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The worldwide increasing frequency and severity of multidrug-resistant

gastrointestinal (MDR-GI) infections not only raises awareness of the debilities

of conventional antibiotic treatments but also highlights the demand for

alternative interventions. One of these alternatives is probiotics, harmless

bacteria that compete with pathogenic species, which have been considered

beneficial due to their therapeutic potential since they strengthen the mucosal

barrier and modulate the host immune response. Other natural compounds (e.g.,

polyphenols, flavonoids, and essential oils) present diverse antimicrobial

mechanisms, which are promising alternatives to mitigate resistant pathogens.

Finally, bacteriophages, viruses that target specific bacteria, constitute a precise

approach in which MDR bacteria are lysed or disrupted by the biofilms formed

during colonization without compromising the normal gut microbiome.

Therefore, the present manuscript provides an integrated perspective on

alternative non-antibiotic therapies to manage MDR-GI infections; for this

purpose, it covers aspects such as their action mechanisms, current clinical

applications, and the challenges that limit their broader application in clinical

practice. The potential of combining these approaches or personalizing infection

treatments adjusted to patients’ microbiome profiles is also discussed, aiming to

enhance efficacy and reduce resistance risks. Finally, the importance of
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continued research and development to optimize these alternatives is also

debated, addressing aspects such as the need to surpass regulatory barriers

and conducting large-scale clinical trials to establish the safety and efficacy of

these non-antibiotic alternatives. This overview of the current knowledge

contributes to the ongoing efforts to develop sustainable strategies to combat

MDR-GI infections and reduce the global burden of antibiotic resistance.
KEYWORDS
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1 Introduction

The ever-growing frequency and severity of MDR-GI infections

constitute a pressing global health concern, mainly in low- and

medium-income countries (LMICs) (Browne et al., 2020). Over the

past decades, several foodborne bacteria have become important

etiological agents of GI infections (e.g., Clostridioides difficile,

Helicobacter pylori, Listeria monocytogenes, certain species of

Campylobacter spp., Salmonella spp., and Shigella spp.) frequently

associated with resistance to multiple classes of antibiotics

(Supplementary Table 1) (Grudlewska-Buda et al., 2023). Each of

these bacterial species present a particular mechanism of antibiotic

resistance, but all pose diverse adverse clinical implications,

constraining treatment outcomes (Hasanuzzaman et al, 2024).

Resistance emergence and dissemination are often driven by

factors such as the overuse and misuse of antibiotics both in

healthcare and agriculture, the persistence of antibiotics in

ecosystems, the rapid mutation and evolution of bacterial

populations to adjust to ever-changing therapeutical approaches,

and inadequate global infection control measures (Oliveira et al.,

2024). Moreover, the MDR-GI problem infection is further

exacerbated by the high transmissibility of these resistant

pathogens, which threaten individual health and undermines

public health (Salam et al. , 2023). The most common

consequences of MDR-GI infections often include prolonged

illness, higher healthcare costs, and elevated mortality rates,

particularly in vulnerable populations, further contributing to

economic impairment in already debilitated regions (SChinas

et al., 2023).

Since its development in the 1940s, antibiotics have been

considered the cornerstone to combat bacterial infections (Cook

and Wright, 2022). Nevertheless, the effectiveness of these drugs

against MDR-GI bacteria and other pathogens has increasingly

been compromised by the rise of these resistance patterns

(Vanegas-Múnera and Jiménez-Quiceno, 2020). Moreover,

antibiotic therapy often disrupts the normal gut microbiota,

reducing species diversity and disrupting regular metabolic and

immunological functions, leading to aggravated infections and

conditions such as antibiotic-associated diarrhea or recurrent
02
C. difficile infections (Dahiya and Nigam, 2023). Also, the

exacerbated reliance on broad-spectrum antibiotics further

promotes resistance emergence and, consequently, limits

treatment options for future infections (Hotinger et al., 2021).

Finally, the pharmaceutical industry’s stagnation in developing

new antibiotic classes further aggravates this problem, leaving

clinicians with limited practical possibilities to manage these

complex bacterial infections (Cook and Wright, 2022).

Altogether, the above-presented limitations highlight the urgent

need for innovative and effective therapeutical alternatives that can

address the immediate problem of MDR-GI infections and the

long-term effects of antimicrobial resistance (AMR).

The research and development of alternative therapies will

overcome the limitations posed by the current antibiotic

regimens. Over time, non-antibiotic strategies have gained

significant attention since they offer action mechanisms distinct

from conventional antibiotics and may change the therapeutical

approach to MDR-GI infections (Murugaiyan et al., 2022). Among

the most common alternatives are probiotics, natural compounds,

and bacteriophages (Murugaiyan et al., 2022). All these

formulations are aligned with the goals of antimicrobial

stewardship programs, which advocate the reduction of antibiotic

dependency and the mitigation of resistance emergence and

dissemination (Majumder et al., 2020). Additionally, these new

alternatives are prone to be tailored to specific pathogens and

patient needs, contributing to the growing field of personalized

medicine (Konwar et al., 2022).

While the primary focus of the present review is on predominant

pathogens such as Salmonella, E. coli, and Campylobacter, it is

noteworthy to mention that less common opportunistic infections

can pose significant health challenges. Infections caused by

Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus

faecalis represent a smaller fraction in gastrointestinal cases (Elashiry

et al., 2023; Gupta and Dey, 2023; Liu et al., 2024) must be pointed

out due to their potential to exploit compromised immune systems or

disrupted gut microbiomes. These pathogens underline the diverse

bacterial landscape that affects gastrointestinal health and warrant

attention for comprehensive disease management and prevention

strategies (Dey, 2024).
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Moreover, vaccines against enteric pathogens like Shigella,

Enterotoxigenic E. coli (ETEC), and Salmonella are essential

to prevent many diarrheal diseases, especially in LMICs

(Seo et al., 2020; Khalil et al., 2021). While progress has been

made, several challenges remain in developing broadly protective

vaccines due to strain heterogeneity and limited efficacy in endemic

regions (Seo et al., 2020). Novel approaches, such as the

Multiepitope fusion antigen - MEFA platform and combined

vaccines like ShigETEC, show promise in addressing these issues

(Seo et al., 2020; Harutyunyan et al., 2020). Vaccination could be a

cost-effective and equitable means of primary prevention,

complementing other interventions such as improved sanitation

(Khalil et al., 2021). A multi-pathogen vaccine targeting Shigella,

ETEC, and Campylobacter could address about one-third of

diarrhea cases in children and align with WHO’s preferred

product characteristics (Walker et al., 2021). Continuous research

and development efforts will allow to overcome challenges and

accelerate the availability of effective vaccines for these

enteric pathogens.

Through a comprehensive literature revision, the present review

provides an overview of the available non-antibiotic alternative

therapies for MDR-GI infections - probiotics, natural compounds,

and bacteriophages. In each case, aspects such as their potential,

limitations, and future directions for research and development were

addressed. Bearing these objectives in mind, the discussion begins

with the sections “Probiotics”, “Natural compounds”, and

“Bacteriophages”, which cover their action mechanisms, clinical

applications and challenges associated with their use. Afterward,

the manuscript explores integrative approaches, such as the

synergistic effects of combining these alternatives, as well as the

recent developments, such as personalized medicine, based on the

study of individual microbiome profiles. Finally, future directions are

outlined, emphasizing advancements in understanding microbiome-

pathogen interactions, developing novel delivery systems, and the

need for large-scale clinical trials and regulatory frameworks.
2 Material and methods

The selection of manuscripts for this review followed a structured

and systematic approach to ensure methodological transparency and

rigor. Initially, a total of 2,543,872 manuscripts were retrieved from

public article databases, including PubMed (U.S. National Library of

Medicine) and Google Scholar, using a comprehensive set of

keywords such as “Non-Antibiotic Therapies”, “Multidrug-

Resistant Pathogens”, “Gastrointestinal Infections”, “Probiotics”,

“Natural Compounds”, “Bacteriophages”, “Limitations”, and

“Future Directions”. After the removal of duplicate entries,

2,543,336 unique records remained.

The first screening stage involved an initial evaluation based on

the relevance of the title's and abstract's relevance. Studies not

directly related to non-antibiotic therapies for MDR-GI infections

were excluded from further analysis, significantly reducing the

number of manuscripts considered for full-text assessment.
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For the next stage, 536 studies underwent a thorough full-text review

based on specific inclusion criteria. Only studies published between 2019

and 2024 were considered to ensure that the most recent research

findings were incorporated. Manuscripts selected for inclusion had to be

peer-reviewed and published in high-impact journals classified within

the Q1 and Q2 categories. Studies with robust methodologies, high-

quality data, and practical relevance were prioritized, and full-text

availability was required to evaluate the study findings comprehensively.

During the eligibility assessment, several exclusion criteria were

applied. Manuscripts published before 2019 were removed to avoid

outdated research. Studies lacking peer review (e.g., preprints and

conference abstracts) were also excluded to maintain scientific

rigor. Further, manuscripts with methodological flaws, insufficient

statistical validation, or weak experimental design were not

considered. Additionally, those without full-text availability were

omitted from the analysis.

Following this rigorous selection process, 405 manuscripts were

included for qualitative synthesis, while 362 studies met all criteria for

quantitative analysis. The comprehensive selection method in the

present manuscript ensures that only the most relevant, high-quality,

and scientifically rigorous studies were incorporated, providing an

updated and reliable review of non-antibiotic therapies for

multidrug-resistant gastrointestinal infections (Figure 1).
3 Probiotics

Probiotics, defined as live microorganisms that confer health

benefits when adequately administered, can be used for GI

infections and other conditions (Silva et al., 2020). These non-

antibiotic alternatives offer the dual advantage of mitigating

multidrug-resistant (MDR) pathogens and promoting the

integrity and functionality of the gut microbiome (Jain et al.,

2023). Probiotics’ action mechanisms are diverse and include

enhancing mucosal barrier function, competitive inhibition of

pathogens, and modulation of the immune system (Van Zyl et al.,

2020; Mazziotta et al., 2023). Probiotics prevent and ameliorate

digestive disorders, allergies, and inflammatory conditions (Plaza-

Diaz et al., 2019). Since they interfere with the gut-brain axis

(Dahiya and Nigam, 2023), the gut-liver axis, and the gut-lung

axis (Stavropoulou and Bezirtzoglou, 2020), they potentially

influence systemic health. The probiotics’ attachment to intestinal

epithelium influences their functionality, with factors such as

sortase A (i.e., a transpeptidase enzyme responsible for anchoring

surface proteins to the bacterial cell wall pathogen’s being involved

in bacterial virulence, adherence, and immune evasion), playing a

significant role in this process (Javanshir et al., 2021). Probiotics

also produce antimicrobial compounds, regulate fecal enzymatic

activities, and generate short-chain fatty acids that affect both

intestinal and peripheral tissues (Plaza-Diaz et al., 2019).

One key mechanism of probiotics’ action is the competitive

inhibition of pathogenic bacteria. Probiotic bacteria and yeast (e.g.,

Lactobacillus spp., Bifidobacterium spp., Streptococcus thermophilus,

Escherichia coli Nissle 1917, Enterococcus spp., Saccharomyces
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boulardii) occupy attachment sites on gut epithelial cells, preventing

pathogens from adhering to and colonizing these surfaces (Plaza-

Diaz et al., 2019; Javanshir et al., 2021). Moreover, probiotics also

compete for essential nutrients, limiting the resources available to

those harmful microbes (Tang and Lu, 2019) and produce

antimicrobial substances (e.g., organic acids, bacteriocins, and
Frontiers in Antibiotics 04
hydrogen peroxide) that lower local pH levels or disrupt the cell

membranes of pathogenic bacteria, impeding their growth and

activity (Khaneghah et al., 2020) (Figure 2).

Enhancing the mucosal barrier is another important function of

probiotics. The mucosal epithelial cells are the first defense against

microbial invasion (Camilleri, 2021). Probiotics are known to
FIGURE 2

Main actions of probiotics, natural compounds, and bacteriophages in managing multidrug-resistant gastrointestinal infections.
FIGURE 1

Schematic representation of the flowchart of the searched articles and the inclusion and exclusion criteria.
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strengthen this barrier by stimulating the production of mucins,

which protect epithelial cells from direct microbial contact (Gou

et al., 2022). Also, they improve the integrity of tight junctions

between epithelial cells, sealing the space between adjacent

epithelial cells and making it more difficult for bacteria to invade

and disrupt host tissues (Rose et al., 2021). Combined, these two

aspects reduce intestinal permeability and prevent the translocation

of pathogens and their toxins into the systemic circulation,

containing the infection locally. This process is achieved by

activating macrophages and dendritic cells, stimulating

immunoglobulin A (IgA) production, and regulating cytokines

release (Maldonado et al., 2019; Mazziotta et al., 2023) (Figure 2).

Moreover, probiotics are also responsible for the delicate balance

between pro- and anti-inflammatory signals required to resolve

infections without exacerbating GI inflammation (Colletti et al.,

2023) (Figure 2).

The therapeutic potential of probiotics is particularly evident in

infections caused by C. difficile and H. pylori (Keikha and Karbalaei,

2021; Pal et al, 2023). In the case of C. difficile, recurrent infections

constitute a significant challenge in clinical management, mainly

due to the disruption of gut microbiota by antibiotics. Recent

studies have demonstrated that some probiotic strains, such as

Lactobacillus spp. and Saccharomyces boulardii, can restore

microbiota balance, reduce toxin production, and decrease

recurrent infection incidence. These effects are enhanced when

probiotics are used as a co-adjuvant to antibiotic therapy (Pal

et al., 2023), by potentially interfering with quorum sensing

systems, reducing virulence, and disrupting toxin production,

motility, and adherence. These aspects demonstrate the potential

use of these alternatives to synergize with conventional treatments

(Gunaratnam et al., 2021). In the case of H. pylori infections,

probiotics, such as Lactobacillus reuteri, Lactobacillus rhamnosus

and Bifidobacterium bifidum, have demonstrated the ability to

inhibit H. pylori adhesion to gastric epithelial cells and reduce the

infection-associated inflammation (Keikha and Karbalaei, 2021).

Moreover, probiotics alleviate side effects commonly associated
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with the antibiotics used to treat H. pylori, such as diarrhea and

gut dysbiosis, improving patient compliance with treatment

regimens (Liang et al., 2022; Fiorani et al., 2023).

The commercial probiotic market has expanded rapidly, with

various products available in shops and pharmacies (Liang et al.,

2022). However, there are potential limitations and safety concerns

associated with these products, including pathogenic contamination

and inaccurate labeling (Liang et al., 2024). Developing high-quality

probiotic formulations requires careful strain selection, safety

assessments, and efficacy studies (Grumet et al., 2020). The

introduction of DNA sequencing technologies has contributed to

a deeper understanding of gut microbiota composition and its role

in human health (Ballini et al., 2023). While the probiotic market

continues to grow, with products ranging from yogurt to nutritional

supplements, the papers reviewed do not mention any significant

probiotic products based on rigorous studies entering the

commercial market in the last five years.

While probiotics show potential in MDR-GI infection

management, their clinical translation faces several challenges and

risks. While certain Clostridium species may have probiotic effects,

concerns exist regarding their safety (Guo et al., 2020). The

expanding range of probiotic candidates necessitates improved

quality assurance techniques to ensure dose, viability, and

functional integrity (Cunningham et al. , 2021). Safety

considerations include potential adverse events, especially in

vulnerable populations, emphasizing the need for whole genome

sequencing to identify virulence, toxin, and antibiotic resistance

genes (Merenstein et al., 2023). Therefore, a careful evaluation of

risk-benefit ratios and patient selection should be performed during

clinical translation, with personalized microbiome therapy

potentially offering a path to successful treatment (Fong et al.,

2020) (Figure 3).

Several challenges must be addressed before fully integrating

probiotics into clinical practice (Stavropoulou and Bezirtzoglou,

2020). These challenges include knowledge gaps in defining optimal

regimens for specific patient subgroups, regulatory issues
FIGURE 3

Main potential risks, side effects, and challenges in the clinical translation of probiotics, natural compounds, and bacteriophages.
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concerning product safety and quality, and surpassing challenges of

cross-colonization (Pell et al., 2019). Probiotics’ efficacy depends on

strain, dose, host immune system, and therapy duration (Biswasroy

et al., 2021). To address stability issues in different gastrointestinal

tract compartments and improve targeted delivery, novel

encapsulation techniques, such as stimuli-responsive polymers,

are being developed (Garcia-Brand et al., 2022). While probiotics

have shown potential in preventing conditions such as necrotizing

enterocolitis in premature infants (Underwood, 2019), more

extensive clinical studies are required to establish strong evidence

for their efficacy and safety across various applications (Pell et al.,

2019; Stavropoulou and Bezirtzoglou, 2020) (Figure 3).

Regulatory issues (e.g., probiotics are regulated differently

across countries and regions, leading to inconsistencies in their

classification, approval, and monitoring) and standardization issues

(e.g., inconsistent quality control, dosing standards, and efficacy

evaluation) further complicate the adoption of probiotics into the

clinical practice (Silva et al., 2020; Britton et al., 2021) (Figure 3).
4 Natural compounds

Natural compounds are bioactive substances produced by

plants to defend themselves against diverse threats (e.g.,

microorganisms, insects, and environmental stresses) (George and

Brandl, 2021). They are frequently found in leaves, fruits, and other

plant organs and exhibit antimicrobial effects against a wide range

of pathogens, such as those associated with MDR-GI infections

(Khameneh et al., 2021). Among the most well-studied natural

compounds are polyphenols, flavonoids and essential oils, each

presenting unique antimicrobial activity action mechanisms

(Supplementary Table 2).

Polyphenols, such as tannins and catechins, have been reported

as potent antimicrobial agents that disrupt bacterial membranes,

bind to proteins, and interfere with several key metabolic pathways

(Elkhalifa et al., 2024). For instance, while curcumin exhibits anti-

inflammatory and antimicrobial properties by inhibiting bacterial

adhesion, biofilm formation, and toxin production (Hussain et al.,

2022); tannins are capable to inhibit bacterial adhesion to epithelial

cells, frequently considered as a significant step in GI infections

pathogenesis (Piazza et al., 2023). Other polyphenols, such as

anthocyanins and chlorogenic acid, control MDR-GI infections

by regulating intestinal microbiota by inhibiting the colonization

by pathogenic bacteria (Verediano et al., 2021; Bao et al., 2020),

promoting autophagy of pathogenic bacteria (Tan et al., 2020),

improving intestinal barrier function by increasing tight junction

proteins and goblet cells (Verediano et al., 2021), and modulating

the inflammatory responses by macrophages (Rathinasabapathy

et al., 2022) (Figure 2).

Flavonoids, such as quercetin and naringenin, inhibit bacterial

enzymes involved in DNA replication and protein synthesis, leading

to reduced bacterial proliferation (Pathak and Mazumder, 2024).

Other flavonoids, such as grape seed oligomeric proanthocyanidins,

quercetin, and luteolin, alleviate oxidative stress, reduce

inflammation, and damage the barrier integrity of infected cells
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(Kovács et al., 2024; Karancsi et al., 2022; Kovács et al., 2022; Zhang

et al., 2020) (Figure 2).

Essential oils, such as thymol (extracted from thyme) or

carvacrol (extracted from oregano), have been reported to exhibit

antimicrobial activity by disrupting bacterial cell membranes,

impairing ATP production, and interfering with quorum sensing,

ultimately resulting in bacterial death (Trifan et al., 2020).

Moreover, thymol and carvacrol protect intestinal epithelial cells

by promoting cell integrity (Giovagnoni et al., 2020) (Figure 2).

Besides these three groups, other natural compounds, such as

allicin and berberine, can also be used to manage MDR-GI

infections. For instance, allicin, a sulfur-containing compound

extracted from garlic (Allium sativum), has demonstrated efficacy

against a broad spectrum of MDR-GI bacteria, including those

responsible for biofilm formation, through its ability to disrupt

bacterial membranes and inhibit quorum sensing (Bhatwalkar et al.,

2021). Also, berberine, an alkaloid extracted from Berberis species,

targets bacterial DNA replication and energy metabolism, showing

potent activity against resistant strains of E. coli and Salmonella spp

(Zhou et al., 2023).

Natural compounds combat MDR-GI pathogens through

mechanisms distinct from conventional antibiotics, often

bypassing common resistance pathways. These mechanisms

include bacterial cell wall and membrane disruption, biofilm

formation inhibition, and quorum sensing communication

interference (Álvarez-Martıńez et al., 2020b). For instance, allicin

and essential oils, can integrate into bacterial lipid bilayers, causing

membrane destabilization, leakage of cellular contents, and

eventually bacterial lysis (Kachur and Suntres, 2020; Bhatwalkar

et al., 2021). These effects are particularly effective against Gram-

positive bacteria, which have a peptidoglycan outer cell wall, but

also extend to some Gram-negative pathogens (Tavares et al., 2020).

Another target of natural compounds is biofilm formation, a

primary defense mechanism of bacteria against antibiotics, which is

complicated infection treatment (Damyanova et al., 2024). For

instance, curcumin and allicin inhibit the production of

extracellular polymeric substances (EPS) that constitute the

structural matrix of biofilms, reducing bacteria’s ability to

establish and maintain these protective environments (Pinto et al.,

2020). Moreover, some natural compounds can penetrate biofilms,

sensitizing bacteria to natural and synthetic antimicrobial agents

(Sakarikou et al., 2020).

The last mechanism is associated with interference with

bacterial quorum sensing, the communication system that

regulates bacterial virulence, a novel mechanism offered by

natural compounds (Yang et al., 2020). For instance, flavonoids

(e.g., quercetin) and berberine can disrupt quorum sensing

pathways by inhibiting the synthesis or activity of signaling

molecules such as acyl-homoserine lactones (Deryabin et al.,

2019). By interfering with quorum sensing, these compounds

reduce bacterial coordination, virulence, and biofilm production

and can be regarded as potential therapeutic approaches against

MDR-GI bacteria (Bouyahya et al., 2022).

In treating H. pylori infections, natural compounds have been

proven as particularly promising (Deng et al., 2024). For instance,
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curcumin inhibits bacterial adhesion to gastric epithelial cells,

reduces inflammation, and suppresses virulence factors

(Mohammadi et al., 2022). Allicin targets H. pylori biofilms and

disrupts quorum sensing communication, offering an effective

alternative for patients colonized by antibiotic-resistant strains

(Sathianarayanan et al., 2022). Berberine, often used combined

with conventional antibiotic therapies, has been shown to

improve treatment outcomes for H. pylori by enhancing antibiotic

activity and mitigating drug resistance (Hu et al., 2020).

Notably, the synergistic effects between natural compounds and

antibiotics are another area of significant clinical interest (Álvarez-

Martıńez et al., 2020b). For instance, berberine enhances the activity

of b-lactam antibiotics against E. coli (Zhou et al., 2023), while

curcumin potentiates metronidazole against C. difficile andH. pylori

(Mohammadi et al., 2022). Moreover, phytochemical compounds

isolated from Phyllanthus emblica, demonstrated synergistic activity

with ciprofloxacin and tetracycline against Salmonella

Typhimurium, potentially by inhibiting efflux pumps (Mehta

et al., 2016). Combinations of tetracycline with alkaloid-related

compounds such as nitroxoline, sanguinarine, and zinc pyrithione

showed synergistic effects against various diarrheic bacteria,

including Shigella flexneri and E. coli (Osei-Owusu et al., 2024).

Phenylpropanoids and flavonoids, particularly luteolin and sinapic

acid, enhanced the efficacy of ciprofloxacin and gentamicin against

S. aureus, Klebsiella pneumoniae, and P. aeruginosa (Kincses et al.,

2024). These combinations allow for lower doses of antibiotics,

reducing side effects and toxicity and potentially overcoming

bacterial resistance mechanisms (Xiao et al., 2023).

Natural compounds promise to treat gastrointestinal infections,

but several challenges hinder their clinical translation. Recent

studies (Qassadi et al., 2023) highlight the therapeutic potential of

plant-derived products against gastrointestinal pathogens,

emphasizing the need for quality assessments and research gaps

in their efficacy. Others (Murphy et al., 2020) identify b-glucans’
diverse therapeutic properties and the complexities in their

mechanisms of action, which complicate clinical testing. They

also highlight the variability in b-glucan preparations due to

differences in sources and extraction methods. These studies

underscore the need for further research to overcome these

challenges in natural compound translation.

Other challenges that limit their widespread application in

clinical practice (Heinrich et al., 2020) include its variability in

bioavailability and potency (Borges et al., 2020). Some natural

compounds, such as curcumin and berberine, present low

solubility and poor absorption in the GI tract, often resulting in

suboptimal systemic concentrations, which are insufficient to

adequately treat MDR-GI infections (Hu et al., 2023). Advances

in delivery systems, such as nanoformulations (e.g., liposomes,

polymeric nanoparticles, and micelles) (Borges et al., 2020) and

encapsulation technologies (e.g., spray drying, liposomes,

emulsions, and nanoencapsulation) (MaChado et al., 2019), are

currently being developed to enhance natural compounds’

bioavailability and therapeutic efficacy (Figure 3).

Other matters of concern include the potential adverse effects of

high doses of natural compounds and interactions between co-
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administrated drugs (Malczak and Gajda, 2023). As in conventional

medicines, high doses of natural compounds can also be associated

with adverse effects in some patients. The deleterious effects are

gastrointestinal irritation, hepatotoxicity, and allergic reactions

(Vilas-Boas et al., 2021). Additionally, natural compounds can

interact with conventional, altering their metabolism and effects

during infection. For instance, berberine binds to cytochrome P450

enzymes (e.g., CYP3A4, CYP2D6, CYP2C9, CYP2C19), preventing

other drugs from being metabolized, resulting in higher plasma

concentration of the co-administrated drug and increasing the risk

of toxicity (Zhang et al., 2021) (Figure 3).

As in the case of probiotics, the lack of standardization and

regulatory guidelines also delays the clinical application of natural

compounds (Andreani et al., 2024). Variability in the composition

of plant-derived products is due to differences in cultivation,

extraction, and storage methods. This variability can lead to

unpredicted efficiency, making it difficult to ensure consistent

therapeutical benefits and conflicting results or irreproducible

findings during clinical trials (Scotti et al., 2019). Moreover, the

lack of standardized protocols for safety and efficacy and the limited

regulatory oversight undoubtedly hinders the integration of natural

compounds into formal treatment guidelines (Komala et al.,

2023) (Figure 3).
5 Bacteriophage

Bacteriophage (or phage) can be considered an alternative

therapeutical approach for MDR-GI infections (Gutierrez and

Domingo-Calap, 2020). Bacteriophages, defined as viruses that

infect and lyse bacteria with remarkable specificity (i.e., targeting

only harmful bacteria while sparing beneficial ones), offer unique

advantages to combat these infections and present distinct action

mechanisms to conventional drugs (Kwiatek et al., 2020).

Bacteriophages can be administered through various routes, such

as topical application, inhalation, oral, or parenteral delivery

(Düzgünes ̧ et al., 2021).
One of the primary bacteriophage action mechanisms is the

specific targeting and lysis of bacterial pathogens. Bacteriophages

recognize and bind to specific receptors on the surface of the

targeted bacteria and transfer their genetic material into the cell.

Once inside, the bacteriophage hijacks the bacterial machinery and

produces new viral particles. At the end of this process, bacteria

undergo a lysis process, and the new bacteriophage progeny is

release (Dunne et al., 2021). The specificity in bacteria-

bacteriophage recognition guarantees that only the targeted

bacterial pathogens are affected, leaving the commensal microbes

from the normal gut microbiota intact. This aspect constitutes a

critical advantage of bacteriophages compared to conventional

broad-spectrum antibiotics (Figure 2).

Another significant mechanism is the inhibition of bacterial

biofilm production. Biofilms are structured microorganism

communities enclosed by a self-produced extracellular polymeric

substance (EPS) that adheres to surfaces and protects bacteria from

the action of antibiotics and the immune system, leading to
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persistent and chronic infections (Zafer et al., 2024). Bacteriophages

can penetrate these biofilms and enter inside the bacterial cells,

replicate and lead to their destruction, preventing infection

dissemination (Singh et al., 2022). Additionally, specific

bacteriophages also produce enzymes, such as depolymerases and

polysaccharide lyases, which degrade specific structures within the

biofilm matrix facilitating bacteriophage access to target bacteria

(Topka-Bielecka et al., 2021). This dual action not only destroys

bacteria within biofilms but also disrupts the structural integrity of

the biofilm itself, making it more susceptible to other therapeutic

agents (Talapko and Škrlec, 2020) (Figure 2).

The clinical evidence supporting the efficiency of bacteriophage

therapy continues to grow, with several successful cases

documented (Luong et al., 2020). For instance, preclinical trials

have demonstrated that bacteriophages targeting C. difficile reduce

bacterial colonization and toxin production (Nale et al., 2022.

Similarly, in Salmonella infections in animal models,

bacteriophages’ ability has been demonstrated to mitigate

symptoms and limit bacterial colonization (Kosznik-Kwaśnicka

et al., 2022; Thanki et al., 2022). Human clinical trials and case

studies have also provided promising results, even in patients with a

severe E. coli infection unresponsive to antibiotics (Broncano-

Lavado et al., 2021. Ongoing trials evaluating bacteriophage in C.

difficile and Salmonella spp. infections have shown significant

reductions in bacterial load and improvements in symptoms, with

minimal side effects (Heuler et al., 2021; Lamy-Besnier et al., 2021).

Bacteriophage therapy offers several compelling advantages.

One of the most significant is its high specificity. Contrary to

conventional antibiotic therapeutics that indiscriminately target

several bacteria, bacteriophages act exclusively on their bacterial

host (Kwiatek et al., 2020). Bacteriophage specificity minimizes the

collateral damage on the gut’s commensal microbiota, preserving its

essential functions and reducing the risk of secondary infections

such as C. difficile-associated diarrhea (Nale et al., 2022). Also,

bacteriophages have a minimal impact on the host’s overall

microbiome, maintaining microbial diversity and stability often

disrupted by conventional antibiotic therapy (Mu et al., 2021).

While phage therapy shows promise in clinical case studies and

randomized controlled trials, several challenges hinder its

widespread adoption (Petrovic Fabijan et al., 2023). These include

bacterial strain variation, phage resistance, and potential limitations

of host immune responses (Hatfull et al., 2022). Safety profiles

appear favorable, with mild to moderate adverse events reported in

only 5.1% of participants in recent trials (Walter et al., 2024).

However, standardization of protocols, including phage preparation

quality, sensitivity testing, and dosage optimization, is crucial for

successful clinical translation (Walter et al., 2024) (Figure 3).

Regulatory constraints remain a significant obstacle. Contrarily

to traditional drugs, bacteriophages are living microorganisms

capable of evolving, an aspect that further complicates their

regulatory approval (Brives and Pourraz, 2020). Therefore, each

batch of new bacteriophage preparations must be rigorously

evaluated in terms of safety, efficacy, and quality, a resource-

intensive and time-consuming process (Verbeken and Pirnay,

2022). Noteworthy, bacteria can also develop resistance to
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bacteriophages, often involving mutations in the receptors that

bacteriophages use to recognize target bacteria. For instance,

Salmonella enterica bacteriophage-resistant mutants exhibited

increased tetracycline susceptibility and decreased virulence, with

mutations in lipopolysaccharide genes (Fong et al., 2020).

Extraintestinal pathogenic E. coli developed resistance through

mutations in lipopolysaccharide biosynthesis and outer

membrane genes, resulting in attenuated virulence (Salazar et al.,

2021). However, bacteria resistance to bacteriophages can be

mitigated by using bacteriophage cocktails with broad host ranges

targeting different bacterial receptors (Vaitekenas et al., 2021) or by

engineering bacteriophages to overcome bacterial defenses (Bleriot

et al., 2024) (Figure 3).

Another critical challenge is the bacteriophage production and

standardization. Producing bacteriophages at a clinical scale

requires rigorous quality control to ensure their purity, stability,

and efficiency (João et al., 2021). The diversity of bacteriophages

and the need for strain-specific formulations further complicate

standardization procedures (Nale et al., 2022). Developing scalable

and reproducible manufacturing processes, including optimizing

fermentation, purification, formulation processes, and quality

control, will bring bacteriophage therapy into clinical practice

(Malik, 2021) (Figure 3).
6 Integrative approaches

Multidrug-resistant gastrointestinal infections constitute a

serious worldwide health problem that constantly demand

alternative therapeutic strategies that rise above conventional

antibiotic therapies. One solution to this problem is integrative

approaches combining the benefits of probiotics, natural

compounds, and bacteriophage. This approach has great potential

in enhancing treatment efficacy and minimizing the development of

resistance since lower antibiotic dosage can be applied with the

same treatment outcomes (Ghosh et al., 2019). Another solution is

the emerging field of personalized medicine that offers tailored

therapies adjusted according to the unique composition of the

microbiome and clinical context of each patient (Bhat et al.,

2022). Microbiome-targeted interventions, such as fecal

microbiota transplantation, probiotics, and microbiota-targeted

diets, are also being explored to enhance treatment outcomes

(Liwinski and Elinav, 2020).

Combination therapies to manage MDR-GI infections,

involving the synergistic use of multiple therapeutic agents,

contribute to better outcomes when compared with each of those

applied individually (Cheng et al., 2019; Garvey, 2020). By

combining the complementary effects of probiotics, natural

compounds, and bacteriophages, integrative approaches can

significantly enhance efficacy, mitigate resistance, and restore

microbiome homeostasis (Newman and Arshad, 2020). Through

competitive inhibition, immune modulation, and gut barrier

reinforcement, probiotics can suppress pathogen growth and

facilitate microbiome recovery (Peters et al., 2019; Rueda-Robles

et al., 2022; Tasaka et al., 2023). Natural compounds target bacterial
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membranes, biofilm formation and stability, and quorum sensing,

weakening pathogens and enhancing their susceptibility to

other therapies (Álvarez-Martıńez et al., 2020b; Song et al., 2021;

Panda et al., 2022). Bacteriophages can directly target

resistant pathogens with their specific bacterial lytic activity and

biofi lm-disrupting enzymes (Liu et al . , 2022) . When

applied together, these therapies create a complex attack on

MDR-GI infections, improving treatment outcomes. For instance,

bacteriophages can reduce the population of resistant pathogens

due to their biofilm-degrading enzymes, rendering bacteria

more susceptible to probiotics and natural compounds; probiotics

can re-colonize the GI tract and restore microbiome homeostasis

more effectively; finally, natural compounds enhance bacteriophage

efficacy by weakening bacterial defenses. This synergistic

interaction among alternative therapeutical approaches improves

pathogen eradication and promotes gut homeostasis, reducing the

likelihood of reinfection and drug resistance development.

The complexity of MDR-GI infections requires personalized

therapies considering the individual microbiota composition

variability, host immune responses, and the nature of the

infection. The personalized medicine approach aims to tailor

treatments to patients’ unique characteristics, optimizing

outcomes and minimizing its adverse effects (Salih et al., 2023).

The human gut microbiome is highly characteristic of a given

individual, presenting variations in composition and metabolic

activities. These variations influence host susceptibility to

bacterial infections and treatment responses (Jain, 2020). The

recent advances in metagenomic sequencing and microbiome

analysis allow for more detailed identification of specific disease-

associated dysbiosis patterns and pathogenic strains (Mousa et al.,

2022). Metagenomic analysis can also assist clinicians in selecting

the most effective probiotics, natural compounds, and

bacteriophages for a given patient according to the microbiome

profile. For instance, patients with reduced populations of

commensal bacteria (e.g., Lactobacillus or Bifidobacterium) benefit

from targeted probiotic supplementation to restore microbiota

homeostasis. Bacteriophages specific to those pathogens can be

incorporated into patients where pathogenic species dominate.

Additionally, natural compounds can be selected based on their

activity spectrum to target specific bacterial defenses.

Since bacteria can manipulate host epigenetic mechanisms to

enhance their survival, these personalized treatments should also

consider host factors, such as immune status, comorbidities, and

genetic predispositions (Crimi et al., 2020). For instance, in

immunocompromised patients, probiotics’ safety should be

carefully evaluated to avoid potential complications, such as

bacteremia and sepsis (Mikucka et al., 2022). Similarly, natural

compounds’ pharmacokinetic and pharmacodynamics may vary

based on the patient’s metabolic and absorptive capacity, requiring

individualized dosing or alternative delivery systems (e.g., lipid-

based nanoparticles, polymeric nanoparticles, and self-

microemulsifying systems) that enhance bioavailability, improve

stability, and allow for controlled release of the selected natural

compounds (Patel et al., 2024; Grilc et al., 2021).
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Finally, the infection specifics (e.g., location, severity of GI

involvement, and clinical presentation) also play an important

role in treatment design. For instance, localized infections in the

small intestine require therapies that can effectively deliver into this

region (e.g., encapsulated bacteriophages or targeted probiotic

strains). In contrast, systemic complications, such as bacteremia

arising from gut pathogens, require adjunctive systemic therapies

alongside localized interventions. Imaging techniques (e.g.,

Computed Tomography, Positron Emission Tomography,

Ultrasound, and Magnetic Resonance Imaging) play an important

role in differentiating between various inflammatory and infectious

conditions in the GI tract (Frickenstein et al., 2019), allowing

clinicians to formulate a better diagnosis and suggest a suitable

treatment protocol.
7 Tailoring non-antibiotic therapies for
MDR-GI infections: challenges and
innovations in bacteriophage and
probiotic treatments

The efficacy of the proposed non-antibiotic treatments varies

according to bacterial strains and patient populations.

Bacteriophages are typically strain-specific, meaning that a phage

cocktail that combats one E. coli strain may fail against another due

to differences in surface receptors or resistance mechanisms (Korf

et al., 2020). While oral phage therapy showed promise in reducing

E. coli infections in piglets (Mao et al., 2023), its efficacy in chickens

was limited (Kittler et al., 2020). In a murine model, phage therapy

demonstrated only transient reduction of multidrug-resistant E. coli

intestinal carriage (Javaudin et al., 2021). In a trial using oral phage

therapy for pediatric diarrhea in Bangladesh, the treatment did not

significantly improve the outcomes, probably due to insufficient

coverage of the phage preparations of the E. coli strains, only

achieving minimal replication in the gut (Sarker et al., 2016).

These results reinforce the challenges in achieving consistent

efficacy with phage therapy, particularly in reducing bacterial

digestive carriage in vivo (Marongiu et al., 2022).

Patient-to-patient variability also influences treatment

outcomes. Differences in individual gut microbiome composition,

physiology, and diet may alter how these therapies perform (Feng

et al., 2020). Moreover, a patient’s immune system may neutralize

or clear therapeutic viruses or bacteria: repeated phage dosing can

induce anti-phage antibodies or phagocyte uptake that reduces

phage bioavailability over time (Berkson et al., 2024). Gastric pH

and motility also affect orally delivered therapies (Dass et al., 2025).

For instance, oral phages and probiotic bacteria must survive

stomach acidity to reach the intestine, and variations in these

factors between individuals can lead to inconsistent results

(Bernatek et al., 2022).

Advanced diagnostics are nowadays employed to improve

results’ reproducibility. Rapid genomic sequencing of the

pathogen identifies its resistance genes and surface antigen
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profile, directing the choice of the most suitable matching

bacteriophage (Liu et al., 2022). In bacteriophage therapy,

creating a phage library and doing in vitro host-range testing on

the patient’s bacterial isolate (similar to an antibiotic susceptibility

test) can ensure that the selected phages will infect the specific strain

colonizing the host (Bozidis et al, 2024). Furthermore, emerging

approaches such as personalized bacteriotherapy tailor probiotic or

phage cocktails to an individual’s microbiome and infection profile

(Ferry et al., 2022; Köhler et al., 2023). These strategies and

standardized manufacturing of natural compounds (to minimize

batch variability in plant-derived antimicrobials) reduce the

variability in treatment effectiveness across diverse populations

(Vaou et al., 2021).

Growing clinical evidence is being gathered for these alternative

therapies, especially in the context of drug-resistant GI infections.

Bacteriophage therapy is being tested in controlled trials after many

decades of case-based use. A recent milestone is the Phase 1 trial of

SNIPR001, a CRISPR-enhanced phage cocktail targeting E. coli in

the gut [refs]. In this study (36 healthy volunteers and patients), oral

SNIPR001 for 7 days was well tolerated and significantly reduced

gut E. coli levels, including antibiotic-resistant strains,

demonstrating that engineered phages can safely modulate the GI

microbiota and potentially prevent MDR infections in high-risk

hosts (e.g. stem-cell transplant patients prone to E. coli. bacteremia)

(Paterson, 2024).

Other trials have focused on compassionate use. For instance,

case series have reported successful bacteriophage treatment of

chronic Salmonella and Shigella colitis or decolonization of MDR

Klebsiella in the gut (Emencheta et al., 2023; Mohammadi et al.,

2023; Fang et al., 2024). However, data from randomized controlled

trials are still limited (Górski et al., 2020).

Ongoing trials (as listed on ClinicalTrials.gov) evaluate phages

for recurrent C. difficile (using bacteriophage or bacteriophage-

derived lysins) and decolonizing Carbapenem-resistant

Enterobacterales (CRE) in intensive care patients. Regulatory

authorities in some regions (e.g., Belgium and France) have also

initiated phage therapy programs, enabling clinical access while

gathering efficacy data.

Probiotic interventions have been examined, although fewer are

explicitly targeted at MDR pathogens. Some trials have used

probiot ics such as Lactobaci l lus rhamnosus GG and

Saccharomyces boulardii to prevent recurrent C. difficile or to

suppress Vancomycin-resistant Enterococcus (VRE) colonization,

with mixed results (modest reductions in recurrence or

colonization, but not complete eradication) (Rahman et al., 2024).

A novel approach in development is the use of genetically

engineered probiotic strains to deliver antimicrobial effectors. For

example, an E. coli Nissle 1917 probiotic engineered to produce a

bacteriocin (microcin MccI47) has been proven effective against

carbapenem-resistant Klebsiella pneumoniae (Sassone-Corsi et al.,

2016). In a pre-clinical mouse model, this engineered probiotic

significantly reduced gut colonization by carbapenem-resistant K.

pneumoniae (KPC) compared to controls (Mortzfeld et al., 2022).

Another study identified microcin MccM as the primary

ant ibacter ia l agent in EcN against Salmonel la , wi th
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overexpression of MccM significantly reducing pathogen adhesion

and invasion in intestinal epithelial cells (Ma et al., 2023).

While not yet in human trials, this illustrates the live

biotherapeutic product designed to target MDR-GI pathogens in

situ. Such interventions are expected to enter clinical trials shortly

as live biotherapeutics (with one example being a Phase 1 study of

an oral Enterococcus probiotic to reduce VRE colonization).

Additionally, various natural compounds (e.g., plant-derived

polyphenols and essential oils) with antimicrobial and anti-biofilm

activity are being evaluated preclinically and in small trials for GI

pathogens. For instance, certain alkaloids, terpenoids, and sulfur-

containing phytochemicals have been proven as exhibiting

antibacterial properties against various GI pathogens, such as E.

coli, C. difficile, Campylobacter spp., and Salmonella spp., but their

clinical efficacy and safety is still under investigation (Qassadi

et al., 2023).

Clinical trials indicate promising roles for non-antibiotic

therapies in MDR-GI infection management but also highlight

variability in outcomes and the need for optimized protocols.

Regulatory considerations are important in trial design. For

instance, bacteriophage production must be performed under

highly quality-controlled conditions, even in experimental

settings. Ongoing study results will clarify safety and efficacy,

guiding eventual approvals and clinical use.

Broad-scale implementation of these non-antibiotic therapies is

often associated with significant financial and logistical

considerations. Production costs for these biological therapies can

be elevated. Bacteriophages require fermentation and purification

under Good Manufacturing Practice (GMP) standards if used as

medicinal products (Bretaudeau et al., 2020). Currently, GMP

manufacture of a batch of therapeutic phage cocktails (for a few

hundred doses) can exceed £500,000, reflecting the expenses of

quality control and the lack of economies of scale (Suleman et al.,

2024). Also, as naturally occurring phages cannot be patented,

pharmaceutical investment has been limited, slowing industrial

development, limiting economic incentives to streamline

production, and keeping costs relatively high (Todd, 2019).

Many of these therapies require highly specialized

infrastructure that may be lacking in resource-limited countries

(Khalid et al., 2021). Bacteriophage therapy may require laboratory

support to isolate and test phages for each patient (if personalized)

and appropriate formulation (e.g. buffer or encapsulation to survive

gastric transit). Maintaining a bacteriophage library to access many

bacteriophages is a proposed solution in high-income healthcare

systems (Nagel et al., 2022). Establishing and maintaining these

libraries requires investment in microbial labs, acquiring phage

collections, and data management. Probiotic production at scale

also requires fermenters and quality testing to ensure stability and

purity, excluding any unwanted microbial contamination

(Zawistowska-Rojek et al., 2022).

In low-resource countries, these factors constitute significant

challenges. However, there is potential for local manufacturing and

sourcing to improve feasibility. Countries such as Georgia, Poland,

and Russia locally produce phage cocktails, enabling continued

phage therapy use at a relatively low cost outside Western
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regulatory frameworks (Ferry et al., 2021). Establishing regional

phage production centers reduces the dependence on imported

products. Local phage isolation against endemic MDR strains –

essentially creating region-specific phage libraries – improves

relevance and reduces the costs of shipping and licensing external

phages (Nagel et al., 2022). Similarly, naturally derived compounds

(e.g., plant extracts) could be sourced and processed regionally to

treat GI infections, though batch-to-batch consistency must be

addressed (Qassadi et al., 2023). Community-based initiatives and

local R&D investment are key element that will allow to overcoming

cost barriers in LMICs.

Another aspect of cost is the health-economic impact. While the

upfront costs of these alternative therapies are high, they can be

considered cost-effective as they avoid prolonged hospitalizations and

the use of last-line antibiotics (Gupta and Ananthakrishnan, 2021).

Therefore, the scalability of non-antibiotic MDR-GI therapies

dramatically depends on the healthcare setting. High-income

countries are moving toward industrial-scale production. In

contrast, LMCIs might focus on simpler delivery forms and local

resource utilization. Strategic investments, technology transfer, and

international partnerships (e.g., supporting a GMP phage facility

that serves multiple hospitals or countries) are potential ways to

broaden access. Technological improvements (e.g., more efficient

phage fermentation, synthetic biology to produce antimicrobial

compounds in less expensive hosts, and improved shelf-stable

formulations reducing logistic complexity) may lead to cost

reduction (Malik, 2021).

All therapeutic interventions are associated with health risks,

and non-antibiotic treatments are no exception. Potential risks

include off-target effects, unintended ecological disturbances, the

development of resistance against the therapy, and various safety

concerns (Liu et al., 2021).

One advantage often cited for bacteriophage and probiotic

therapy is their targeted action and sparing of the normal

microbiota, due to their highly specific bacteriophages act on

target bacterium and leaving other species unharmed (Zhang

et al., 2021). Although rare, off-target impacts may be reported.

For instance, broad-spectrum bacteriophages or lytic enzymes

might inadvertently attack beneficial commensal strains due to

shared targeted receptors (Łobocka et al., 2021). Similarly,

introducing a live microbe (probiotic) can unpredictably alter

microbiome composition, potentially suppressing some native

species (Mousa et al., 2023). To mitigate these off-target effects,

phage cocktails are selected to narrow the host range to pathogens

of interest. Also, the patient’s microbiome is often monitored before

and after therapy towing to identify any changes and to recommend

interventions such as targeted probiotics prescription to restore

balance (Terwilliger et al., 2021; Hatfull et al., 2022).

As bacteria develop resistance to antibiotics, they can evolve

resistance to bacteriophages, bacteriocins, or other biotherapies.

Bacteria exposed to phage may mutate the phage receptor or

activate defense systems (e.g. CRISPR, restriction-modification)

that render the phage ineffective (Hasan & Ahn, 2022; Costa

et al., 2024).
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There is a growing concern that bacteriophage overuse may

result in broadly phage-resistant bacterial strains, which might then

spread into the environment (Hassan et al., 2021). To minimize this

risk, cocktails containing multiple phages targeting different

bacterial receptors are employed so that a single mutation will

not confer resistance to all components (Borin et al., 2023).

Moreover, bacteriophages can be engineered or “trained” through

experimental evolution to overcome bacterial defense mechanisms

(Borin et al., 2023). Rotating or adjusting therapeutic cocktails

based on genomic surveillance of the pathogen can also help.

Notably, as these therapies often do not exert the same broad

selective pressure as antibiotics, the hope is that they may impose

less long-term evolutionary pressure for resistance in the overall

microbial community (Merker et al., 2020). Nonetheless,

stewardship of bacteriophage and probiotics (avoiding

unnecessary exposure) is advised to slow resistance development.

There is a risk of transmitting harmful organisms or causing

infection in the host, particularly for live biotherapeutics such as

probiotics. Probiotic products must be free of contaminants; there

have been rare reports of probiotics causing bloodstream infections

in immunocompromised patients, so caution is used in those

populations. If not appropriately purified, bacteriophage

preparations could introduce endotoxins or bacterial DNA from

their production cultures. Modern bacteriophage therapy efforts use

high-purity preparations and often administer bacteriophages

initially at low doses to observe any inflammatory reaction before

escalating the dose. Thus far, phage therapy has shown a favorable

safety profile, with most reported adverse events mild and often

attributable to underlying illness rather than the phage itself (Liu

et al., 2021). Still, oversight is needed – for example, avoiding phages

that carry toxin genes or can transduce bacterial DNA. Whole-

genome sequencing of therapeutic phages is standard to ensure they

do not harbor virulence or antibiotic resistance genes.

Altering the gut ecosystem (dysbiosis) could have unintended

long-term consequences. Successful decolonization of an MDR

organism via bacteriophage might open a niche that another

organism fills. For instance, if phage therapy eliminates all E. coli

in the gut (as SNIPR001 is designed to do), one must consider what

replaces that population – possibly other Gram-negative rods like

Klebsiella or Proteus, which could be problematic if they overgrow

(Gencay et al., 2024). In the Bangladeshi phage trial, researchers

noted that treated children’s microbiota were dominated by

Streptococcus species during acute diarrhea. However, this was

also seen in placebo patients and may reflect the disease state

rather than the phage action (Marongiu et al., 2022). To mitigate

dysbiosis risks, therapies are often paired with measures to support

a healthy microbiome. For example, some protocols suggest giving a

probiotic after bacteriophage or antibiotic therapy to restore

microbial diversity (Mu et al., 2021). When using potent natural

antibacterial compounds, sublethal dosing is avoided to prevent

wiping out too much of the flora (Pagnossa et al., 2021). Finally,

long-term surveillance of patients who receive these therapies

(through registries and follow-up studies) is important to detect

any late-emerging issues such as new-onset autoimmune conditions
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or metabolic changes, which are theorized but not proven risks of

microbiome manipulation (Merenstein et al., 2023).

Therefore, risk mitigation implies rigorous clinical protocols

and monitoring (Doub, 2021). Regulatory agencies have issued

guidelines (e.g., bacteriophage IND requirements). Researchers

are devising safeguards such as destroying switches in engineered

microbes and refining delivery systems (e.g., encapsulating

bacteriophages to release in the colon, reducing systemic

exposure) (Doub, 2021). By learning from early experiences and

adverse events, the safety profile of these non-antibiotic therapies

continues to improve, making them more viable for broader use.

Integrating non-antibiotic therapies into mainstream clinical

practice and antimicrobial stewardship frameworks requires careful

planning but offers a valuable opportunity to enhance patient care

while reducing reliance on traditional antibiotics (Maillard et al.,

2021). To include therapies such as bacteriophages, probiotics or

natural compounds into existing regimens, clinicians demand clear

guidelines on when and how to use them. For example, a phage

therapy consult might be recommended for a persistent MDR

Salmonella or decolonizing a high-risk CRE carrier after antibiotic

therapy (Suh et al., 2022). Early integration may involve using these

therapies as adjuncts. In practice, a patient with a severe MDR-GI

infection might receive conventional antibiotics to stabilize acute

illness but then a non-antibiotic therapy to eradicate residual

pathogens or prevent relapse (Liu et al., 2021). Combination

therapy can be synergistic; studies have shown that using phages

with antibiotics can sometimes enhance bacterial clearance more

than alone (Łusiak-Szelachowska et al., 2022).

Thus, stewardship programs can incorporate protocols for

adjunctive phage or probiotic use in defined scenarios (e.g.

adjunct bacteriophage for an MDR infection responding poorly to

antibiotics). This combined approach must be balanced to ensure

the non-antibiotic alternatives do not interfere with antibiotic

action (or vice versa). However, many bacteriophages are

compatible with certain antibiotics and even protective of gut

flora during antibiotic treatment (Liu et al., 2022; Łusiak-

Szelachowska et al., 2022).

From an antimicrobial stewardship perspective, the judicious

use of non-antibiotic therapies can help preserve antibiotic efficacy

(Łusiak-Szelachowska et al., 2022). Whenever a bacteriophage

cocktail successfully treats an infection that would otherwise

require a last-resort antibiotic, it spares that antibiotic from use,

slowing the spread of resistance genes. Stewardship programs can

broaden their scope to include these alternatives as tools to reduce

antibiotic consumption. However, such use must be evidence-

based. Programs will need to track the outcomes of these

therapies and ensure they are used in appropriate patients (much

as stewardship tracks appropriate vs. inappropriate antibiotic use).

Since non-antibiotic alternatives are relatively novel, one challenge

is educating clinicians – infectiologists and pharmacists will need

training on indications and handling of these therapies.

Multidisciplinary stewardship teams may start to include

microbiome specialists or phage therapy experts who can advise

on cases.
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Regulatory acceptance is a significant factor in integration. In

some countries, regulations have evolved. In most countries,

integration is still at an earlier stage since bacteriophages

are available only under compassionate use or experimental

IND protocols (Yang et al., 2023). However, initiatives like the

Belgian magistral bacteriophage framework (where pharmacies

can prepare patient-specific phage cocktails on prescription)

and the UK’s planned national phage library (Verbeken and

Pirnay, 2022) point to possible models for broader availability.

Regulatory agencies must update guidelines to accommodate

the unique nature of phages (e.g. allowing for adaptable

formulations). This is an ongoing challenge – for instance,

defining bacteriophage therapy as a drug vs. a biologic and

determining requirements for approval are still being debated

internationally. Overcoming these hurdles is key to moving

phages from last-resort exceptions to regular options integrated

into care.

Ensuring consistent quality and outcomes is essential when

integrating new therapies. Hospitals implementing bacteriophage

therapy should have oversight committees such as pharmacy and

therapeutics committees for medications. They must maintain

quality control (e.g., verifying phage titers and the absence of

contaminants in each batch). Moreover, outcome monitoring (did

the therapy achieve cure or decolonization? Were there any adverse

events)? should be fed back into clinical practice improvements.

Over time, this will build a knowledge base that refines patient

selection criteria – identifying who benefits most from

these therapies.

Ultimately, integration into practice will likely involve

combination and personalization. Recent perspectives noted that

synergistic use of probiotics, bacteriophages, and natural

compounds could yield the best outcomes while minimizing

resistance development. For example, a “microbiome therapy

bundle” might include an initial suppressive treatment

(bacteriophage or natural compounds) followed by a restorative

treatment (probiotic) to reset the gut ecology. Personalized

medicine approaches could tailor this bundle: a patient’s

microbiome and pathogen genomics might be analyzed to choose

the optimal bacteriophage and probiotic species for that individual.

Antimicrobial stewardship programs will expand to microbial

stewardship, managing drug prescriptions and microbiome health

(Watkins, 2022).

Although incorporating non-antibiotic therapies into standard

care for MDR-GI infections constitutes a promising strategy to

improve outcomes and curb antibiotic resistance, it requires

overcoming regulatory barriers, proving cost-effectiveness,

and educating healthcare providers. As more clinical trial data

emerge and success stories accumulate, these alternative

therapies move from experimental options to components of

evidence-backed treatment guidelines. With appropriate

stewardship, they can complement antibiotics – using the

right tool for the right infection – thereby advancing a more

sustainable and precise approach to managing complicated

gastrointestinal infections,
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8 Future directions and research
needs

Although non-antibiotic alternatives, such as probiotics, natural

compounds, and bacteriophages, show promise in combating

MDR-GI infections, future research should address key challenges

before these therapies are more widely applied in clinical practice.

One key challenge that should be further studied is the

protocols for combination therapies, one of the most promising

approaches for treating MDR-GI infections (Gray and Wenzel,

2020). Combining probiotics, natural compounds, and

bacteriophage therapies makes it possible to profit from the

synergistic effects of all approaches in terms of enhanced

treatment efficacy and minimized resistance development.

Therefore, future research should focus on optimizing these

combinations to achieve maximal synergy. This will be achieved

by identifying the most compatible combinations between

probiotics, natural compounds, and bacteriophages for specific

pathogens and infection contexts.

Another challenge is personalized medicine, which aims to

tai lor therapeutic interventions based on the unique

characteristics of individual patients (Salih et al., 2023). It

presents an immense potential for MDR-GI infection treatment.

According to this principle, variations in microbiome composition,

host immune response, and infection dynamics alter the treatments’

outcomes and must be finely adjusted to provide optimum results.

Metagenomic sequencing and microbiome analysis advances have

identified dysbiotic patterns and specific pathogens within the gut

microbiome (Mousa et al., 2022). This information guides clinicians

to select probiotics, natural compounds, and bacteriophages most

effective against the identified pathogens. Host factors, such as

immune status, genetic predispositions, and comorbidities should

also be considered (Crimi et al., 2020). Immunocompromised

patients may require alternative probiotics or bacteriophages with

well-established safety profiles. Improved delivery systems (e.g.,

encapsulated probiotics or bacteriophages designed to target

specific gut regions) will further refine treatment strategies. In the

last decades, the role of the gut microbiome in health and disease

has become a central research topic, with bidirectional interactions

between microorganisms and medicines significantly impacting

treatment outcomes (Weersma et al, 2020). Therefore, future

studies should address the existing knowledge gaps on how

probiotics, natural compounds, and bacteriophages influence

microbiome composition and function. Understanding these

interactions will allow the design of therapies that eradicate

pathogens and promote long-term microbiome stability. Research

should further explore the impact of microbiome diversity on

treatment outcomes. For instance, if a diverse microbiome

enhances gut ecosystem resilience, preventing pathogen

overgrowth due to niche occupation and nutrient overlap, a

depleted microbiome requires more intrusive interventions or

prebiotic supplementation to support probiotic colonization

(Dogra et al., 2020).

The third challenge is the development of effective delivery

systems for therapeutic agents to the infection site. As such, future
Frontiers in Antibiotics 13
studies in delivery systems will undoubtedly enhance the efficacy of

non-antibiotic therapies. Encapsulation technologies (e.g., alginate

beads or lipid nanoparticles) should be developed to protect

probiotics and bacteriophages from gastric acid and bile salts,

ensuring their viability until they reach the infection site (Yao

et al., 2020; Dlamini et al, 2023). Moreover, targeted delivery

mechanisms (e.g., pH-responsive or enzyme-triggered capsules)

should be developed to release the selected medicines precisely

where they are needed and minimize off-target effects (Manzari-

Tavakoli et al, 2024). Additionally, microfluidic platforms and

bioengineered scaffolds should enable the co-delivery of the

natural compounds, allowing the optimization of their combined

effects and overcoming the limitations of traditional methods

(Rosellini and Cascone, 2023; Teixeira et al., 2023).

Another challenge is associated with non-antibiotic therapy

testing. While preclinical and small-scale trials have demonstrated

the potential of non-antibiotic therapies to manage MDR-GI

infections, large-scale clinical trials have failed to validate their

efficacy and safety. Future trials should evaluate the outcomes of

combination therapies in diverse patient populations and different

MDR-GI infections. Standardized protocols for measuring clinical

endpoints, such as pathogen eradication, microbiome restoration,

and recurrence rates, should be prepared and discussed. Preclinical

and clinical trials should investigate the long-term effects of non-

antibiotic alternative therapies, including their impact on

microbiome stability and resistance development. Comparative

studies evaluating combination therapies against standard

antibiotic treatments will provide valuable insights into their

relative benefits and limitations.

Finally, the last challenge relates to the regulatory landscape for

these non-antibiotic therapies that remain underdeveloped and

constitute a significant obstacle to their more widespread

adoption in clinical practice (Kumar et al, 2021). Probiotics,

natural compounds, and bacteriophages face unique regulatory

constraints mainly motivated by their biological complexity and

variability. Therefore, regulatory agencies should contribute to

pushing forward the use of alternative therapies by establishing

precise safety, efficacy, and quality evaluation guidelines. Regarding

bacteriophages, issues concerning bacteriophage-bacteria

coevolution and strain specificity must be carefully considered

(Piel et al., 2022). In the case of probiotics and natural

compounds should undergo rigorous standardization to ensure

consistent composition and efficiency. Collaborative efforts

between researchers, the pharmaceutical industry, and regulatory

agencies is quintessential to developing frameworks that facilitate

the approval and commercialization of these non-antibiotic

alternative therapies.
9 Conclusions

The rise in MDR-GI infections constitutes a significant concern

for public health. To manage this worldwide problem innovative

therapeutic approaches are required to surpass the challenges

associated with traditional antibiotic treatments. Alternative non-
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antibiotic therapies should include probiotics, natural compounds,

and bacteriophages, each offering unique action mechanisms,

advantages, and challenges. Together, these alternative

therapeutical approaches will allow the development of more

effective, sustainable, and personalized interventions to combat

MDR-GI infections.

It has been proven that probiotics inhibit MDR-GI bacteria,

enhance the gut’s mucosal barrier, and modulate the immune

response, effectively treating GI infections. However, several

obstacles related to strain specificity, regulatory inconsistencies,

and safety limited their clinical application, mainly in

immunocompromised patients. Natural compounds also offer

diverse antimicrobial mechanisms, such as membrane disruption,

biofilm production inhibition, and quorum sensing interference.

Nevertheless, despite their potential, their variability in

bioavailability, potency, and standardization constitutes serious

barriers to their widespread clinical use. Bacteriophage therapy is

a powerful tool for fighting MDR-GI infections due to its precision

targeting specific bacterial pathogens and biofilm disruption

capabilities. However, bacterial resistance to bacteriophages,

regulatory obstacles, and production challenges remain significant

despite its advantages.

The effectiveness and reproducibility of the presented non-

antibiotic therapies in managing MDR-GI infections exhibit

considerable variability across different populations and microbial

strains, which constitutes a significant challenge to their broad

application in clinical settings. This variability includes pathogens’

genetic diversity, response to specific treatments, and differences in

individuals’ gut microbiota composition, which influences the

efficacy of microbial-based therapies like probiotics and

bacteriophages. Additionally, environmental and dietary

differences can alter the gut microbiome’s response to natural

compounds, further complicating the predictability and

reproducibility of treatment outcomes.

Clinical trials for alternative therapies address challenges such

as the previously described variability in treatment effectiveness

across different microbial populations and strains. Detailed and

updated trial information, including statuses and results, can be

accessed through databases like ClinicalTrials.gov, providing

valuable insights into the potential and limitations of these

innovative therapies.

Implementing these non-antibiotic therapies in resource-

constrained settings presents significant cost implications and

feasibility challenges. While these therapies offer potential benefits

in managing MDR-GI infections, their widespread adoption is

limited by factors such as the production and quality control of

these treatments, which can be expensive and require technology,

infrastructure and expertise often absent in low-resource

environments. Moreover, the regulatory landscape for these

therapies is still evolving, delaying their introduction and

increasing costs. However, local production and sourcing of

natural compounds and community-based health initiatives could

potentially reduce costs and improve accessibility. Investments in

local research and development and international support are
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crucial to overcoming these barriers and enhancing the feasibility

of these alternative therapies in such settings.

Integrating these alternative therapies into existing treatment

regimens or antimicrobial stewardship programs constitutes a

strategic opportunity to enhance the management of infections

and mitigate the current increase in antimicrobial resistance, as it

supports the judicious use of antibiotics and provides alternative or

complementary options that reduce the use of conventional broad-

spectrum antimicrobials. For its effective integration, healthcare

systems should establish precise guidelines including these therapies

as part of a holistic treatment approach, ensuring they are used

based on robust clinical evidence and within the frameworks

designed to promote optimal patient outcomes and sustainability

in antimicrobial use.

Integrative approaches, which combine probiotics, natural

compounds, and bacteriophages, profit from synergistic effects

that enhance treatment efficacy and reduce resistance

development. On the other hand, personalized medicine further

fine-tunes these interventions by adjusting therapies to patients’

individual microbiome profiles and host-specific conditions. Also,

innovative delivery systems and large-scale clinical trials are

paramount to validate these therapies. Another relevant aspect is

establishing robust regulatory frameworks to support non-

antibiotic strategies’ development and clinical adoption.

The conclusions presented in this manuscript highlight

the importance of collaborative efforts among researchers,

clinicians, and policymakers to address the MDR-GI infection

challenges. By integrating diverse therapeutic modalities and

leveraging advances in biotechnology, it will be possible to pave

the way for a new era of precision and sustainability in managing

these infections that will limit the global burden of antibiotic

resistance and safeguard the efficacy of antimicrobial treatments

for future generations.
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Gospodarek-Komkowska, E. (2022). Bacteraemia caused by probiotic strains of
Lacticaseibacillus rhamnosus — case studies highlighting the need for careful thought
before using microbes for health benefits. Pathogens 11 (9), 977. doi: 10.3390/
pathogens11090977

Mohammadi, A., Khanbabaei, H., Zandi, F., Ahmadi, A., Haftcheshmeh, S. M.,
Johnston, T. P., et al. (2022). Curcumin: A therapeutic strategy for targeting the
Helicobacter pylori-related diseases. Microbial Pathogenesis 166, 105552. doi: 10.1016/
j.micpath.2022.105552

Mohammadi, M., Saffari, M., and Siadat, S. D. (2023). Phage therapy of antibiotic-
resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past
to the future. Folia Microbiologica 68, 357–368. doi: 10.1007/s12223-023-01046-y

Mortzfeld, B. M., Palmer, J. D., Bhattarai, S. K., Dupre, H. L., Mercado-Lubio, R.,
Silby, M. W., et al. (2022). Microcin MccI47 selectively inhibits enteric bacteria and
frontiersin.org

https://doi.org/10.1080/10408398.2019.1672033
https://doi.org/10.1080/10408398.2019.1672033
https://doi.org/10.3390/antiox11071265
https://doi.org/10.1186/s12876-021-01860-w
https://doi.org/10.3389/fmicb.2020.599906
https://doi.org/10.1016/j.vaccine.2021.04.018
https://doi.org/10.1016/j.vaccine.2021.04.018
https://doi.org/10.3390/antibiotics10091044
https://doi.org/10.1016/j.tifs.2019.11.019
https://doi.org/10.1080/13880209.2024.2389105
https://doi.org/10.3390/pathogens9040293
https://doi.org/10.1038/s41467-023-39370-z
https://doi.org/10.1038/s41467-023-39370-z
https://doi.org/10.3390/foods12020427
https://doi.org/10.3390/foods12020427
https://doi.org/10.1007/s00284-022-02874-4
https://doi.org/10.3390/v12121470
https://doi.org/10.1016/j.micres.2022.127052
https://doi.org/10.3390/antibiotics11010110
https://doi.org/10.3390/antibiotics11010110
https://doi.org/10.3390/ani14131952
https://doi.org/10.3389/fmicb.2021.609459
https://doi.org/10.1111/jam.14513
https://doi.org/10.1128/Spectrum.00517-21
https://doi.org/10.1080/10408398.2023.2169858
https://doi.org/10.3389/fcimb.2022.1042070
https://doi.org/10.3389/fcimb.2022.1042070
https://doi.org/10.3390/pathogens13040276
https://doi.org/10.3390/pathogens13040276
https://doi.org/10.3390/antibiotics11050570
https://doi.org/10.3390/antibiotics11050570
https://doi.org/10.3390/v13071268
https://doi.org/10.1111/ajt.15687
https://doi.org/10.1007/s40259-021-00480-z
https://doi.org/10.1007/s40259-021-00480-z
https://doi.org/10.1016/j.clinthera.2020.07.014
https://doi.org/10.1186/s12929-022-00806-1
https://doi.org/10.1186/s12929-022-00806-1
https://doi.org/10.3390/ijms241411688
https://doi.org/10.3390/ijms241411688
https://doi.org/10.1002/cplu.201900174
https://doi.org/10.1002/cplu.201900174
https://doi.org/10.1093/jacamr/dlab027
https://doi.org/10.2147/IDR.S269845
https://doi.org/10.1016/j.jpha.2023.04.010
https://doi.org/10.1016/j.jpha.2023.04.010
https://doi.org/10.1159/000496426
https://doi.org/10.1016/j.copbio.2020.09.005
https://doi.org/10.1002/cam4.7010
https://doi.org/10.1186/s12917-023-03724-y
https://doi.org/10.1128/cmr.00062-22
https://doi.org/10.3390/cells12010184
https://doi.org/10.22159/ijpps.2016v8i10.14062
https://doi.org/10.1080/19490976.2023.2185034
https://doi.org/10.3389/fimmu.2020.01938
https://doi.org/10.3389/fimmu.2020.01938
https://doi.org/10.3390/pathogens11090977
https://doi.org/10.3390/pathogens11090977
https://doi.org/10.1016/j.micpath.2022.105552
https://doi.org/10.1016/j.micpath.2022.105552
https://doi.org/10.1007/s12223-023-01046-y
https://doi.org/10.3389/frabi.2025.1554061
https://www.frontiersin.org/journals/antibiotics
https://www.frontiersin.org


Oliveira et al. 10.3389/frabi.2025.1554061
reduces carbapenem-resistant Klebsiella pneumoniae colonization in vivo when
administered via an engineered live biotherapeutic. Gut Microbes 14, 2127633.
doi: 10.1080/19490976.2022.2127633

Mousa, W. K., Chehadeh, F., and Husband, S. (2022). Recent advances in
understanding the structure and function of the human microbiome. Front.
Microbiol. 13. doi: 10.3389/fmicb.2022.825338

Mousa, W. K., Mousa, S., Ghemrawi, R., Obaid, D., Sarfraz, M., Chehadeh, F., et al.
(2023). Probiotics modulate host immune response and interact with the gut
microbiota: shaping their composition and mediating antibiotic resistance. Int. J.
Mol. Sci. 24, 13783. doi: 10.3390/ijms241813783

Mu, A., McDonald, D., Jarmusch, A. K., Martino, C., Brennan, C., Bryant, M., et al.
(2021). Assessment of the microbiome during bacteriophage therapy in combination
with systemic antibiotics to treat a case of staphylococcal device infection. Microbiome
9, 1–8. doi: 10.1186/s40168-021-01155-1

Murphy, E. J., Rezoagli, E., Major, I., Rowan, N. J., and Laffey, J. G. (2020). b-glucan
metabolic and immunomodulatory properties and potential for clinical application.
J. Fungi 6, 356. doi: 10.3390/jof6040356

Murugaiyan, J., Kumar, P. A., Rao, G. S., Iskandar, K., Hawser, S., Hays, J. P., et al.
(2022). Progress in alternative strategies to combat antimicrobial resistance: Focus on
antibiotics. Antibiotics 11, 200. doi: 10.3390/antibiotics11020200

Nagel, T., Musila, L., Muthoni, M., Nikolich, M., Nakavuma, J. L., and Clokie, M. R.
(2022). Phage banks as potential tools to rapidly and cost-effectively manage
antimicrobial resistance in the developing world. Curr. Opin. Virol. 53, 101208.
doi: 10.1016/j.coviro.2022.101208

Nale, J. Y., Thanki, A. M., Rashid, S. J., Shan, J., Vinner, G. K., Dowah, A. S., et al.
(2022). Diversity, dynamics, and therapeutic application of Clostridioides difficile
bacteriophages. Viruses 14, 2772. doi: 10.3390/v14122772

Newman, A. M., and Arshad, M. (2020). The role of probiotics, prebiotics, and
synbiotics in combating multidrug-resistant organisms. Clin. Ther. 42, 1637–1648.
doi: 10.1016/j.clinthera.2020.07.011

Oliveira, M., Antunes, W., Mota, S., Madureira-Carvalho, Á., Dinis-Oliveira, R. J.,
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