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An evaluation of antibiotic
options for the treatment
of biothreat pathogens
J. Matthew Meinig1*, Michelle Nelson2, Christopher K. Cote1,
Stevan R. Emmett2 and Sarah V. Harding2,3*

1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases,
Frederick, MD, United States, 2Defence Science and Technology Laboratory, Porton Down,
Salisbury, United Kingdom, 3Respiratory Sciences, University of Leicester, Leicester, United Kingdom
The development of medical countermeasures against pathogens of biodefense

concern remains critical to protecting military and public health. This review

compares data detailing antibacterial activity and efficacy for a selection of

antibiotics evaluated against potential bacterial biothreat pathogens. The

human safety and tolerability of these formulations were also considered. This

review includes finafloxacin, levofloxacin, delafloxacin, omadacycline,

gepotidacin, tebipenem and sulopenem. The selection criteria of these

antibiotics were 1) the availability of an oral formulation, 2) the regulatory

status (licensed by a regulatory authority or in an advanced stage of

development) and 3) the availability of publicly available information on the

biodefence pathogens of concern. We hope to highlight approved or advanced

clinical candidates that have significant and unique potential in the biodefense

space which may be deployed to protect both the public and warfighter against

these bacterial infections.
KEYWORDS

antibiotics, biodefence, medical countermeasures, antimicrobial susceptibility,
biocontainment
Introduction

Effective and efficient biodefence strategies can be addressed, in part, through the use of

broad spectrum antibiotics to provide an enhanced treatment capability against potential

bacterial biothreat pathogens. These pathogens may include Yersinia pestis, Francisella

tularensis, Burkholderia pseudomallei, Burkholderia mallei, Bacillus anthracis, and Coxiella

burnetii, which cause the diseases plague, tularaemia, melioidosis, glanders, anthrax and Q

fever, respectively1,2. They can be challenging to treat, particularly when patients have

severe symptoms, and advanced disseminated disease, sepsis, or chronic infection, all of

which require efficacious and lengthy courses of antibiotics. Current treatments for these

infections include ciprofloxacin and levofloxacin (e.g., plague, tularaemia, anthrax),

gentamicin (e.g., plague, tularaemia), doxycycline (e.g., plague, tularaemia, anthrax, Q

fever) and ceftazidime/meropenem with co-trimoxazole/co-amoxiclav (e.g., melioidosis,
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glanders) (Van Zandt et al., 2013; Nelson et al., 2021; Bower et al.,

2023; Currie et al., 2023; Nelson et al., 2024).

Seven antibiotics were selected for review based on the

availability of an oral formulation and their licensure status by

the Food and Drug Administration (FDA), the European Medicines

Agency (EMA), or the Medicines and Healthcare Products

Regulatory Agency (MHRA), either being licensed or close to

being licensed for a non-biothreat clinical indication. Antibiotics

with oral formulations were selected as they can be self-

administered without the need for in-patient care. An open-

source literature review was performed, identifying published in

vitro antibacterial activity and in vivo efficacy data for the

fluoroquinolones finafloxacin, delafloxacin and levofloxacin, the

tetracycline omadacycline, the triazaacenaphthylene gepotidacin

and the b-lactams tebipenem and sulopenem (Table 1). The

literature reviewed included published manuscripts. We recognise

other unpublished data may have been generated which is not

accessible and is therefore excluded from this review.

Antimicrobial susceptibility tests (AST) including the broth

microdilution assay are well characterized and are generally used

to establish in vitro drug efficacy. The lowest concentration of an

antibiotic at which bacterial growth is completely inhibited is

termed the minimum inhibitory concentration (MIC). Using

bacterial strain panels, the MIC50 (the MIC value where ≥ 50% of

the strain panel is inhibited) and the MIC90 (the MIC value where ≥

90% of the strain panel is inhibited) can be calculated (Schwarz

et al., 2010). These values are useful benchmarks of therapeutic drug

activity and where available are included herein. In vivo evaluation

data that is publicly available was also included.

The evaluation of medical countermeasures in well-

characterised animal models is fundamental, as clinical trials for

these diseases may not be ethically justified. Typically, efficacy is

determined in mouse models should the disease model be

appropriate, and if warranted, be transitioned into higher order

animal species. Parameters included in this review include survival

(often the primary indicator of efficacy) and bacterial clearance in

tissues (if determined). Although an attempt has been made to

compare in vivo data sets, direct comparisons are challenging due to

diverse experimental parameters (e.g., different aerobiology

equipment, laboratory process differences, bacterial and animal

species/strains, different challenge doses used and antibiotic

dosing regimens (e.g., time of initiation, dose, and regularity

of dosing).
Antibiotics

Finafloxacin

Finafloxacin (MerLion Pharmaceuticals) is a fifth-generation

fluoroquinolone under development for the treatment of

complicated urinary tract infections (cUTIs) and pyelonephritis
1 Priority pathogen families research and development tool

2 Federal Select Agent Program
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(Table 1). There are three formulations available/in development,

including a topical suspension which is licensed by the FDA and

Health Canada for acute otitis externa. Additionally, intravenous (IV)

and oral formulations have been evaluated in phase 1 and 2 clinical

trials for cUTI. Finafloxacin binds to the bacterial DNA gyrase and

topoisomerase IV preventing DNA replication. It is mainly

differentiated from previous generations of the fluoroquinolones by

its ability to retain antibacterial activity in acidic conditions, which is

typical of infected body sites or in patients with acute sepsis (Higgins

et al., 2010; Lemaire et al., 2011; Stubbings et al., 2011). Finafloxacin

was shown to be superior to the second-generation fluoroquinolone

ciprofloxacin in two cUTI/pyelonephritis clinical trials and retained

potency against clinical strains shown to be resistant to ciprofloxacin

(Vente et al., 2018; Wagenlehner et al., 2018).

Broad spectrum in vitro activity has been demonstrated for

finafloxacin against Y. pestis, F. tularensis, B. pseudomallei, B.

mallei, B. anthracis and C. burnetii at both neutral and acidic pH

(Barnes et al., 2019; Peyrusson et al., 2021) (Table 2). The MIC90

values obtained for finafloxacin were low and comparable with

standard-of-care antibiotics typically used as positive controls in

these assays (fluoroquinolones and ceftazidime) with improved

potency at acidic pH (Barnes et al., 2019). At pH 5 these were:

≤0.03 mg/mL (Y. pestis), 4 mg/mL (B. pseudomallei), 0.5 mg/mL (B.

mallei) and ≤0.03 mg/mL (B. anthracis) and at pH 7: 0.06 mg/mL (Y.

pestis), ≤0.03 mg/mL (F. tularensis), 4 mg/mL (B. pseudomallei), 0.5

mg/mL (B. mallei) and 0.12 mg/mL (B. anthracis). In addition,

bactericidal activity was demonstrated in time kill assays against

all of the bacterial agents, except for C. burnetii, where a cell culture

model was used to demonstrate a 300-fold reduction in the

intracellular bacterial load following finafloxacin treatment

(Peyrusson et al., 2021) (Table 2). It has been suggested that this

improved activity is due to the rapid influx of finafloxacin into cells,

the accumulation of high levels within the cell and a slow efflux rate

out (Chalhoub et al., 2020).

In vivo efficacy of finafloxacin has also been demonstrated using

an orally delivered human equivalent dose in murine models of

inhalational tularaemia, plague, Q fever, melioidosis and glanders

(Table 2). Finafloxacin offered protection that was not statistically

different to that afforded by ciprofloxacin and bacterial clearance

when administered as treatment for plague. It was also comparable

to co-trimoxazole as a treatment for glanders (Table 2) (Barnes

et al., 2021; Barnes et al., 2022). Finafloxacin offered a significant

improvement in survival compared to ciprofloxacin and

doxycycline for the treatment of melioidosis and ciprofloxacin for

the treatment of tularaemia (Barnes et al., 2021; Barnes et al., 2022).

In a non-lethal mouse model of Q fever, finafloxacin reduced the

clinical signs of infection and weight loss when compared to

ciprofloxacin and doxycycline (Hartley et al., 2021).
Delafloxacin

Delafloxacin (Melinta Therapeutics) is a fourth-generation

fluoroquinolone, approved by the FDA and the EMA for the

treatment of community acquired bacterial pneumonia (CABP)
frontiersin.org
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and acute bacterial skin and skin structure infections (ABSSSIs)

(Table 1) (Melinta Therapeutics, 2017). Both IV and oral

formulations are available, allowing for administration in both the

inpatient and outpatient settings (McCurdy et al., 2023). Like

finafloxacin, delafloxacin inhibits bacterial DNA gyrase and

topoisomerase IV, and also has enhanced MICs at low pH,

demonstrating a bactericidal effect against gram-negative and

gram-positive organisms (Kocsis et al., 2021).

The MIC90 values obtained for Y. pestis (0.016 mg/mL [pH 7.2])

and B. anthracis (≤0.001 mg/mL [pH 5.5] and 0.04 mg/mL [pH 7.2]),

are low and comparable to those obtained for the fluoroquinolone

class (0.016-0.06 mg/mL) (Table 2) (Frean et al., 2003; McCurdy

et al., 2023). The MIC90 for B. pseudomallei (1 mg/mL) is

comparable to standard-of-care antibiotics. Delafloxacin also

demonstrates activity against B. pseudomallei overexpressing RND

efflux pumps such as BpeEF-OprC (McCurdy et al., 2021; McCurdy

et al., 2022).

Delafloxacin has been shown to be efficacious in murine models

of inhalational melioidosis and anthrax (Table 2). Delafloxacin

afforded protection not significantly different to ciprofloxacin in

mice infected with B. anthracis (McCurdy et al., 2023). Bacterial

clearance was observed in the spleens of survivors from the anthrax

study; however, lungs were colonized, likely due to spore

persistence. When evaluated against inhalational melioidosis,
Frontiers in Antibiotics 03
delafloxacin offered a significant improvement in survival

compared to ceftazidime and cleared colonizing bacteria from

spleens (McCurdy et al., 2021).
Levofloxacin

Levofloxacin is a third-generation fluoroquinolone licensed by

the MHRA and FDA for indications including pneumonia,

rhinosinusitis, chronic bronchitis, pyelonephritis, urinary tract

infections and skin or skin structure infections (Table 1) (Podder

et al., 2025). In addition, it is the only antibiotic discussed in this

review which is licensed by the FDA for the treatment of Y. pestis

and B. anthracis infections. Levofloxacin has the same mechanism

of action as finafloxacin and delafloxacin and has broad spectrum

activity against gram-negative and gram-positive organisms

including methicillin resistant Staphylococcus aureus (MRSA),

Streptococcus pneumoniae, Haemophilus influenzae and Moraxella

catarrhalis (Croom and Goa, 2003).

The MIC90 values obtained for Y. pestis, F. tularensis, and B.

anthracis are low (< 0.03, 0.06, and 0.25 mg/mL respectively) and

comparable to those for other fluoroquinolones (Table 2) (Frean

et al., 1996; Cavallo et al., 2002; Urich and Petersen, 2008).

Similarly, the MIC90s for B. pseudomallei and B. mallei (2 mg/mL
TABLE 1 The clinical status of the antibiotics discussed in this review.

Antibiotic and
brand name

Antibiotic
class

Mechanism
of activity

Developer Available
formulations

Licensed Regulator Indication

Finafloxacin
otic suspension

(Xtoro)

Fluoroquinolone DNA
replication
inhibitor

MerLion
Pharmaceuticals

IV, oral,
otic suspension

Otic
suspension

only

FDA,
Health
Canada

Acute otitis externa#

Delafloxacin
(Baxdela)

Fluoroquinolone DNA
replication
inhibitor

Melinta
Therapeutics

IV, oral Yes FDA, EMA CABP and ABSSSIs#

Levofloxacin
(Levaquin)

Fluoroquinolone DNA
replication
inhibitor

Sanofi-Aventis IV, oral, Yes FDA Wide ranging including
respiratory infections,
urinary tract infections,
meningitis, anthrax,

plague
Treatment of

Pseudomonas aeruginosa
infections in CF patients

Omadacycline
(Nuzyra)

Tetracycline Protein
synthesis
inhibitor

Paratek
Pharmaceuticals

IV, oral Yes FDA CABP and ABSSSIs#

Gepotidacin
(Blujepa)

Triazaacenaphthylene DNA
replication
inhibitor

GSK IV, oral Oral only FDA uUTI##

Tebipenem pivoxil
hydrobromide
(Orapenem)

Beta lactam Cell wall
synthesis
inhibitor

Spero
Therapeutics

Oral prodrug No N/A N/A

Sulopenem
etzadroxil
(Orlynvah)

Beta lactam Cell wall
synthesis
inhibitor

Iterum
Therapeutics

IV, oral prodrug Oral only FDA uUTI##
IV, intravenous; FDA, Food and Drug Administration; EMA, European Medicines Agency; CABP, community acquired bacterial pneumonia; ABSSSI, acute bacterial skin and skin structure
infections; MHRA, Medicines and Healthcare products Regulatory Agency; CF, cystic fibrosis.
#Approved indications includes gram-positive and gram-negative pathogens, ##Aproved indications include gram-negative pathogens only.
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TABLE 2 A summary of the published in vitro and in vivo data for the biodefence pathogens and the antibiotics discussed in this review.

Antibiotic Bacteria in vitro in vivo Reference

ent
ng
en

Survival and clearance

g orally
r 3 or
ys

100% protection for 24h (3 and 7 days).
100% and 90% for 38h (3 and 7 days

respectively) at days 35–37 pc. No bacteria
detected in survivors

(Barnes et al.,
2019; Barnes
et al., 2021)

g orally
r 3 or
ys

100% protection at 24 h (3 and 7 days). 0%
and 50% (for 3 and 7 days respectively) at
72h at days 34–35 pc. No bacteria detected

in survivors

(Barnes et al.,
2019; Barnes
et al., 2021)

g orally
14 days

90% protection (both 24 + 36h) and bacteria
in tissues of survivors at day 42–43 pc.

(Barnes et al.,
2019; Barnes
et al., 2022)

g orally
7 days

55% protection at day 65 pc. Bacteria
detected in spleens of survivors.

(Barnes et al.,
2019; Barnes
et al., 2022)

– (Barnes
et al., 2019)

orally
r 7 or
ys

No loss in body weight or development of
clinical signs (for 7 and 14 days). Reduced
splenomegaly and increased lung weight

in survivors.

(Barnes et al.,
2019; Hartley
et al., 2021)

– (Frean
et al., 2003)

– –

mg/kg
C for
ys.

90-100% protection for 50 and 80 mg/kg and
70% for 30 mg/kg at day 62 pc. Spleens from
survivors clear, no other tissues collected.

(McCurdy
et al., 2021)

– –

(Continued)
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9
/frab

i.2
0
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5
.16

115
8
8
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n
tie

rsin
.o
rg

0
4

Number
of

strains

MIC50

(µg/
mL)

MIC90

(µg/
mL)

MIC90

range
(µg/mL)

Animal
model
and

bacterial
strain

Challenge
route and

dose

Treatment
initiation
time (hpc)

Treatm
dosi
regim

Finafloxacin Y. pestis 10 ≤0.03
(pH5)
≤0.03
(pH7)

≤0.03
(pH5)
0.06
(pH7)

≤0.03 (pH5)
≤0.03-

0.12 (pH7)

Mouse,
BALB/c
CO92

Nose only
aerosol

Mean retained
dose 14 x LD50

24 + 38 23.1 mg/k
(q8h) fo

7 da

F. tularensis 10 ND
(pH5)
≤0.03
(pH7)

ND
(pH5)
≤0.03
(pH7)

ND (pH5)
≤0.03 (pH7)

Mouse,
BALB/c
Schu S4

Nose only
aerosol

Mean retained
dose 54 x LD50

24 + 72 23.1 mg/k
(q8h) fo

7 da

B. pseudomallei 21 2 4 0.12-5 (pH5)
0.5-8 (pH7)

Mouse,
BALB/c
K96243

Nose only
aerosol

Mean retained
dose 21 x LD50

24 + 36 23.1 mg/k
(q8h) for

B. mallei 10 0.12
(pH5)

0.5 (pH7)

0.5 (pH5)
0.5 (pH7)

≤0.03-0.5
(pH5)
≤0.03-

0.5 (pH7)

Mouse,
BALB/c
23344

Nose only
aerosol

44 x LD50

24 37.5 mg/k
(q8h) for

B. anthracis 10 ≤0.03
(pH5)
0.06
(pH7)

≤0.03
(pH5)
0.12
(pH7)

≤0.03-0.06
(pH5)
0.06-

0.12 (pH7)

– – – –

C. burnetii 1 (Nine Mile
Phase 1)

0.03 N/A N/A Mouse, AJ
Nine Mile
(Phase 1)

Head only
aerosol

Inhaled dose
1.5 x 106

24 30 mg/kg
(q24h) f

14 d

Delafloxacin Y. pestis 28 0.016 0.016 0.008-0.016 – – – –

F. tularensis – – – – – – – –

B. pseudomallei 30 0.5 1 0.12-2 Mouse,
BALB/c
1026b

Whole body
aerosol

Mean inhaled
dose 135
x LD50

16 + 24 30, 50, 80
(q6h) S
21 da

B. mallei – – – – – – – –
o
a
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TABLE 2 Continued

Antibiotic Bacteria in vitro in vivo Reference

Survival and clearance

/ 90% survival at day 30 pc with 62.5 mg/kg
dose with treatment starting 24 h pc

(McCurdy
et al., 2023)

–

s
n

d
a

100% protection at day 22 pc. No
information on clearance.

100% protection at 28 days pc and clearance
in all harvested tissues of survivors

100 and 57% protection at day 28 pc for
those treated 0–20 and 20.1–30 hours after

onset of fever respectively.

(Frean et al.,
1996; Heine
et al., 2007)
(Layton et al.,

2011;
Campbell
et al., 2020)

ly 100% protection at day 24 pc and clearance
in all tissues of survivors.

100% protection for 48 and 72h, 80%
protection for 96h. No protection at 120h.

No clearance data included.

(Klimpel et al.,
2008; Urich
and Petersen,
2008; Nelson
et al., 2010)

y 55% protection at day 36 pc. No information
on clearance

(Thibault
et al., 2004;

D'Elia
et al., 2019)

s
100% protection at day 34 pc. Bacteria

detected in spleens
(Judy et al.,

2004; Thibault
et al., 2004)

,

,
g

90% protection at day 100 pc and clearance
in tissues of survivors.

100% protection at day 38 pc for 5, 10, 20
mg/kg. 40, 80, 100, 100% protection for 0.75.

2.5, 7.5, 15 mg/kg respectively

(Cavallo et al.,
2002; Kao
et al., 2006)
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MIC50
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mL)

MIC90

(µg/
mL)

MIC90

range
(µg/mL)

Animal
model
and

bacterial
strain

Challenge
route and

dose

Treatment
initiation
time (hpc)

Treatmen
dosing
regimen

B. anthracis 30 ≤0.001
(pH5.5)
0.002

(pH7.2)

0.001
(pH5.5)
0.004

(pH7.2)

≤0.001
(pH5.5)
0.004

(pH7.2)

Mouse,
BALB/c

Whole body
aerosol 103
x LD50

24 + 48 30, 50, 62.5 mg
kg SC

C. burnetii – – – – – – – –

Levofloxacin Y. pestis 100 <0.03 <0.03 0.03-0.06 Mouse,
BALB/c
CO92

NHP, AGM
CO92

NHP, AGM
CO92

Whole body
aerosol

20 x LD50

Head only
aerosol

3–145 x LD50

Head only
aerosol

92 x LD50

24
6h following a
temperature of
≥39°C for 1h
0, 18, 16, 24
post-fever (a
temperature of

1.5°C
above normal)

15 mg/kg IP
(q12h) for 5 da
daily IV infusio

at 8 mg/kg
followed by 2
mg/kg at 12 ±
0.5h later for 1

days
8 mg/kg follow
by 2 mg/kg via

catheter for
10 days

F. tularensis 92 (Type
A strains)

– 0.06 0.15-0.12 NHP,
Marmoset
Schu S4
Mouse,
BALB/c
Schu S4

Head only
aerosol
300 CFU
Intranasal
100 CFU

24
48, 72, 96 + 120

16.5 mg/kg ora
(q12h) for 10

days
40 mg/kg
IP (q24h)

B. pseudomallei 50 2 2 1-32 Mouse,
BALB/c
K96243

Nose only
aerosol

Mean retained
dose 10 x LD50

6 50 mg/kg, oral
(q24h) for 7

days
(suboptimal)

B. mallei 15 1 1 0.125-4 Mouse,
BALB/c
23344

Intranasal
4.7 × 105 CFU

24 20 mg/kg IP
(q24h) for 7 da

B. anthracis 30 0.125 0.25 0.03-1 NHP, Rheus,
Ames

Mouse,
BALB/c
Ames

Head only
aerosol 17–118

× LD50

Whole body
aerosol

30.5 x LD50

24 15 mg/kg orall
followed by 4

mg/kg 12h late
for 10 days.

0.75, 2.5, 5, 7.5
10, 15, 20 mg/k
t

y

0

e

l

l

y

y

r
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TABLE 2 Continued

Antibiotic Bacteria in vitro in vivo Reference

ent
g
en

Survival and clearance

for 14

g IP
for
s

60% protection at day 40 pc.
Spleens were clear.

g IP
7 days

Reduction of weight loss and no development
of clinical signs.

(Clay
et al., 2021)

0 mg/
h) for
s

90% protection at day 41 pc for 40 mg/kg.
No protection for the lower doses. Spleens

clear (in 3 selected survivors).

(Steenbergen
et al., 2017)

– –

– –

– –

g/kg
for 14

.5,15
q12h)
ays
g IP
r 14

.75, 5,
mg/kg
) for
s

100% protection at day 38 pc for all doses.
Clearance from spleens, lungs colonised.

100% protection at day 40 pc for 7.5 and 15
mg/kg, 80% for 2.5 mg/kg and 40% for 0.75

mg/kg.
60% protection at day 40 pc.

100% survival at day 28 pc for 2.5, 3.75, 5
and 7.5 mgkg, 90% for 0.75 mg/kg and 80%
for 15 mg/kg. Bacteria detected in the lung,

spleen and blood of survivors.

(Steenbergen
et al., 2017;

Heine
et al., 2024)

– –

sions
g dose
from

100, 92, 75 and 80% protection at days 28–32
pc for 16 mg/kg (q8h), 18 mg/kg (q12h), 14

(Jakielaszek
et al., 2022)
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and

bacterial
strain
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route and

dose
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initiation
time (hpc)
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dosin
regim

48

IP (q12h)
day
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BALB/c
CO92
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29.4 x LD50
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7 day

F. tularensis – – – – – – – –

B. pseudomallei – – – – – – – –

B. mallei – – – – – – – –

B. anthracis 30
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0.03
0.015

0.06
0.03

<0.03-0.06
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BALB/c
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BAC’4-2
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Antibiotic Bacteria in vitro in vivo Reference
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nfusion
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(Jakielaszek
et al., 2023)
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90.1% protection at day 28 pc. One survivor
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(Hilliard
et al., 2024)
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et al., 2021)
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Antibiotic Bacteria in vitro in vivo Reference
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n
pc)

Treatment
dosing
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– – (Clayton
et al., 2021)

– – (Seenama
et al., 2013;
Clayton

et al., 2021)

– – (Clayton
et al., 2021)

12.5, 25, 50 mg/
kg orally (q8h)
for 14 days

100%, 80% and 80% protection at day 34 pc
for 12.5, 25, 50 mg/kg respectively.

All spleens harvested (3 per group) clear, all
lungs harvested (3 per group) colonised.

(Clayton
et al., 2021)

– – –

– – (Dunne
et al., 2021)

– – (Dunne
et al., 2021)

– – (Dunne
et al., 2021)

– – (Dunne
et al., 2021)

12.5, 25, 50 mg/
kg orally (q8h)
for 14 days

100%, 80% and 80% protection at day 34 pc
for 12.5, 25, 50 mg/kg respectively.

All spleens harvested (3 per group) clear, all
lungs harvested (3 per group) colonised.

(Dunne et al.,
2021;

Puttagunta
et al., 2022)

– – –

ours post-challenge; h, hours; pc, post-challenge; SC, subcutaneous; IP, intraperitoneal; IV, intravenous - -

M
e
in
ig

e
t
al.

10
.3
3
8
9
/frab

i.2
0
2
5
.16

115
8
8

Fro
n
tie

rs
in

A
n
tib

io
tics

fro
n
tie

rsin
.o
rg

0
8

Number
of

strains

MIC50

(µg/
mL)

MIC90

(µg/
mL)

MIC90

range
(µg/mL)

Animal
model
and

bacterial
strain

Challenge
route and

dose

Treatm
initiati
time (h

F. tularensis 29 16 >64 0.5->64 – – –

B. pseudomallei 29
102

2
2

2
2

1-4
NS

– – –

B. mallei 30 0.5 1 0.25-1 – – –

B. anthracis 30 0.004 0.008 0.001-0.008 Mouse,
BALB/c
Ames

Whole body
aerosol

15 x LD50

24

C. burnetii – – – – – – –

Sulopenem Y. pestis 30 0.063 0.12 0.015-0.125 – – –

F. tularensis 30 8 32 2-32 – – –

B. pseudomallei 30 1 1 1 – – –

B. mallei 30 0.25 0.5 0.06-0.5 – – –

B. anthracis 30 0.015 0.03 <0.004-0.25 Mouse,
BALB/c
Ames

Whole body
aerosol

15 x LD50

24

C. burnetii – – – – – – –

MIC, minimum inhibitory concentration; ND, not determined; N/A, not applicable; NS, not stated; LD50, median lethal dose; AGM, African green monkeys; hpc,
no data publicly available; ECL, electrochemiluminescence; TID, three times a day.
o

h
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and 1 mg/mL respectively) are comparable with comparator

antibiotics (Thibault et al., 2004). There is limited in vitro data

generated for C. burnetii, however an MIC of 1 mg/mL has been

reported for strain Nine Mile (Phase I) with an intracellular MIC of

0.16 mg/mL (Clay et al., 2021; Hartley et al., 2021).

In vivo efficacy studies delivering the antibiotic by the IV and

oral routes have been performed in murine and non-human

primate (NHP) models (Table 2). Levofloxacin completely

protected animals and cleared bacteria from tissues in an African

Green Monkey (AGM) model of plague and a marmoset model of

tularaemia (Nelson et al., 2010; Layton et al., 2011). Delaying

treatment resulted in a reduction in survival in the AGM

(Campbell et al., 2020). High levels of protection and clearance

was also demonstrated in a rhesus macaque model of anthrax

treated with levofloxacin (Kao et al., 2006).

Levofloxacin provided complete protection when delivered

early in a murine model of plague (Heine et al., 2007). High

levels of protection were demonstrated when levofloxacin was

delivered following an intranasal challenge of F. tularensis and B.

mallei (Judy et al., 2004; Klimpel et al., 2008). Limited information

is available for the in vivo evaluation of B. pseudomallei infections

with levofloxacin as fluoroquinolones are not clinically

recommended for melioidosis; however, 55% survival was

reported when a suboptimal course of levofloxacin was initiated

at 6 hours post-challenge in a mouse model (D'Elia et al., 2019).

Levofloxacin delivered by the intraperitoneal route reduced weight

loss and the development of clinical signs of disease in a mouse

model of Q fever (Clay et al., 2021).
Omadacycline

Omadacycline (Paratek Pharmaceuticals) is a first-in-class

aminomethylcycline of the tetracycline family, approved by the

FDA in 2018 for the treatment of CABP and ABSSSIs (Watkins

and Deresinski, 2019) (Table 1). In addition, it is the first once-daily

multi-indication oral antibiotic to be approved by the FDA in 10

years (Watkins and Deresinski, 2019). Both oral and IV formulations

are available. Mechanistically, it binds the 30S ribosomal subunit,

preventing the binding of aminoacyl-tRNA and inhibiting protein

synthesis. Omadacycline is active against a wide range of pathogens

including MRSA, vancomycin resistant Enterococcus and penicillin

resistant S. pneumoniae (Tanaka et al., 2016).

The MIC90 obtained for Y. pestis (1 mg/mL), which, whilst

higher than the previously discussed fluoroquinolones, is within the

range of susceptible gram-negative pathogens for the class (Table 2)

(Steenbergen et al., 2017). The MIC90 for B. anthracis has been

reported as 0.06 mg/mL and 0.03 mg/mL which is comparable to

previous generations of the fluoroquinolones (Steenbergen et al.,

2017; Heine et al., 2024). Omadacycline also demonstrated high

potency against the ciprofloxacin-resistant strain of Ames (BAC’4-

2) (Heine et al., 2024).

In vivo efficacy delivering the antibiotic by the IP route has also

been demonstrated in murine models of inhalational plague and

anthrax (Table 2). Omadacycline was shown to offer an equivalent
Frontiers in Antibiotics 09
level of protection to ciprofloxacin when administered as treatment for

infection with Y. pestis (Steenbergen et al., 2017). Bacterial clearance

was observed in spleens. When evaluated against infection with B.

anthracis, omadacycline also offered an equivalent level of protection

to ciprofloxacin (Table 2) (Steenbergen et al., 2017). Spleens were clear

from colonizing bacteria in survivors. In a separate study,

omadacycline provided complete protection in an inhalational

anthrax mouse model with strain BAC’4-2 (Heine et al., 2024).
Gepotidacin

Gepotidacin (GSK) is a bacter ic idal first- in-c lass

triazaacenaphthylene that was recently approved by the FDA for

the treatment of uncomplicated UTIs (uUTIs) (Wagenlehner et al.,

2024) (Table 1). It is also in development for the treatment of

gonorrhoea and both oral and IV formulations have been produced.

Gepotidacin inhibits bacterial DNA gyrase and the type IIA

topoisomerase at a site and mechanism distinct from the

fluoroquinolones. As the first approved novel bacterial

topoisomerase inhibitor (NBTI), gepotidacin is of interest as its

potency is not impaired by the on-target mutations associated with

fluoroquinolone resistance. Two phase 3 clinical trials evaluating

gepotidacin as a therapeutic for uUTIs were stopped early due to the

superiority of results obtained, leading to the FDA approving the

use for the treatment of uUTIs in female adults and paediatric

patients over 12 (GSK, 2022; GSK, 2025). Gepotidacin has

demonstrated in vitro activity against gram-positive and gram-

negative organisms, including MRSA, Shigella species, S.

pneumoniae and Mycobacteria (Biedenbach et al., 2016; Ahmad

et al., 2022).

Potency has been demonstrated in vitro for gepotidacin against

Y. pestis, F. tularensis, and B. anthracis, all with MIC90 values

between 0.5 and 1 mg/mL (Table 2) (Jakielaszek et al., 2022;

Jakielaszek et al., 2023; Hilliard et al., 2024). It is worth noting

that the in vitro MIC screening with gepotidacin utilised large

panels of bacterial strains (120+), which is impressive. It also

retained activity against aminoglycoside and doxycycline resistant

mutants of Y. pestis and fluoroquinolone resistant mutants of B.

anthracis (Jakielaszek et al., 2022; Hilliard et al., 2024).

Several studies utilizing large animal models have been

published that demonstrate the efficacy of gepotidacin against Y.

pestis, F. tularensis, and B. anthracis. This includes in vivo efficacy

data in NHP models of plague and tularaemia where fever was used

as a trigger-to-treat (Table 2). Gepotidacin provided a high level of

protection (75-100%) and bacterial clearance in an AGM model of

inhalational plague, irrespective of the antibiotic dose and dosing

regimen (Jakielaszek et al., 2022). There were no differences

between the level of protection offered in relation to the number

of doses of antibiotic administered. This is similar to the data

previously generated for ciprofloxacin and levofloxacin in this NHP

model (Layton et al., 2011; Campbell et al., 2020). When

administered to cynomolgus macaques following an inhalational

F. tularensis exposure, gepotidacin provided complete protection

and bacterial clearance (Jakielaszek et al., 2023). This is similar to
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data generated with levofloxacin in a marmoset model of tularaemia

(Nelson et al., 2010). Gepotidacin was also shown to be 90%

protective in a lethal, trigger-to-treat New Zealand white rabbit

model of inhalational anthrax (Hilliard et al., 2024).
Tebipenem

Tebipenem pivoxil hydrobromide (Spero Therapeutics) is an

oral carbapenem prodrug being developed for the treatment of

cUTIs (Table 1). Carbapenems are bactericidal agents that enter the

periplasm space and acylate penicillin-binding proteins (PBPs).

This weakens the peptidoglycan of the cell wall which lyses the

bacterial cell (Mahalingam and Shenoy, 2020). Traditionally,

carbapenems have only been available for IV administration;

therefore, the potential to leverage carbapenem activity in an

orally-available drug would be significant. Tebipenem has been

evaluated in a phase 3 clinical trial for the treatment of cUTIs and

pyelonephiritis; however, the FDA has requested further data to be

generated and submitted before considering licensure. Tebipenem

is active against gram-negative and gram-positive organisms

including extended spectrum b-lactamase (ESBL) and AmpC b-
lactamase producing Klebsiella pneumoniae, Escherichia coli,

Proteus spp, and MRSA (Cotroneo et al., 2020).

The MIC90 values obtained for Y. pestis, B. pseudomallei, B. mallei

and B. anthracis are low (0.03, 2, 1 and 0.008 mg/mL, respectively

(Table 2)) (Seenama et al., 2013; Clayton et al., 2021). The MIC for a

ciprofloxacin resistant Ames strain of B. anthracis was similar (0.008

mg/mL). There was no measurable in vitro activity for F. tularensis

(MIC90 of > 64 mg/mL), which is consistent with the activity of other

carbapenems (Caspar and Maurin, 2017).

Oral tebipenem has been evaluated in murine models of

pneumonic plague and inhalational anthrax (Table 2). It offered

an equivalent level of protection to ciprofloxacin when

administered as treatment for infection with Y. pestis (Clayton

et al., 2021). Bacterial clearance was observed in lungs, livers and

spleens. When evaluated against an infection with B. anthracis,

tebipenem also offered an equivalent level of protection to

ciprofloxacin (Clayton et al., 2021). Spleens were clear at the end

of the study with lungs colonized.
Sulopenem

Sulopenem (Iterum Therapeutics) is a broad spectrum

thiopenem b-lactam, being developed for the treatment of

infections caused by multi-drug resistant bacteria (Table 1). Two

formulations are currently being evaluated, an orally-available

prodrug (sulopenem etzadroxil) or sulopenem for IV

administration. Sulopenem retains many characteristics of the

carbapenem family and shares the same mechanism of action

(Zhanel et al., 2022). It has been evaluated in multiple phase

clinical 3 trials for the treatment of uUTIs, cUTIs and

pyelonephritis and is active against gram-negative and gram-
Frontiers in Antibiotics 10
positive organisms including penicillin resistant S. pneumoniae

and H. influenzae and M. catarrhalis strains able to produce b-
lactamases (Butler et al., 2023; Dunne et al., 2023). It was recently

approved by the FDA to treat uUTIs in adult women with limited or

no alternative oral antibacterial treatment options (delivered with

the renal tubular transport inhibitor probenecid) (FDA, 2024).

The MIC90 values obtained for Y. pestis, B. pseudomallei, B.

mallei and B. anthracis are low (0.12, 1, 0.5 and 0.03 mg/mL,

respectively and similar to carbapenems (Dunne et al., 2021)

(Table 2). Like tebipenem, there is limited in vitro activity for

sulopenem against strains of F. tularensis (MIC90 of 32 mg/mL).

Sulopenem has been evaluated for efficacy in a murine model of

inhalational anthrax where it offered an equivalent level of

protection to ciprofloxacin (Table 2) (Puttagunta et al., 2022).

Spleens were clear of bacteria at the end of the study with

lungs colonized.
Conclusions

The identification and evaluation of novel broad spectrum

medical countermeasures antibiotics for the treatment of the

diseases caused by the bacterial pathogens of biodefence interest

remains a significant priority to both military and public health.

This review discusses several antibiotics that are in advanced

clinical development that, although not being developed for this

purpose, have demonstrated efficacy against these pathogens, and

offer potential alternatives or improvements to first-line therapies.

Novel or newer generations of antibiotics such as those discussed

here bring innovative tools to fight an increasingly variable

biothreat landscape. Robust preclinical evaluation of candidates

provides in vitro and in vivo efficacy data that can support

regulatory approval or be leveraged in an emergency to rapidly

identify alternative therapies. Continued work is needed to ensure

the most appropriate and effective therapies are prepositioned to

combat these virulent pathogens.
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