018)
(Fernandes et al., 2013)

(Lee et al., 2016)

ein
to the

▪ Expression of efflux pumps
(floR, cmlA).

▪ Enzymatic
inactivation of the antibiotic
by chloramphenicol-
col O-acetyl-transferase.

(Akinyemi and Ajoseh, 2017)
(Cosby et al., 2015)
(American Chemical

Society, 2020)

e 30S
he

▪ Enzymatic modification and
inactivation of
the aminoglycoside.

(Mak̨a and Popowska, 2016)
(Akinyemi and Ajoseh, 2017)

(Kotra et al., 2000)
(Krause et al., 2016)
(Serio et al., 2018)
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Type
of antibiotic

Description Resistance
genes

Resistance
genes

location(s)

Mode of acti

Sulfonamides All the members of this antibiotic class contain the sulfonamide group.
Sulfa drugs or sulfonamides were discovered by Gerhard Domagk
in 1935.

sul1
sul2
sul3

Chromosome
Plasmid

Sulfonamides inhibit
synthesis of folic acid
in bacteria

Quinolones Nalidixic acid was the first introduced drug in the Quinolones drug
group by George Lesher and colleagues in 1962. Quinolones are broad-
spectrum antibiotics that can combat both Gram-negative and
positive bacteria.

gyrA
gyrB
parC
parE
qnrB
qnrD
qnrS
oqxAB

Chromosome
Plasmid

Interfere with bacter
DNA replication
and transcription

b-Lactams b-Lactams are a widely used antibiotic group. All the members of the b-
Lactam group consist of a b-lactam ring.
b-Lactams consist of five relevant ring systems including penem,
carbapenem,
cefem and monobactam ring structures
Penicillin was the first discovered
b-Lactams antibiotic by Alexander Fleming in 1928

blaTEM
blaTEM−1

blaTEM−20

blaTEM−52 blaCTX−M
−1

blaCMY−2

blaOXA−1
bla PSE−1

Chromosome
Plasmid

Inhibit bacteria cell
wall synthesis

Chloramphenicol Parke–Davis discovered Chloramphenicol in the late 1940s from the soil
bacterium Streptomyces venezuelae
Chloramphenicol antibiotic has been used to treat several infections such
as conjunctivitis, meningitis, cholera, and typhoid fever.
Chloramphenicol is active against several bacteria such as Escherichia
coli, Staphylococcus spp., and Salmonella.

catA1
floR
cmlA1

Chromosome
Plasmid

Inhibit microbial pro
synthesis by binding
50S ribosome subuni

Aminoglycosides* In 1940 Selman Waksman discovered Streptomycin as the first member
of the aminoglycoside antibiotic class.
This group of antimicrobials is natural or semisynthetic antibiotics that
derived from the actinomycetes.
This antibiotic class is composed of amino sugars and an
aminocyclitol ring
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aac(3)-IV aph(3’)

IIa
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o
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(Mak̨a and Popowska, 2016; Punchihewage-Don et al., 2022, 2024).

AR has been identified in both typhoidal and non-typhoidal

Salmonella serovars (Baugh, 2014; CDC, 2019; Punchihewage-

Don et al., 2024). Moreover, MDR Salmonella increased its

prevalence by combating clinically essential antibiotics such

as fluoroquinolones and third-generation cephalosporins

(CDC, 2019; Jajere, 2019; Punchihewage-Don et al., 2022). Several

AR mechanisms are encoded in the genome of Salmonella such as

active drug efflux pumps, decreased membrane permeability,

enzymatic inactivation of the antibiotics, target site modification,

plasmid-mediated resistance, and biofilm formation. These

mechanisms allow Salmonella cells to expel antibiotics and reduce

the antibiotic concentration within the cytoplasm. In addition, these

mechanisms are capable of conferring MDR (Shrestha et al., 2015).

Despite extensive knowledge of AR mechanisms in bacteria, a

significant gap exists in understanding emerging resistance patterns

and the role of novel efflux pump families like PACE and AbgT in

Salmonella. This review addresses this gap by analyzing various AR

mechanisms, including these new efflux pumps. By synthesizing

recent findings, we aim to provide a detailed overview of the AR

mechanisms exclusively for Salmonella.
2 Drug efflux

Antibiotic efflux is a widely used AR mechanism among

bacteria. This mechanism allows bacteria to extrude antibiotics

from their intracellular environment to the extracellular

environment (Noto, 2022). Salmonella utilizes different types of

efflux pumps. Those drug efflux systems are divided into five main

families depending on their energy source and structure (Figure 1).

They are ATP-binding cassette (ABC) family, small multi-drug

resistance (SMR) family, multi-drug and toxic compound extrusion

(MATE) family, major facilitator superfamily (MFS), and resistance

nodulation cell division (RND) family (Reygaert, 2018; Nishino

et al., 2021; Gaurav et al., 2023; Duffey et al., 2024).

Efflux pumps can be categorized by their energy sources into

primary and secondary active transporters. Primary active

transporters, such as members of the ABC family, obtain energy

through the hydrolysis of ATP. In contrast, secondary active

transporters, including members of the MATE, MFS, RND, and

SMR families, utilize energy derived from hydrogen ions (H+) or the

electrochemical gradient of sodium ions (Na+), generated by the

proton motive force (Sharma et al., 2019).

Salmonella encodes at least eleven MDR pumps from each family

except the SMR family (Bogomolnaya et al., 2013). S. Typhimurium

harbor functional drug efflux pump systems that belong to four main

efflux pump system families. These efflux pump systems belong to the

following families: the MFS family (including EmrAB andMdfA), the

ABC family (MacAB), the MATE family (MdtK), and the RND

family (AcrAB, AcrD, AcrEF, MdtABC, MdsAB) (Andersen et al.,

2015). According to the latest studies, two new bacterial energy efflux

pump families have been discovered. These novel drug efflux systems

are the proteobacterial antimicrobial compound efflux (PACE)

superfamily and the p-aminobenzoyl-glutamate transporter (AbgT)

family (Hassan et al., 2018).
T
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2.1 Resistance nodulation cell
division family

Resistance nodulation cell division (RND) family effluxes aremore

effective for the extrusion of a wide range of antibiotics such as

chloramphenicol, novobiocin, tetracyclines, some b-lactams, fusidic

acid and fluoroquinolones, detergents, bile salts, metals and biocides

(Alenazy, 2022b). The RND family is crucial to MDR in Salmonella

(Shrestha et al., 2015). The three major proteins are involved in

forming the tripartite efflux system in RND family efflux pumps. They

are an inner-membrane protein (IMP), an outer-membrane protein

(OMP), and a periplasmic adapter protein (PAP) (Alenazy, 2022b).

There are five RND multi-drug efflux systems belonging to

Salmonella. They are AcrAB, AcrD, AcrEF, MdtABC, and MdsABC

efflux pumps (Yamasaki et al., 2011). The AcrAB-TolC efflux system is

the common and extensively studied drug efflux pump system in

Salmonella. The AcrAB drug efflux pump system of S. Typhimurium

is located on the chromosome and it is encoded by the acrAB genes.

The AcrAB-TolC system comprises a tripartite efflux pump in

Salmonella. Furthermore, the AcrAB-TolC efflux pump forms three

protein subunits. They are AcrB (inner membrane transporter

protein), AcrA (periplasmic adaptor protein), and TolC (the outer

membrane porin protein) (Baugh, 2014).

The tripartite AcrAB-TolC drug efflux pump system of S.

Typhimurium vigorously excludes a wide range of antibiotics such

as chloramphenicol, tetracycline, ciprofloxacin, acriflavine, fusidic

acid, novobiocin, erythromycin, rifampin, and b-lactam. Fernandes

et al. (2013) elaborated on the significance of the Salmonella AcrAB-

TolC system in the pathogenesis of the bacterium (Fernandes et al.,

2013). The AcrD efflux pump of Salmonella actively extrudes

kanamycin, tobramycin, gentamicin, and amikacin. The AcrEF

efflux system in Salmonella is homologous and functionally similar

to the AcrAB system, and together with TolC, forms the AcrEF-TolC

tripartite multi-drug efflux system that complements the AcrAB-TolC

system’s function. In Salmonella, the AcrEF-TolC tripartitemulti-drug

efflux system is composed of three components. They are AcrE

(membrane fusion protein), AcrF (inner membrane transporter),

and TolC (outer membrane channel protein). The member of
Frontiers in Antibiotics 05
AcrEF efflux in family RND resistance to ciprofloxacin, tetracycline,

nalidixic acid, chloramphenicol, and triclosan. The MdsABC efflux

pump is found only in Salmonella (Shrestha et al., 2015).

Inner membrane RND-type transporter (MdsB), periplasmic

membrane-fusion protein (MdsA), and outer membrane protein

(MdsC) are the major three components of the SalmonellaMdsABC

tripartite efflux pump (Song et al., 2015). SalmonellaMdsABC efflux

pump resistant to novobiocin, deoxycholate, some b-lactams,

copper and zinc (Blair et al., 2014). MdtABC drug efflux systems

of Salmonella have two different transporters called MdtB and

MdtC. Both of them are co-transcribed along with MdtA (a

membrane fusion protein) in the same operon. In Salmonella,

MdtABC efflux pumps resistance to antibiotics such as b-lactams,

novobiocin, and bile salts. Furthermore, the MdtABC efflux

pump detoxified the cell from copper, zinc, and tungstate

(Shrestha et al., 2015).
2.2 Small multi-drug resistance family

The small multi-drug resistance (SMR) family is the smallest

efflux transporter family among the other four families. This family

of efflux transporters is restricted to prokaryotic cells

(Higgins, 2007). The SMR family obtains energy from the proton-

motive force (H+) (Reygaert, 2018). SMR transporters confer

resistance to a diverse number of quaternary ammonium

compounds and lipophilic cations like benzalkonium,

cetyltrimethylammonium bromide (CTAB), cetylpyridinium

chloride (CTPC), methyl viologen, and tetraphenylphosphonium

(TPP). In addition, SMR efflux pumps confer resistance to

antibiotics such as b-lactams, cephalosporins, dihydrofolate

inhibitors, and aminoglycosides (Shrestha et al., 2015).
2.3 ATP-binding cassette family

The ATP-binding cassette (ABC) family of drug efflux pumps

derives its energy from ATP hydrolysis to remove drugs from the
FIGURE 1

The general structure of main efflux families.
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intracellular environment (Kabra et al., 2019). The ABC family is

known as the primary active transporters because it utilizes ATP as its

energy source to extrude substances out of the cell. MacAB-TolC is

one of the known drug efflux pump systems in Salmonella. MacAB-

TolC can form tripartite complex. MacB functions as the inner

membrane pump protein (efflux pump). Periplasmic protein and

the outer membrane channel of the Salmonella MacAB-TolC

tripartite efflux pump are respectively MacA and TolC. In

Salmonella, MacAB-TolC Efflux system resistance to the

macrolides such as erythromycin, and azithromycin (Baugh, 2014).

In Salmonella, the PhoPQ regulatory system, which is a two-

component system, controls the expression of the MacAB pump

(Nishino et al., 2006, 2009). Specifically, PhoP, a component of the

PhoPQ system, binds to the macAB ABC transporter and represses

its activity (Nishino et al., 2006). This regulatory mechanism is crucial

in controlling the virulence of Salmonella (Kato and Groisman,

2008). Furthermore, the functions of the PhoPQ system in

Salmonella are multifaceted, encompassing various key

physiological processes. These include the regulation of Mg2+

homeostasis, providing resistance against antimicrobial peptides,

and enabling growth in acidic environments with a low pH level

(Groisman et al., 2021). Moreover, the MacAB drug efflux system, a

member of the ABC family in Salmonella, serves as a critical defense

mechanism, safeguarding the bacteria from oxidative stress. This

efflux pump is notably activated in response to exposure to hydrogen

peroxide (H2O2). Such induction facilitates the survival of Salmonella

under conditions where peroxide is present, highlighting the pump’s

crucial role in the bacterial defense mechanism against oxidative

damage (Bogomolnaya et al., 2013).
2.4 Major facilitator superfamily

The major facilitator superfamily (MFS) is generally introduced

as the largest family of secondary active solute transporters (Kumar

et al., 2013). MFS transporters have broad substrate specificity, such

as ions, amino acids, carbohydrates, lipids, nucleosides, and other

small molecules (Madej, 2014). The EmrAB efflux pump, a member

of the MFS family, significantly contributes to the internal drug

resistance of Salmonella. EmrAB and MdfA are the most described

efflux pumps in Salmonella. The EmrAB efflux pump comprises the

membrane fusion protein EmrA and functions as a multi-drug

efflux system, expelling substrates such as novobiocin, nalidixic

acid, and sodium deoxycholate from the bacterial cell. The MdfA

efflux pump in S. Typhimurium acts as a single cytoplasmic efflux

protein, conferring resistance to norfloxacin, chloramphenicol,

tetracycline, and doxorubicin (Baugh, 2014; Andersen et al., 2015).
2.5 Multi-drug and toxic
compound extrusion

The multi-drug and toxic compound extrusion (MATE) efflux

family acquires energy by using the Na+ gradient (Reygaert, 2018).

The MdtK efflux pump is a member of the MATE-type drug efflux

pump in Salmonella. MdtK efflux pump is substrate-specific and
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excludes antibiotics such as fluoroquinolones, cation drugs, and

aminoglycosides from the cells (Alenazy, 2022a). MdtK efflux pump

of Salmonella confers resistance to antibiotics such as norfloxacin,

doxorubicin, and acriflavine (Shrestha et al., 2015).
2.6 Proteobacterial antimicrobial
compound efflux superfamily

Recently identified, the proteobacterial antimicrobial

compound efflux (PACE) superfamily with AceI from

Acinetobacter baumannii as the prototype. The PACE bacterial

drug efflux transport proteins (AceI) are encoded by genes that are

discovered in the genomes of numerous pathogenic bacteria species

such as Pseudomonas, Klebsiella, Enterobacter, Salmonella, and

Burkholderia species (Huang et al., 2022). The PACE multi-drug

transporters are secondary active transporters that utilize the

proton motive force to transport biocides such as benzalkonium,

diqualinium, acriflavin, proflavin, and chlorhexidine (Hassan et al.,

2018; Zhao et al., 2022; Gaurav et al., 2023; Ahmad et al., 2024).

PACE family members are particularly common among

proteobacteria. There are no findings so far that PACE efflux

systems exist in archaea and eukaryotes (Zhao et al., 2022).
2.7 p-Aminobenzoyl-glutamate
transporter family

The AbgT family of transporters is crucial for bacterial folate

synthesis, essential for growth, and acts as a drug efflux pump,

facilitating resistance to various sulfa drugs. The AbgT family uses

the proton motive force for transporting biocides (Delmar and Yu,

2016). This family includes two primary members, YdaH and MtrF,

who play key roles in these biological processes (Shome et al., 2021).

Both efflux systems YdaH and MtrF vigorously mediate the bacterial

resistance against sulfonamide antimetabolite drugs. AbgT‐type efflux

proteins have been discovered in both Gram-negative bacteria (S.

enterica, E. coli, N. gonorrhoeae, A. borkumensis) and Gram-positive

bacteria including Staphylococcus aureus and Streptomyces coelicolor.

Also, these efflux proteins can be found in eukaryotes including the

yeast Saccharomyces arboricola (Delmar and Yu, 2016). However,

further research is necessary to understand the prevalence and specific

functions of the AbgT transporter family in Salmonella. This

knowledge gap highlights the need for more in-depth studies to

elucidate how these transporters operate and contribute to the

bacterial life cycle and drug resistance mechanisms in Salmonella.

Table 2 provides a comparison of the newly discovered PACE and

AbgT efflux pump families with the established efflux pump families

(ABC, SMR, MATE, MFS, and RND), highlighting differences in

energy utilization, substrate specificity, and structural properties.
3 Altered membrane permeability

Reduced permeability is a well-known AR mechanism among

Salmonella (Akinyemi and Ajoseh, 2017). There are two
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mechanisms involved in reducing antibiotic permeability in Gram-

negative bacteria including Salmonella. They are alterations of the

outer membrane lipid barrier and porin-mediated permeability.

Structural and functional arrangements of Salmonella ’s

lipopolysaccharide (LPS) layer provide a barrier to some

molecules including the antibiotics (Sirisena, 2000; Reygaert,

2018). Furthermore, having a hydrophobic lipid bilayer with

pore-forming proteins of specific size-exclusion properties

leads the external membrane to act as a penetration barrier

(Delcour, 2009).

The cell wall of Salmonella is mainly composed of three

different layers. They are the outer membrane, the peptidoglycan

layer, and the inner membrane (Rycroft, 2000). The external

membrane of Salmonella is an asymmetrical, highly complex lipid

bilayer. Its inner layer forms the phospholipids and its outer layer

forms the lipopolysaccharides. The lipopolysaccharide molecule is

amphipathic. It includes both hydrophobic and hydrophilic

components on the same molecule. The LPS molecules consist of

three regions: a hydrophobic anchor lipid A, a core oligosaccharide

with several anionic moieties, and the O-antigen (Rycroft, 2000).

Salmonella modifies its own LPS as a mechanism to resist

antimicrobial agents such as antimicrobial peptides. PhoPQ and

PmrA/B are two pairs of component systems that allow
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modifications in the LPS of Salmonella. The genes crucial for LPS

modification in Salmonella, such as pmrD, pmrC, pmrG, the pmrH-

M operon, and pmrE, fall under the regulatory control of the two

regulatory component systems PhoPQ and PmrAB (Devi, 2011).

In Gram-negative bacteria, the phosphorylation of lipid A and

core sugars contributes to the anionic properties of the cell surface.

As a strategy, Gram-negative bacteria like Salmonella are used to

reduce the negative charge of the cell exterior surface through the

addition of positive charges into lipid A. This process manipulates

the decreasing affinity for antimicrobial peptides. The lipid A

segment of LPS undergoes three structural modifications, such as

the addition of palmitate, the addition of phosphoethanolamine,

and the attachment of aminoarabinose (Abdi et al., 2019). For

instance, in S. typhimurium, the addition of the amine-containing

sugar aminoarabinose to the lipid A phosphate group confers

resistance to polymyxin B (Band and Weiss, 2015).

Lipid A acylation is a crucial mechanism by which Salmonella

resists antimicrobial peptides. This process enhances the

bacterium’s ability to reduce the fluidity of its outer membrane by

increasing its hydrophobicity. In Salmonella, palmitate chains are

added to lipid A to form a hepta-acylated lipid A, a process

facilitated by the outer membrane enzyme PagP, which is

regulated by the PhoPQ system. The hepta-acylated structure of
TABLE 2 Comparison of efflux pump families in Salmonella: energy utilization, substrate specificity, and structural properties.

Efflux
pump
family

Energy
utilization

Substrate specificity Structural properties References

PACE Proton motive force Actively transporting a wide range of
structurally diverse antimicrobial
compounds including chlorhexidine,
benzalkonium, dequalinium, proflavine,
and acriflavine

PACE family contains four
transmembrane-spanning helices

(Ahmad et al., 2018; Klenotic et al.,
2021; Zhao et al., 2022; Gaurav et al.,
2023; Ahmad et al., 2024)

AbgT Proton motive force Specific for sulfonamide
antimetabolite drugs

AbgT transporters contain nine
transmembrane-spanning helices

(Delmar and Yu, 2016; Klenotic et al.,
2021; Ahmad et al., 2024)

ABC ATP hydrolysis Broad range of solutes including drugs,
lipids, and sterols

ABC transporters share a common core
structure consisting of two
transmembrane domains and two
nucleotide-binding domains

(Ahmad et al., 2018; Kabra et al., 2019;
Klenotic et al., 2021; Gaurav et al., 2023;
Zack et al., 2024)

SMR Proton motive force Diverse number of quaternary
ammonium compounds, lipophilic
cations like benzalkonium,
cetyltrimethylammonium bromide,
cetylpyridinium chloride, methyl
viologen, and tetraphenylphosphonium

SMR proteins have four
transmembrane-spanning helices

(Shrestha et al., 2015; Ahmad et al.,
2018; Reygaert, 2018; Kornelsen and
Kumar, 2021; Gaurav et al., 2023;
Ahmad et al., 2024; Zack et al., 2024)

MATE Sodium ion gradient
or proton
motive force

Substrate-specific and excludes
antibiotics including fluoroquinolones,
cation drugs, and aminoglycosides

Containing twelve transmembrane
spanning helices

(Lu et al., 2013; Alenazy, 2022a; Gaurav
et al., 2023; Ahmad et al., 2024)

MFS Proton motive force Broad substrate specificity, including
ions, amino acids, carbohydrates, lipids,
nucleosides, and other small molecules

Most of these family members function
as monomeric units and contain 12 to
14 transmembrane helices arranged into
two domains, each forming a bundle of
six helices

(Madej, 2014; Ahmad et al., 2018;
Gaurav et al., 2023; Ahmad et al., 2024)

RND Proton motive force Broad spectrum including
chloramphenicol, novobiocin,
tetracyclines, some b-lactams, fusidic
acid fluoroquinolones, detergents, bile
salts, metals and biocides

The tripartite complex spans both the
inner and outer membranes and usually
has twelve transmembrane helices

(Alenazy, 2022b; Gaurav et al., 2023;
Ahmad et al., 2024)
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lipid A is significant because it inhibits the incorporation of cationic

antimicrobial peptides, thereby protecting the bacteria from these

antimicrobial agents (Li et al., 2013; Boll et al., 2015; Matamouros

andMiller, 2015; Saha et al., 2022). In addition, a study revealed that

Salmonella lipopolysaccharide modifications prevent the outer

membrane penetration of novobiocin (Nobre et al., 2015).

Porins are protein channels that reside in the outer membrane

of Gram-negative bacteria, such as Escherichia coli and Salmonella.

These channels are crucial for the passive transport of small

molecules, including nutrients and certain antibiotics, across the

outer membrane (Galdiero et al., 2012; Choi and Lee, 2019; Ude

et al., 2021). Generally, porins permit the passive transport of

hydrophilic molecules with a molecular weight of less than 600

Da. In addition, bacterial porins facilitate the entry of nutrients and

the excretion of waste and toxic compounds from the bacterial cell

environment. The major porins of S. Typhimurium are OmpF,

OmpC, PhoE and OmpD (Ipinza et al., 2014). Two major porin-

based mechanisms can be identified in Gram-negative bacteria

including Salmonella , E. coli , P. aeruginosa , Klebsiella

pneumoniae. The two mechanisms involve modifications to the

outer membrane porins, encompassing their loss, reduction, or

alteration, along with specific mutations that directly lead to

changes in porin functionality (Andersen et al., 2015). Members

of the family Enterobacteriaceae are well-known examples of

reducing the number of porins as their resistance mechanism

against antibiotics. Sometimes, bacteria completely stop

producing certain porins (Reygaert, 2018). In Salmonella, OmpC

and OmpF porins allow b-lactams to enter the bacterial cell and

reach their penicillin-binding protein targets. It has been reported

that a reduction in either OmpF or OmpC porin amount leads to an

increase in the resistance to b-lactams including ampicillin,

cefoxitin, and other cephalosporins (Cosby et al., 2015). In

addition, the deficiency of OmpC porin in S. Typhimurium can

lead to carbapenem resistance (Vergalli et al., 2020). Moreover, a

deficiency of OmpF porin expression has been reported in some

quinolone-resistant Salmonella strains (Al Gallas and Aissa, 2017).
4 Inactivation of drugs

Drug inactivation is one of the well-studied antibiotic defensive

mechanisms. This mechanism enables the destruction or

inactivation of the antibiotic compounds by enzymatic hydrolysis.

The b-lactamase enzyme is the most typical example of an

enzymatic hydrolysis process (Noto, 2022). Enterobacteriaceae

family including Salmonella attain resistance to b-lactam by

synthesizing b-lactamase or extended-spectrum b-lactamase

(Akinyemi and Ajoseh, 2017). The main mechanism of the

b-lactamases enzyme is to inactivate the b-lactam antibiotic by

hydrolyzing a specific site in the b-lactam ring structure. This

process leads to cleaves the b-lactam ring. Furthermore, the open-

ring structure of antibiotics is unable to bind their target penicillin-

binding protein (PBP) (Reygaert, 2018; Tooke et al., 2019).

Extended-spectrum b-lactamases (ESBLs) are enzymes that

confer broad-spectrum AR. Many of these ESBLs are plasmid-

mediated enzymes and help bacteria resist a wide range of b-
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lactams (Bradford, 2001; Naas et al., 2008). ESBLs have been

predominantly detected in the Enterobacteriaceae family

including Klebsiella, Escherichia coli, Salmonella, Enterobacter,

Proteus, Citrobacter, Serratia and Providencia (Teklu et al.,

2019). ESBLs can inactivate broad-spectrum cephalosporins,

penicillins, and aztreonam. Additionally, b-lactamase inhibitors

such as sulbactam, clavulanic acid, and tazobactam are highly

effective against ESBLs (Rahman et al., 2018). Salmonella uses

enzymatic inactivation mechanisms to resist chloramphenicol and

aminoglycosides. Plasmid-mediated resistance genes in the

Salmonella genome lead to the production of enzymes such as

phosphotransferases and chloramphenicol acetyltransferases,

which inactivate chloramphenicol (Guerra et al., 2000).

Moreover, Salmonella inactivates aminoglycosides through the

production of aminoglycoside-modifying enzymes (AME) such

as adenyltransferases, acetyltransferases, and phosphotransferases

(Noto, 2022; Thacharodi and Lamont, 2022).
5 Antibiotic target site modification

In this AR mechanism, bacteria can hinder the effectiveness of

antibiotics by obstructing their binding sites. Bacteria employ

several strategies to change the target sites such as target

protection, point mutations in the genes coding the binding site,

and replacement or avoidance of the original binding sites (Munita

and Arias, 2016; Schaenzer and Wright, 2020). The mutations that

occurred in the DNA gyrase and topoisomerase IV are the best

examples to discuss under this topic. Salmonella develops resistance

to fluoroquinolones and quinolones through mutations in DNA

gyrase and topoisomerase IV, resulting in structural changes to

these enzymes. Also, it allows for the reduction or complete

elimination of the antibiotic’s ability to attach to these target sites

(Reygaert, 2018; Herrera-Sánchez et al., 2021). DNA gyrase is

identified as the primary target of quinolones in salmonellae

(Kongsoi et al., 2015). Both enzymes are large and complex, each

consisting of two subunit pairs: GyrA (a 97 kDa protein encoded by

the gyrA gene) and GyrB (a 90 kDa protein encoded by the gyrB

gene). ParC (75 kDa) and ParE (70 kDa) are named as the

corresponding subunits of topoisomerase IV. DNA gyrase has the

ability to add negative supercoils into DNA molecules and can also

abolish both positive and negative supercoils. Additionally, it can

catenate and decatenate closed circular molecules. DNA

topoisomerase IV can eliminate both positive and negative

supercoils as well but plays a better role in decatenation

compared to DNA gyrase. Both enzymes collaborate in the

replication, transcription, recombination, and repair of DNA

(Jacoby, 2005).

Quinolones target the bacterial enzymes DNA gyrase and

topoisomerase IV, which are essential for DNA replication.

Quinolones inhibit the enzymes’ ability to re-ligate the DNA

strands after inducing double-strand breaks, ultimately leading to

the accumulation of DNA breaks and bacterial cell death (Drlica and

Zhao, 1997; Fàbrega et al., 2009; Aldred et al., 2014; Kongsoi et al.,

2015; Hooper and Jacoby, 2016; Pham et al., 2019). Quinolone

resistance initiates with the chromosomal mutations in Quinolone
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Resistance Determinant Regions (QRDR) of DNA gyrase and

topoisomerase IV (Li et al., 2018). Furthermore, the major

mechanism of Salmonella resistance to quinolones is mutations

that change the target site of the antibiotics with DNA gyrase. In

Salmonella, mutations occurred in the specific region (QRDR) of the

gyrA gene, i.e., between amino acids 67 and 106 (Souza et al., 2011).

In Salmonella, point mutations in the QRDR of the gyrA gene could

be adequate to mediate resistance to non-fluorine quinolones such as

nalidixic acid and decrease sensitivity to ciprofloxacin. Therefore,

additional mutations are needed for a higher level of fluoroquinolone

resistance (Souza et al., 2011; Li et al., 2018). Mutation sites within the

QRDRs of the gyrA gene are positioned at amino acid positions

Serine-83 (Ser-83) and Aspartate-87 (Asp-87). The most common

amino acid substitutions in nalidixic acid-resistant strains are Leu,

Thr, Phe, Tyr, or Ala at Ser-83, and Gly, Lys, Asn, or Tyr at Asp-87.

In cases of high-level resistance, double mutations at both positions

83 and 87 in the gyrA gene have been identified in clinical isolates of

S. Typhimurium. These mutations are known to significantly alter the

DNA gyrase enzyme, leading to reduced binding of fluoroquinolone

antibiotics and thus contributing to high-level resistance.

Additionally, Salmonella strains can also exhibit amino acid

substitution mutations at other positions, such as Ala-67 (to Pro),

Gly-81 (to Ser, Asp, Cys, or His), and Leu-98 (to Val) (Li et al., 2018).

Souza et al. (2011) reported that 105 Salmonella strains (94

epidemic and 11 of poultry origin) were resistant to nalidixic acid

out of a total of 123 Salmonella strains (Souza et al., 2011). They

aimed to evaluate mutations in the QRDR of the gyrA gene related

to resistance to the nalidixic acid and decreased susceptibility to

ciprofloxacin using allele-specific PCR and restriction fragment

length polymorphism (AS-PCR-RFLP). The study found a high

incidence of mutations, particularly at codons that code for Asp-87

and Ser-83, which are associated with quinolone resistance. The

research concluded that a need for judicious use of quinolones to

treat Salmonella infections due to the potential for resistance

development. Diverse mutations have also been discovered in the

QRDRs of DNA gyrase (GyrA and GyrB) and topoisomerase IV

(ParC and ParE) of typhoidal Salmonella. These mutations are

mentioned in Table 3 (Shaheen et al., 2021). A recent study

has identified novel mutations within the QRDR of DNA

gyrase and topoisomerase IV in Salmonella isolates from Jiangsu
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Province, China. These findings reveal new insights into the

mechanisms of quinolone resistance in Salmonella. This research

reported seven novel mutations in the GyrB (S426G), ParC (D79G),

and ParE (S498T, E543K, V560G, I444S, Y434S) expanding our

understanding of the genetic diversity underlying quinolone

resistance (Qian et al., 2020). Research on chromosomal

alterations in the QRDRs of DNA gyrase and topoisomerase IV

in Salmonella has provided valuable insights into the emergence

and dissemination of quinolone resistance. By identifying specific

mutation patterns and understanding their impact on resistance,

these studies contribute to improved diagnostic methods, treatment

approaches, and surveillance efforts. Ultimately, this knowledge

supports the development of targeted strategies to combat

quinolone-resistant Salmonella.
6 Plasmid-mediated resistance

In this mechanism, bacteria transfer AR genes which are carried

on plasmids (Millan, 2018). Plasmids are small, extrachromosomal

circular DNA molecules primarily found in bacteria, but they also

exist in some eukaryotes. Plasmids replicate independently, and the

genes they carry provide genetic advantages to bacteria, such as AR.

Furthermore, plasmids facilitate the horizontal transfer of resistance

genes between pathogenic bacteria through conjugation (Bennett,

2008; National Human Genome Research Institute, 2014).

Resistance plasmids contain one or more AR genes, and the

majority of them have the ability to transfer between bacteria through

conjugation (Bennett, 2008). AR plasmids comprise single or

multiple AR genes that can develop an MDR phenotype (Nikaido,

2009). Plasmids carry AR genes in bacteria, conferring resistance to

various antibiotics. These plasmids, which possessed AR genes, are

known as R factors or resistance plasmids. These R factors are

categorized into specific groups known as incompatibility groups

(Inc groups) (Rycroft, 2000). Plasmid incompatibility refers to the

inability of two plasmids to persist simultaneously within the same

cell line (Singh et al., 2022). Plasmids from various incompatibility

groups have been connected to various AR genes in Salmonella and

other bacteria (Carattoli, 2003). Specifically, IncA/C plasmids isolated

from Salmonella carry genes that exhibit resistance to various

antibiotics, including aminoglycosides, b-lactams, chloramphenicol,

sulfisoxazole, tetracyclines, and trimethoprim (McMillan et al., 2019).

Most AR genes in Salmonella are frequently found on plasmids.

Salmonella contains multiple large conjugative plasmids carrying

AR genes, conferring resistance to antibiotics such as b-lactams,

tetracyclines, aminoglycosides, and quinolones (Millan, 2018).

The conjugation of plasmids carrying AR mechanisms has

contributed to the universal dissemination of AR genes within the

Enterobacteriaceae family, including Salmonella. These plasmids

have the capacity to confer resistance to various antibiotics,

including b-lactamases (CMY, DHA, GES, LAP, NDM, SHV,

TEM), extended-spectrum b-lactamases (CTX, VEB), metallo b-
lactamases (IMP), carbapenemases (KPC, VIM), quinolone

resistance (Qep, Qnr), aminoglycoside resistance (AAC, Arm,

RmtB), tetracycline resistance (Tet), sulfonamide resistance (Sul),

and colistin resistance (Huddleston, 2014).
TABLE 3 Summary of mutations in quinolone resistance determining
regions of Salmonella.

DNA gyrase Topoisomerase IV

GyrA GyrB ParC ParE

Arg47Ser Gly435Glu/Ala/Val Thr57Ser Glu420Asn

Asp82Asn Ser464Tyr/Phe/Thr Gly72Ser Tyr434Ser

Ser83Phe/Tyr/Leu Gln465Leu Asp79Gly Ile444Ser

Asp87Asn/Gly/Tyr/Val Glu466Asp Ser80Ile Ser493Phe

Glu133Gly Ala468Glu Glu84Lys Ser498Thr

Asp147Gly Ala574Val Glu92Lys Glu543Lys

Ser426Gly Trp106Gly Val560Gly
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The resistance genes like blaSHV, blaTEM, blaCTX, blaCMY, and

blaOXA encoded by Salmonella plasmids are responsible for

the ESBL plasmid-mediated resistance (Ma ̨ka and Popowska,

2016). Salmonella primarily employs an enzymatic inactivation

mechanism as its main defense strategy to resist ESBLs.

Furthermore, plasmid-mediated resistance has played a significant

role in conferring resistance to ESBLs among Salmonella. These

plasmids often carry genes like blaCMY-2 and blaCTX-M-3, which are

responsible for resistance and can be shared among bacterial

organisms, regardless of bacterial species. This has contributed to

the widespread occurrence of ESBL resistance (Su and Chiu, 2007).

Quinolones are widely used to treat salmonellosis in both human

and veterinary medicine (Pribul et al., 2017). However, their

continuous application over the years has resulted in an increase in

resistance (Jacoby et al., 2014). Bacteria exhibit three main

mechanisms to resist quinolones: protection of the target from the

antibiotics through plasmid-mediated genes, modification of

antibiotics, and reducing intracytoplasmic quinolone concentration

through efflux pumps (Jacoby et al., 2014; Ruiz, 2019; Usman and

Hamza, 2022). Notably, the main three defensive mechanisms for

Plasmid-Mediated Quinolone Resistance (PMQR) have been

revealed since 1988 (Jacoby et al., 2014; Ruiz, 2019). In brief,

PMQR involves genes such as qnrA, qnrB, qnrC, qnrD, qnrS, and

qnrVC, which produce proteins from the pentapeptide repeat family.

These proteins protect DNA gyrase and topoisomerase IV against

quinolone inhibition. Typically, qnr genes are found within sul1-type

integrons and are often associated with mobilizing or transposable

elements within plasmids (Lee et al., 2021). The next defensive

mechanism is acetylation of quinolones. The aac(6′)-Ib-cr gene

encodes an enzyme known as aminoglycoside acetyltransferase,

which has the ability to confer resistance simultaneously against

both aminoglycoside antibiotics and quinolones/fluoroquinolone

antibiotics (Lee et al., 2021; Gharbi et al., 2023). In addition to aac

(6′)-Ib-cr gene, the newly described plasmid-mediated phosphorylase

gene (crpP) was responsible for inactivating ciprofloxacin with the

reaction of aminoglycoside phosphotransferase. This gene was

detected in pUM505 plasmid, isolated from a clinical Pseudomonas

aeruginosa isolate (Chávez-Jacobo et al., 2018; Ruiz, 2019;

Lee et al., 2021). However, additional research is required to

confirm the presence of crpP gene in the Salmonella genome. The

third resistance mechanism is the depletion of the intracellular

concentration of quinolones via efflux pumps. Plasmid genes can

also lead to resistance by promoting the production of drug efflux

systems, such asQepAB andOqxAB. These efflux pumps help remove

quinolones from the bacterial cell, thereby enhancing quinolone and

fluoroquinolone resistance (Jacoby et al., 2014; Lee et al., 2021). These

resistance mechanisms collaboratively contribute to the challenge of

combating quinolone resistance in bacterial infections.

A study conducted in Brazil aimed to investigate the occurrence

of PMQR in Salmonella and its correlation with susceptibility to

fluoroquinolones. The study collected a total of 129 samples from

diverse sources, including animal-derived food, environmental

samples, animals, and humans. Among the isolated samples, S.

Typhimurium and S. Enteritidis were identified. Interestingly, these

isolates displayed resistance to a range of fluoroquinolones,

including enrofloxacin, ciprofloxacin, ofloxacin, levofloxacin, and
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nalidixic acid. Among the isolates, qnr genes were detected in 15

instances, with 8 carrying qnrS, 6 carrying qnrB, and 1 carrying

qnrD. Additionally, the aac(6′)-Ib gene was identified in 23 isolates.

Furthermore, the integron gene was identified in 67 of the isolates

(Pribul et al., 2017).

A recent study examined the potential presence of PMQR genes

within Salmonella enterica (Lee et al., 2021). The study involved

collecting Salmonella enterica samples from patients diagnosed with

salmonellosis between 2016 to 2019 in South Korea. Among the 208

clinical isolates of Salmonella obtained from humans, thirty-four

strains exhibited reduced susceptibility to fluoroquinolones. Within

this subset, 22 Salmonella strains were found to carry single PMQR

genes, including qnrA, qnrB, or qnrS, while three Salmonella strains

were observed to harbor two PMQR genes, specifically qnrS and aac

(6’)-Ib-cr, or qnrA and qnrB (Lee et al., 2021).
7 Creation of biofilm barriers

Bacterial biofilms can be described as clusters of bacteria that

stick to a surface and are enclosed by a self-produced matrix (Vestby

et al., 2020). Salmonella biofilm extracellular matrix is mainly

composed of cellulose, biofilm-associated protein, O-antigen

capsule, curli protein (amyloid fimbriae), and extracellular DNA

(Daxin, 2016). In Salmonella, curli proteins are thin hair-like

filaments encoded by csgBAC and csgDEFG operons. The primary

roles of curli proteins include facilitating surface adhesion, promoting

cell aggregation, and formation of biofilm. Additionally, curli proteins

are involved in mediating the adhesion and invasion of host cells, and

they are also effective in activating the host’s inflammatory response

(Steenackers et al., 2012; Baugh, 2014; Daxin, 2016). In Salmonella

biofilms, cellulose, a key exopolysaccharide made up of b-1-4-D-
glucose units, is synthesized by two operons, bcsABZD and bcsEFG

(Daxin, 2016).

The formation of biofilms in Salmonella increases its chances of

survival in hostile environments and facilitates resistance against

antimicrobial compounds (Trampari et al., 2021). The formation of

Salmonella biofilms facilitates contributing to its persistence in

particular surface areas (Sakarikou et al., 2020). These biofilms can

develop on both living and non-living surfaces (Daxin, 2016). For

instance, Salmonella biofilms can be found on biotic surfaces such as

epithelial cells within a host, including human cholesterol gallstones,

and the chicken intestinal epithelium (Castelijn, 2013). Salmonella

biofilms facilitate Salmonella to survive in several conditions such as

elevated temperatures, malnourishment conditions, acidic pH,

diverse atmospheres, and antimicrobials (Ćwiek et al., 2019).

Moreover, bacterial biofilms play an important role in

antimicrobial agents through a variety of mechanisms (Cadena

et al., 2019). Biofilm production is recognized as one of the best

AR mechanisms. Several mechanisms of biofilm structure contribute

to antimicrobial resistance. The activation of efflux pumps, limited

penetration of antibiotics through the biofilm polysaccharide matrix,

quorum-sensing, physiological alterations due to slow growth rates

and starvation process, and persisted bacterial cells-like mechanisms

allowed biofilms to resist the antimicrobials (Andersen et al., 2015).

Furthermore, bacterial cells in biofilms exhibit greater AR than
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planktonic cells due to their several mechanisms (Ćwiek et al., 2019).

Moreover, Salmonella forms biofilms on food products, which cause

foodborne illnesses, and are challenging to eliminate due to their

higher resistance to antibiotics compared to planktonic cells

(Alenazy, 2022a). Both typhoid and non-typhoid Salmonella were

able to perform biofilms. Usually, non-typhoidal Salmonella biofilms

cause problems in several industries such as veterinary and medical

settings. As well as biofilms of S. Typhi can be identified on gallstones

during infection (Baugh, 2014). The formation of biofilms is

important to Salmonella for their growth and survival in the

environment. Salmonella covered by biofilm exhibits increased

resistance to chemical agents such as antibiotics and disinfectants,

as well as to physical stresses. Also, the creation of biofilms enhanced

Salmonella virulence (Daxin, 2016). Salmonella biofilms are resistant

to several antibiotics such as ampicillin, ciprofloxacin, gentamicin,

tetracycline, or third-generation cephalosporins such as ceftriaxone

and cefotaxime (Ćwiek et al., 2019).

One of the key mechanisms through which Salmonella biofilms

develop AR is efflux. Among the multi-drug efflux pumps in

Salmonella, the AcrAB–TolC efflux system is well-characterized.

The MDR efflux pumps found in Salmonella are classified into four

distinct drug efflux families: five in the RND family, two in the MFS

family, one in the MATE family, and one in the ABC family. The

inactivation of any multi-drug efflux pumps reduces biofilm

production in Salmonella Typhimurium (Baugh, 2014).

Additionally, the presence of mutants in S. Typhimurium, such as

tolC, acrB, acrD, acrEF, mdtABC, mdsABC, emrAB, mdfA, mdtK,

and macAB, can hinder biofilm formation because Salmonella

strains possessing these mutants lack MDR efflux systems (Baugh,

2014; Daxin, 2016). Nonetheless, a study reported that changing

efflux function decreases the formation of Salmonella biofilms

(Trampari et al., 2021). The AcrD efflux pump is important to

Salmonella biofilm formation. Mutations in AcrD significantly

reduce both biofilm formation and the expression of key biofilm

proteins encoded by csgBD (Buckner et al., 2016). In S.

Typhimurium, tolC and acrB mutants cannot form a functional

biofilm and suppress the transcription of both curli operons

(csgBAC and csgDEFG) (Baugh, 2014).

The extracellular matrix within microbial biofilms serves a

critical function, such as providing structural support, facilitating

communication between cells, and protecting the bacterial

community by blocking antibiotics from penetrating the bacteria

(Vestby et al., 2020; Singh et al., 2022; Prinzi and Rohde, 2023).

Salmonella biofilms enhance the likelihood of persistence in hostile

environments by facilitating defiance against antimicrobial

compounds. This occurs because of their structure and the

composition of their extracellular matrix (Trampari et al., 2021).

A study demonstrated that Salmonella biofilms show resistance to

ciprofloxacin due to the formation of biofilm structure (González

et al., 2018). In addition, Salmonella exhibits tolerance to triclosan, a

widely used biocide against bacteria, including Salmonella (Tabak

et al., 2007). This tolerance is attributed to the limited diffusion of

triclosan through the extracellular matrix formed by Salmonella as
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part of its biofilm formation. Moreover, extracellular DNA (eDNA)

within Salmonella biofilms enhances AR to specific antibiotics by

altering the outer membrane’s magnesium ion concentration. DNA,

being an anionic molecule, can chelate cations like Mg2+. Notably,

Mg2+ restriction in S. Typhimurium acts as an environmental

signal, triggering the induction of the PhoPQ and PmrAB two-

component systems, which subsequently promote AR mechanisms

(Dincer et al., 2020).
8 Conclusion and future perspectives

In conclusion, this review highlights the complex nature of AR

in Salmonella, emphasizing the various resistance mechanisms that

include drug efflux, target site modification, permeability

alterations, and biofilm formation. The extensive and improper

use of antibiotics in both clinical and agricultural settings has

considerably contributed to the acceleration of resistance traits

among various Salmonella serovars. The rising MDR Salmonella

presents an alarming public health challenge with significant

implications for treatment efficacy and infection control.

Efforts to combat this issue must be multi-pronged,

emphasizing the development of novel antimicrobial agents, such

as neoglycosides (Labby and Garneau-Tsodikova, 2013), and the

use of antibiotic adjuvants (Wright, 2016). Strategies should also

include the combination of multiple antibiotics (Parmanik et al.,

2022; Wang et al., 2022a; Lobertti et al., 2024), the creation of

enzyme specific inhibitors such as novel b-lactamase inhibitors,

AEM inhibitors to overcome aminoglycoside resistance (Wang

et al., 2022a), and chloramphenicol acetyltransferase inhibitors to

combat chloramphenicol resistance. Moreover, efflux pump

inhibitors, including berberine and palmatine (Morita et al., 2016;

Aghayan et al., 2017; Li and Ge, 2023), should be employed. The use

of nanoparticles as drug delivery systems and the incorporation of

plant-derived metabolites (Parmanik et al., 2022) are promising

approaches. Furthermore, the judicious use of existing antibiotics,

enhanced surveillance for resistance patterns, and rigorous

infection prevention strategies are essential components of this

comprehensive approach.

Additionally, public health education on antibiotic

stewardship and the importance of comprehensive hygiene

practices in food preparation are critical in curbing the spread

of these resistant pathogens. Future research should focus on

innovative approaches to overcome bacterial defensive

mechanisms, such as the development of new therapeutic

molecules, the use of bacteriophage therapy, the use of

competitive exclusion to suppress pathogenic bacteria in the

food environment, genetic modification of surrogate bacteria

using gene editing tools such as CRISPR-Cas techniques to

reduce AR Salmonella and the exploration of vaccine potentials.

To combat the threat of AR Salmonella and ensure proper

treatment for those infected, coordinated and collaborative

actions across the globe are essential.
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Nowaczek, A., et al. (2022). Antibiotic resistance in bacteria-A review. Antibiotics 11,
1–40. doi: 10.3390/antibiotics11081079

Usman, J., and Hamza, A. (2022). Review on the emergence of quinolone resistance
against Salmonella Typhi in Nigeria. Int. J. Sci. Glob. Sustain. 8, 10–10.
Frontiers in Antibiotics 15
Vergalli, J., Bodrenko, I. V., Masi, M., Moynié, L., Acosta-Gutiérrez, S., Naismith, J.
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