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Multivariate tempered stable model
with long-range dependence and
time-varying volatility
Young Shin Kim*
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High-frequency financial return time series data have stylized facts such as the long-range

dependence, fat-tails, asymmetric dependence, and volatility clustering. In this paper,

a multivariate model which describes those stylized facts is presented. To construct

the model, a multivariate ARMA-GARCH model is considered along with fractional

Lévy process. The fractional Lévy process in this paper is defined by the stochastic

integral with a tempered stable driving process. Parameters of the new model are fit to

high-frequency returns for five U.S stocks. Approximated form of portfolio value-at-risk

and average value-at-risk are provided and portfolio optimization is discussed under the

model.

Keywords: multivariate fractional normal tempered stable process, long-range dependence, fractional Brownian

motion, fractional, Lévy processes, high-frequency market, intraday trading, volatility clustering, asymmetric

dependence
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1. Introduction

The long-range dependence, fat-tail property, and volatility clustering effect are important issues
for modeling high-frequency return time series in finance. The fractional Brownian motion intro-
duced by Mandelbrot and Ness [1] can explain short-range or long-range dependence but it can-
not explain the volatility clustering effect. The volatility clustering effect can be captured by the
autoregressive conditional heteroskedastic (ARCH) and the generalized ARCH (GARCH) mod-
els formulated by Engle [2] and Bollerslev [3], respectively. However, GARCH models based on
the normal distribution have not performed well in explaining high-frequency data analysis (see
[4] and [5]), since the normal distribution does not capture the fat-tail property in the empiri-
cal innovation. To capture the fat-tail property in high-frequency return data, [5] suggested the
univariate ARMA-GARCH model with tempered stable innovations without considering long-
range dependence. The long-range dependence in high-frequency data is empirically reported
in Sun et al. [6]. Sun et al. [4] provide a univariate model having long-range dependence, fat-
tail property, and volatility clustering by taking the ARMA-GARCH model with fractional stable
noise residuals exhibits, and show that the model has superior performance in high-frequency
returns.

In this paper, a new multivariate market model that describes the long-range dependence,
fat-tail property, and volatility clustering effect is developed. The new market model is con-
structed by taking the fractional tempered stable innovations on the multivariate ARMA-GARCH
model. Univariate fractional tempered stable process was defined by the stochastic integral for
the Volterra kernel in Houdre and Kawai [7] based on subclasses of Rosinski’s tempered stable
processes [8]. In order to construct multivariate model, we would better use normal tempered
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stable (NTS) process rather than Rosinski’s tempered stable pro-
cesses, since the NTS process is defined by the time-changed
Brownian motion, and hence we can easily obtain a multivari-
ate model which allows fatter tails than the multivariate Gaussian
distribution and an asymmetric dependence structure. The NTS
process has been discussed in many literatures including [9–12],
and [13]. Although NTS is not included in Rosinski’s tempered
stable processes (see [14]), the fractional NTS process is redefined
in this paper. The fractional NTS process is a multivariate pro-
cess having the long-range dependence in time and asymmetric
dependence between elements1.

To verify the performance of the new model, empirical illus-
tration is provided using high-frequency stock return data. Use-
ful simulation and parameter estimation methods are provided,
and the goodness-of-fit tests are performed for the estimated
parameters. The long-range dependence and fat-tail property
of the high frequency stock return data are observed by this
investigation.

To apply the new model for the financial risk management
and portfolio management, portfolio value-at-risk (VaR), average
VaR (AVaR), and portfolio optimization based on the newmarket
model are discussed. VaR has a number of well-known limitations
as a risk measure, nevertheless the VaR measure has been popu-
larly used as a standard risk measure in the financial industry.
The AVaR is the average of VaRs exceeding the VaR for a given
confidence level2 AVaR is a superior alternative to VaR because it
is a coherent risk measure3. and it is consistent with preference
relations of risk-averse investors (see [20]).

A major contribution to the portfolio theory is the mean-
variance model presented by Markowitz [21]. The importance
of the model cannot be overstated, but some of assumptions
underlying the model have been challenged since its introduc-
tion. One of the assumptions is that asset returns follow a
Gaussian (normal) distribution and another is that the vari-
ance is a measure of risk ignoring higher-order moments. In
this paper, the portfolio optimization is discussed based on the
Markowitz’s theory, but the Gaussian assumption is replaced by
the ARMA-GARCH model with fractional NTS innovations and
the variance risk measure is superseded by VaR and AVaR risk
measures.

The remainder of this paper is organized as follows. The NTS
process is reviewed in Section 2. The definition of themultivariate
fractional NTS process and its simulation method are presented
in Sections 3, 4, respectively. Multivariate ARMA-GARCHmodel
having long-range dependence is defined in Section 5 along with
the empirical illustration. In Section 6, portfolio risk will be
assessed and the optimal portfolio will be found based on the
new ARMA-GARCH model using high-frequency market data.
In Section 7, the principal findings are summarized. Volterra
kernel is briefly reviewed in the appendix.

1Kim [15] defines another different multivariate fractional NTS process using the

time-changed fractional Brownian motion.
2AVaR is also known as conditional value-at-risk (CVaR). See Pflug [16] and

Rockafellar and Uryasev [17, 18].
3VaR is not is not a coherent risk measure. The notion of a coherent risk measure

was introduced by Artzner et al. [19].

2. Normal Tempered Stable Process

In the remainder of this paper, we assume that N is a positive
integer standing for the dimension and α ∈ (0, 2), θ > 0, β =

(β1, β2, · · · , βN)
T, γ = (γ1, γ2, · · · , γN)

T such that γn > 0 for
n ∈ {1, 2, · · · ,N}, and 6 = [σm,n]m,n∈{1,2,··· ,N} is a given corre-
lation matrix such that σn,n = 1 for n ∈ {1, 2, · · · ,N}. The pure
jump Lévy process T = (T(t))t≥ 0 whose characteristic function
φT(t) is equal to

φT(t)(u) = exp

(

θ1−
α
2 t

Ŵ
(

1− α
2

)

∫ ∞

0
(eiux − 1)

e−θx

xα/2+ 1
dx

)

.

is a subordinator and referred to as the tempered stable subordi-
nator with parameters (α, θ). Solving the integration in the last
Equation, we can obtain the following formula,

φT(t)(u) = exp

(

−
2θ1−

α
2 t

α

(

(θ − iu)
α
2 − θ

α
2

)

)

. (1)

Consider aN-dimensional Brownian motion B = (B(t))t≥ 0 such
that B(t)= (B1(t), B2(t), · · · , BN(t))

T, and suppose that

cov(Bm(t),Bn(t)) = σm,nt

for allm, n ∈ {1, 2, · · · ,N}.
Suppose T is independent of B. Consider a N-dimensional

process Z = (Z(t))t≥ 0 such that Z(t) = (Z1(t), Z2(t), · · · ,
ZN(t))

T. For n ∈ {1, 2, · · · ,N}, define (Zn(t))t≥ 0 by the time-
changed Brownian motion as

Zn(t) = βn(T(t)− t) + γnBn(T(t)). (2)

Then the process Z is referred to as the N-dimensional NTS pro-
cess with parameters (α, θ , β , γ ,6) and we denote by Z ∼ NTSN
(α, θ , β , γ , 6).

By composing characteristic functions of B(t) and T(t), we
obtain the characteristic function of Zn(t) as follows:

φZn(t)(u) =

exp

(

− βnuti −
2θ1−

α
2

α
t

(

(

θ − iβnu+
γ 2
n u

2

2

)

α
2

− θ
α
2

))

.

(3)

The mean of Zn(t) is equal to zero for n ∈ {1, 2, · · · ,N}.
Covariance between Zm(t) and Zn(t) is given by

cov(Zm(t),Zn(t)) = tγmγnσm,n + tβmβn

(

2− α

2θ

)

(4)

form, n ∈ {1, 2, · · · ,N}. Moreover the variance of Zn(t) is equal
to

Var(Zn(t)) = t

(

γ 2
n + β2

n

(

2− α

2θ

))

(5)

The linear combination of elements of Z is also NTS as follows.
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Proposition 1. Let w = (w1,w2, · · · ,wN)
T ∈ R

N , Z ∼ NTSN
(α, θ , β, γ , 6), and Y(t) =

∑N
n= 1 wnZn(t). Then (Y(t))t≥ 0 ∼

NTS1(α, θ, β̄, γ̄ , 1), where

β̄ =

N
∑

n= 1

wnβn, and γ̄ =

√

√

√

√

N
∑

m= 1

N
∑

n= 1

wmwnγmγnσm,n.

Proof. See [12].

If γn =
√

1− β2
n

(

2−α
2θ

)

and |βn| <

√

2θ
2−α

for n ∈ {1, 2, · · · ,N}

then Var(Zn(t)) = t. In this case the process Z is referred to as
the N-dimensional standard NTS process with parameters (α, θ ,
β , 6) and denoted by Z ∼ stdNTSN (α, θ , β , 6).

3. Fractional Normal Tempered Stable
Process

Let KH(t, s) be the Voltera kernel and Z ∼ NTSN (α, θ , β , γ , 6).
The N-dimensional fractional NTS (fNTS) process generated by
Z is defined by the process of vector X = (X(t))t≥ 0 with X(t) =
(X1(t), X2(t), · · · , XN(t))

T such that

Xn(t) = lim
||P||→0

M
∑

j= 1

KH(t, tj− 1)
(

Zn(tj) − Zn(tj− 1)
)

in distribution sense for n ∈ {1, 2, · · · ,N}, where

P : 0 = t0 < t1 < · · · < tM = t

is a partition of the interval [0, t] and

||P|| = max{tj − tj− 1|j = 1, 2, · · · ,M}.

In this case we denote that Xn(t) =
∫ t
0 KH(t, s)dZn(s) and X ∼

fNTSN (H, α, θ , β , γ , 6). Since we have

E



 exp



 iu

M
∑

j= 1

KH(t, tj− 1)
(

Zn(tj) − Zn(tj− 1)
)









=

M
∏

j= 1

E
[

exp
(

iuKH(t, tj− 1)
(

Zn(tj) − Zn(tj− 1)
))]

=

M
∏

j= 1

exp

(

− βnuiKH(t, tj− 1)(tj − tj− 1)

−
2θ1−

α
2

α







θ − iβnuKH(t, tj− 1)

+
γ 2
n u

2(KH(t, tj− 1))
2

2

)
α
2

− θ
α
2



 (tj − tj− 1)

)

= exp

(

− βnui

M
∑

j= 1

KH(t, tj− 1)(tj − tj− 1)

−
2θ1−

α
2

α

M
∑

j= 1







θ − iβnuKH(t, tj− 1)

+
γ 2
n u

2(KH(t, tj− 1))
2

2

)
α
2

− θ
α
2



 (tj − tj− 1)

)

,

the characteristic function of Xn(t) is given by

φXn(t)(u)

= lim
||P||→0

exp

(

− βnui

M
∑

j= 1

KH(t, tj− 1)(tj − tj− 1)

−
2θ1−

α
2

α

M
∑

j= 1







θ − iβnuKH(t, tj− 1)

+
γ 2
n u

2(KH(t, tj− 1))
2

2

)
α
2

− θ
α
2



 (tj − tj− 1)

)

= exp

(

− βnui

∫ t

0
KH(t, s)ds

−
2θ1−

α
2

α

∫ t

0

(

(

θ − iβnuKH(t, s)

+
γ 2
n u

2(KH(t, s))
2

2

)

α
2

− θ
α
2

)

ds

)

.

Proposition 2. For n ∈ {1, 2, · · · ,N}, the covariance between
Xn(s) and Xn(t) is equal to

cov(Xn(s),Xn(t)) (6)

=
1

2

(

γ 2
n + β2

n

(

2− α

2θ

))

(

t2H + s2H − |t − s|2H
)

, s, t > 0.

Proof. Let P be a partition such that

P : 0 = t0 < t1 < · · · < tM− 1 < tM

= s ∧ t < tM+ 1 < · · · < tM∗ = s ∨ t.

Then we have

cov(Xn(s),Xn(t)) = E[Xn(s)Xn(t)]

= lim
||P||→0

E





M
∑

j= 1

KH(s, tj− 1)
(

Zn(tj) − Zn(tj− 1)
)

M∗
∑

k= 1

KH(t, tk− 1)
(

Zn(tk) − Zn(tk− 1)
)





= lim
||P||→0

M
∑

j= 1

M∗
∑

k= 1

KH(s, tj− 1)KH(t, tk− 1)

E
[(

Zn(tj) − Zn(tj− 1)
) (

Zn(tk) − Zn(tk− 1)
)]
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By the property of the NTS process Zn, we have

E
[(

Zn(tj) − Zn(tj− 1)
) (

Zn(tk) − Zn(tk− 1)
)]

=

{

(tj − tj− 1)Var(Zn(1)) if j = k

0 if j 6= k

Hence, we obtain

cov(Xn(s),Xn(t)) = lim
||P||→0

M
∑

j= 1

KH(s, tj− 1)KH(t, tj− 1)

(tj − tj− 1)Var(Zn(1))

= Var(Zn(1))

∫ s∧t

0
KH(s, u)KH(t, u)du.

Hence we obtain Equation (6) by Equation (5) and Equation (21)
in Appendix.

Proposition 3. Form, n ∈ {1, 2, · · · ,N}, the covariance between
Xm(t) and Xn(t) is equal to

cov(Xm(t),Xn(t)) = t2H
(

σm,nγmγn + βmβn

(

2− α

2θ

))

, t > 0.

(7)

Proof. Let P be a partition such that

P : 0 = t0 < t1 < · · · < tM− 1 < tM = t.

We have

cov(Xm(t),Xn(t)) = E[Xm(t)Xn(t)]

= lim
||P||→0

E





M
∑

j= 1

KH(t, tj− 1)
(

Zm(tj) − Zm(tj− 1)
)

M
∑

k= 1

KH(t, tk− 1)
(

Zn(tk) − Zn(tk− 1)
)

]

= lim
||P||→0

M
∑

j= 1

M
∑

k= 1

KH(t, tj− 1)KH(t, tk− 1)

E
[(

Zm(tj) − Zm(tj− 1)
) (

Zn(tk) − Zn(tk− 1)
)]

By the property of the NTS process Zn, we have

E
[(

Zm(tj)− Zm(tj− 1)
) (

Zn(tk)− Zn(tk− 1)
)]

=

{

(tj − tj− 1)cov(Zm(1),Zn(1)) if j = k

0 if j 6= k

Hence, we obtain

cov(Xm(t),Xn(t)) = cov(Zm(1),Zn(1))

∫ t

0
(KH(t, u))

2du.

Hence we obtain Equation (7) by Equation (4) and Equation (22)
in Appendix.

For a given stochastic process Y = (Y(t))t≥ 0, the summation

∞
∑

j= 1

E[(Y(1) − Y(0))(Y(j+ 1)− Y(j))]

diverges, then we say that Y exhibits long-range dependence (See
[22]). By Proposition 2 and L’Hopital’s rule, we have

E[Xn(1)(Xn(j+ 1) − Xn(j))]

=
v

2

(

(j+ 1)2H − 2j2H + (j− 1)2H
)

=
v

2
j2H− 2

(

j2

(

(

1+
1

j

)2H

− 2+

(

1−
1

j

)2H
))

→ vH(2H − 1)j2H− 2 as j → ∞,

where v =
(

γ 2
n + β2

n

(

2−α
2θ

))

. Hence,
∑∞

j= 1 E[Xn(1)(Xn(j +

1) − Xn(j))] diverges, i.e., the process (Xn(t))t≥ 0 has long-range
dependence, when 1

2 < H < 1.
Since the NTS has an asymmetric dependence structure, X has

also asymmetric dependence. By Proposition 1, we can prove the
following proposition.

Proposition 4. Let w = (w1,w2, · · · ,wN)
T ∈ R

N , X ∼ fNTSN
(H, α, θ , β, γ ,6), and Y(t) =

∑N
n= 1 wnXn(t). Then (Y(t))t≥ 0 ∼

fNTS1(H, α, θ, β̄, γ̄ , 1), where

β̄ =

N
∑

n= 1

wnβn, and γ̄ =

√

√

√

√

N
∑

m= 1

N
∑

n= 1

wmwnγmγnσm,n.

When Z ∼ stdNTSN (α, θ , β , 6), the multivariate fractional
NTS process X generated by Z is referred to as the fractional stan-
dard NTS process, and we denote that X ∼ fstdNTSN (H, α, θ , β ,
6). In this case, we have

cov(Xn(s),Xn(t)) =
1

2

(

t2H + s2H − |t − s|2H
)

, s, t > 0. (8)

and

cov(Xm(t),Xn(t))

= t2H

(

σm,n

√

1− β2
m

(

2− α

2θ

)

√

1− β2
n

(

2− α

2θ

)

+ βmβn

(

2− α

2θ

))

, t > 0. (9)

By Proposition 4, we can prove the following corollary.

Corollary 5. Let w = (w1,w2, · · · ,wN)
T ∈ R

N , X ∼ fstdNTSN
(H, α, θ , β, 6), and Y(t) =

∑N
n= 1 wnXn(t). Then (Y(t))t≥ 0 ∼

fNTS1(H, α, θ, β̄, γ̄ , 1), where

β̄ =

N
∑

n= 1

wnβn,
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and

γ̄ =

√

√

√

√

N
∑

m= 1

N
∑

n= 1

wmwnσm,n

√

1− β2
m

(

2− α

2θ

)

√

1− β2
n

(

2− α

2θ

)

.

4. Simulation

In this section, a numerical method is provided to generate the
sample path for the multivariate fractional normal tempered
stable process. By Theorem 5.3 (i) in Rosiński [8]4, we obtain
series representation for the tempered stable subordinator T as
follows:

T(t) = lim
M→∞

M
∑

j= 1

1(0,t)(τj)





(

αξjŴ
(

−α
2

)

2θ1−
α
2 T

)− 2
α

∧
eju

2
α

j

θ



 ,

t ∈ [0, T ], (10)

where

• {uj} is an iid sequence of random variables on (0, 1),
• {ej} and {e′j} are an iid sequence of exponential random vari-

ables with parameter 1,
• ξj = e′1 + e′2 + · · · + e′j,

• {τj} be an independent and identically distributed uni-
form random variable in [0, T ], where T > 0 is
fixed.

• and assume that {uj}, {ej}, {e′j} and {τi} are

independent.

Let L6 be the lower triangular matrix obtained by the Cholesky
decomposition for 6 with 6 = L6L

T
6 , where 6 is the correla-

tion matrix in Equation (2). Then we have B(t) = L6 B̄(t) where
B̄(t) = (B̄1(t), B̄2(t), · · · , B̄N(t))

T is a mutually independent
vector of Brownian motions.

Sample path of Z ∼ NTSN (α, θ , β , γ , 6) is generated as fol-
lows. For a given partition {t0, t1, · · · , tM} of the interval [0, T ]
with t0 = 0, tM = T and tj < tk for j < k, we have

B̄n(T(tj)) − B̄n(T(tj− 1)) =
√

T(tj) − T(tj− 1)ǫj,n,

n ∈ {1, 2, · · · ,N}

where ǫj,n ∼ N(0, 1). Therefore, we have

Z(tk) = (T(tk) − tk)β + diag(γ )

k
∑

j= 1

√

T(tj) − T(tj− 1)L6ǫj,

(11)

where ǫj = (ǫj,1, ǫj,2 · · · , ǫj,N)
T, ǫj,n ∼ N(0, 1), and ǫj,m is

independent of ǫj,n for all m, n ∈ {1, 2, · · · ,N}, and j ∈

{1, 2, · · · ,M}.

4The tempered stable subordinator T with parameter (α, θ) is included in the

class of tempered stable processes provided by Rosinski [8]. The parameter α/2

of the tempered stable subordinator corresponds to the parameter α in Rosinski’s

tempered stable class.

FIGURE 1 | Simulated sample path of the tempered stable

subordinator T with parameters α = 1.2 and θ = 0.8.

Finally, sample paths of X ∼ fNTSN (H, α, θ , β , γ , 6) is
generated as follows:

X(tk) =

k− 1
∑

j= 0

KH(tk, tj)(Z(tj+ 1) − Z(tj)), k ∈ 1, 2, · · · ,M.

(12)

Figure 1 presents one example sample path of the tempered
stable subordinator T with parameters α = 1.2 and θ =

0.8. Figure 2 exhibits one pair of simulated sample path of
the 2 dimensional standard fractional NTS process X =

(X1(t),X2(t))t≥ 0 with parameters α = 1.2, θ = 0.8, β =

(0.1,−0.3), σ1,2 = σ2,1 = 0.7, and H = 0.6525. In the pro-
cess Figure 2A (X1(t))t≥ 0 and (X2(t))t≥ 0 are drawn on the time
line. Figure 2B presents 2 dimensional movements of X.

5. ARMA-GARCH Model with fNTS
Innovations and Empirical Illustration

Let X ∼ fstdNTSN (H, α, θ , β , 6) generated by Z ∼

stdNTSN (α, θ , β , 6). A N-dimensional discrete time pro-
cess Y = (Y(k))k∈{0,1,2,··· } with Y(k) = ( Y1(k), Y2(k), · · · ,
YN(k)) is referred to as theN-dimensionalARMA-GARCHmodel
with fNTS innovations when it is given by the ARMA(1,1) -
GARCH(1,1) model as follows: Yn(0) = 0, εn(0) = 0, and











Yn(k+ 1) = cn + anYn(k) + bnσn(k)εn(k)

+ σn(k+ 1)εn(k+ 1)

(σn(k+ 1))2 = κn + ξn(σn(k)εn(k))
2 + ζn(σn(k))

2

, (13)

where εn(k + 1) = Xn(k + 1) − Xn(k) and n ∈ {1, 2, · · · ,N}.
This model describes volatility clustering effect by GARCH(1,1)
model, the fat-tails and the asymmetric dependence between
elements by the standard NTS process Z, and the long-range
dependence by fractional NTS process X.
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FIGURE 2 | Simulated sample path of the 2 dimensional standard

fractional NTS process X = (X1(t),X2(t))t≥ 0 with parameters α = 1.2,

θ = 0.8, β = (0.1,−0.3), σ1,2 = σ2,1 = 0.7, and H = 0.6525.

Since we have

Xn(k) ≈

k− 1
∑

j= 0

KH(k, j)(Zn(j+ 1) − Zn(j))

The increment Xn(k+1)−Xn(k) can be approximated as follows:

Xn(k+ 1)− Xn(k) (14)

≈ KH(k+ 1, k)(Zn(k+ 1) − Zn(k))

+

k− 1
∑

j= 0

(KH(k+ 1, j) − KH(k, j))(Zn(j+ 1) − Zn(j))

Let M be the number of time steps in the sample and N be
the number of assets in the portfolio. ARMA(1,1)-GARCH(1,1)
model is fit to the data and extract εn(tk), for n = 1, 2, · · · ,N and
k = 1, · · · ,M. Since Equation (8) is the same as the covariance of

the fractional Brownian motion, set Wn(tk) =
∑k

j= 1 εn(tj) and

estimate the Hurst index Hn of the process (Wn(tk))tk ≥ 0 using
the wavelet details regression estimator method by Flandrin [23]
and Abry et al. [24]. The parameter H is obtained finally as the
mean of Hn for n = 1, 2, · · · ,N.

TABLE 1 | Estimated Hurst index Hn.

Apple Inc. H1 = 0.5631

Google Inc. H2 = 0.5241

IBM Co. H3 = 0.6986

AT&T H4 = 0.5303

Wal-Mart Stores Inc. H5 = 0.5870

Mean H = 0.5806

Suppose we have estimated Hurst index H. We estimate the
parameters of the model as follows in this investigation.

1. Estimate ARMA(1,1)-GARCH(1,1) parameters an, bn, cn, κn,
ξn, and ζn with standard normal innovations by maximum
likelihood estimation (MLE) with assumption (σn(0))

2 =

κn/(1− ξn − ζn) for n = 1, 2, · · · ,N.
2. Extract residuals using the estimated parameters.

3. Put Xn(tk) =
∑k

j= 1 εn(tj) and extract {Zn(tk)| k = 1, 2, · · · ,

M} for n = 1, 2, · · · ,N as follows.

Zn(1) = Xn(1)/KH(1, 0) and

Zn(k) = Zn(k− 1) +
Xn(k) − Xn(k− 1)

KH(k, k− 1)
(15)

−

k− 2
∑

j= 0

KH(k, j) − KH(k− 1, j)

KH(k, k− 1)
(Zn(j+ 1) − Zn(j))

for k = 2, 3, · · · ,M.

4. Estimate parameters αn, θn, and βn of the standard NTS pro-
cess using {Zn(k)| k = 1, 2, · · · , M} extracted in the step 4
by curve-fitting in least-squares sense. Set α =

∑N
n= 1

αn
N and

θ =
∑N

n= 1
θn
N Estimate parameters βn again using {Zn(k)|

k = 1, 2, · · · , M} by means of MLE for n = 1, 2, · · · ,N.
5. Calculate the covariance between (Zm(1)) and (Zn(1)) form,n

∈ {1, 2, · · · , N} using data {(Zm(k),Zn(k))| k = 1, 2, · · · , M}

extracted in the step 4. Estimate

6 = [σm,n]m,n∈{1,2,··· ,N}

by Equation (4) and cov(Zm(1),Zn(1)).

The parameter H is estimated using 2,158 observed 1min
returns for five stocks (Apple Inc., Google Inc., IBM Co., AT&T,
Wal-Mart Stores Inc.) from November 21 to November 29, 2011.
Set dt = 1/390, since 1 day has 6 h and 30min (from 9:30
to 16:00) trading time, that is 390min, on New York Stock
Exchange. The parameters Hn are presented in Table 1 and
parameter H = 0.5806 is obtained finally as the mean of Hn.

The ARMA(1,1)-GARCH(1,1) parameters and estimated
fNTS parameters α, θ and β are reported in Table 2 for each
stocks. The estimated matrix 6 is presented in Table 3.

The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD)
tests are used for goodness-of-fit tests. The KS and AD2 statistic
are given by

KS =
∑

x

|F̂(x) − F(x)|, AD2 = s

∫ ∞

−∞

(F̂(x) − F(x))2

F(x)(1− F(x))
dF(x),

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 May 2015 | Volume 1 | Article 1

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Kim NTS model with LRD & Volatility-clustering

TABLE 2 | Parameters the ARMA-GARCH model with (non-fractional) NTS innovations and fNTS innovations.

Apple Inc. Google Inc. IBM Co. AT&T Wal-Mart Stores Inc.

n = 1 n = 2 n = 3 n = 4 n = 5

ARMA(1,1)

an 0.3244 0.0808 −0.0223 −0.1271 −0.1351

bn −0.5054 −0.3608 −0.5177 0.2376 −0.0445

cn 0.1560 · 10−4 0.4607 ·10−4 0.6596 · 10−4 0.6311 · 10−4 0.2862

GARCH(1,1)

ζn 0.6703 0.9949 0.3078 0.8529 0.7860

ξn 0.3297 0.0051 0.6922 0.1471 0.2140

κn 0.1479 · 10−6 0.3412 ·10−6 0.1127 · 10−6 0.1353 · 10−6 0.0535

NON-FRACTIONAL stdNTS, α = 1.5750, θ = 50.23

βn 0.5545 1.4326 9.0557 4.6653 0.0427

FRACTIONAL stdNTS, H = 0.5806, α = 1.6601, θ = 17.61

βn 1.3929 1.7403 6.7900 3.6981 −0.2057

TABLE 3 | Estimated 6 = [σm,n]m,n∈{1,2,··· ,N}.

σm,n Apple Inc. Google Inc. IBM Co. AT&T Wal-Mart Stores Inc.

n = 1 n = 2 n = 3 n = 4 n = 5

Apple Inc. m = 1 1.0000 0.6414 0.7109 0.4373 0.4290

Google Inc. m = 2 0.6414 1.0000 0.7869 0.4773 0.4914

IBM Co. m = 3 0.7109 0.7869 1.0000 0.5676 0.7603

AT&T m = 4 0.4373 0.4773 0.5676 1.0000 0.5741

Wal-Mart Stores Inc. m = 5 0.4290 0.4914 0.7603 0.5741 1.0000

where F̂(x) is the empirical sample distribution, F(x) is the esti-
mated theoretical distribution, and s is the number of observed
samples. According to the p-values of KS statistic and AD2

statistic, estimated parameters are not rejected. Calculating p-
values for KS and AD2 statistic are explained in Marsaglia et al.
[25] andMarsaglia andMarsaglia [26]. The KS and AD2 statistics
are calculated between the standard NTS distribution with esti-
mated parameters (α, θ , βn), and the empirical cumulative distri-
bution of {Zn(tk) − Zn(tk− 1)| k = 1, 2, · · · , M} where Zn(tk) is
the extracted process by Equation (15). According to the p-values
of KS and AD2 statistic in Table 4, all estimated parameters are
not rejected at the 1% significance level for the five stock returns
investigated.

If H = 0.5 then the ARMA-GARCH model with fNTS inno-
vations becomes the ARMA-GARCH model with non-fractional
NTS innovations. The estimated parameters of the non-fractional
standard NTS process are presented also in Table 2 for each
stocks. To compare the performance of parameter estimation
for ARMA-GARCH model with fNTS innovations with non-
fractional NTS innovation, we provide KS and AD2 statistic
with p-values for the ARMA-GARCHmodel with non-fractional
NTS innovations in Table 4 as well. Unfortunately, the estimated
parameters for IBM Co. and AT&T are rejected by KS and AD
tests at the 1% significance level.

If we assume that (εn(tk))k= 1,2,··· ,M is independent and iden-
tically distributed and εn(tk) ∼ N(0, 1), then the Yn fol-
lows the ARMA-GARCH model with normal innovations. The

ARMA-GARCH model with normal innovations is rejected by
both KS test and and AD test for all considered stocks at the 1%
significance level.

Therefore, we can conclude that the ARMA-GARCH model
with fNTS innovations describes behavior of the high frequency
return time series investigated in this section. While, the
ARMA-GARCH models with non-fractional NTS innovations
and normal innovations do not perfectly explain the behavior of
the high frequency return data.

6. Assessment Risk on the ARMA-GARCH
Model with fNTS Innovations

In this section, portfolio VaR and AVaR on the ARMA-GARCH
model with fNTS innovations are discussed, and they are applied
to the portfolio optimization.

Let T > 0 be a time horizon. Assume that we have a
portfolio with N stocks. Suppose the stock return vector pro-
cess Y = (Y(tk))k∈{0,1,2,··· ,M} with Y(tk) = (Y1(tk), Y2(tk),
· · · , YN(tk)) follows the ARMA-GARCH model with fNTS inno-
vations as defined in Section 5 and X ∼ fstdNTSN (H, α,
θ , β , 6) generated by Z ∼ stdNTSN (α, θ , β , 6), where
{t0, t1, · · · , tM} is a given discrete time such that tk = k · ∆t
with ∆t = T /M for k ∈ {0, 1, 2, · · · ,M}. Then a portfolio
return process R = (R(tk))k∈{0,1,2,··· ,M} with allocation weight

vector w = (w1, w2, · · · , wN)
T with

∑N
n= 1 wn = 1 is given by

R(tk) =
∑N

n= 1 wnYn(tk).
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TABLE 4 | Goodness-of-fit test for the ARMA-GARCH model with normal innovations.

Apple Inc. Google Inc. IBM Co. AT&T Wal-Mart Stores Inc.

ARMA-GARCH MODEL WITH fNTS INNOVATIONS

KS 0.0314 0.0431 0.0579 0.0458 0.0431

(p-value) (0.4186) (0.1068) (0.0103) (0.0741) (0.1069)

AD2 1.1206 1.5869 3.5267 1.7146 1.6252

(p-value) (0.2997) (0.1570) (0.0149) (0.1326) (0.1492)

ARMA-GARCH MODEL WITH (NON-FRACTIONAL) NTS INNOVATIONS

KS 0.0309 0.0463 0.0845 0.0594 0.0485

(p-value) (0.4372) (0.0683) (0.0000) (0.0078) (0.0490)

AD2 1.1722 2.5099 8.0708 3.9592 1.8555

(p-value) (0.2784) (0.0490) (0.0001) (0.0091) (0.1105)

ARMA-GARCH MODEL WITH NORMAL INNOVATIONS

KS 0.0683 0.0858 0.1788 0.1129 0.0800

(p-value) (0.0013) (0.0000) (0.0000) (0.0000) (0.0000)

AD2 671.3620 685.7825 895.2760 810.3928 665.1581

(p-value) (0.0013) (0.0000) (0.0000) (0.0000) (0.0000)

We have

R(k+ 1) =

N
∑

n= 1

wnYn(k+ 1)

=

N
∑

n= 1

wn(cn + anYn(k) + bnσn(k)εn(k))

+

N
∑

n= 1

wnσn(k+ 1)εn(k+ 1) (16)

and

N
∑

n= 1

wnσn(k+ 1)εn(k+ 1)

=

N
∑

n= 1

wnσn(k+ 1)
Xn(k+ 1)− Xn(k)

(tk+ 1 − tk)H

= (∆t)−H
N
∑

n= 1

wnσn(k+ 1)(Xn(k+ 1) − Xn(k)).

By Equation (14), we obtain

N
∑

n= 1

wnσn(k+ 1)εn(k+ 1)

≈ (∆t)−HKH(tk+ 1, tk)

N
∑

n= 1

wnσn(k+ 1)(Zn(k+ 1) − Zn(k))

+ (∆t)−H
N
∑

n= 1

k− 1
∑

j= 0

wnσn(k+ 1)(KH(tk+ 1, tj)

− KH(tk, tj))(Zn(tj+ 1) − Zn(tj)) (17)

Let (F(tk))k∈{1,2,··· ,M} be the natural filtration generated by Y .
Then σn(k+ 1) and

N
∑

n= 1

k− 1
∑

j= 0

wnσn(k+ 1)(KH(tk+ 1, tj)

−KH(tk, tj))(Zn(tj+ 1)− Zn(tj))

are F(tk)-measurable. Moreover, since Zn has stationary
increments, we have

N
∑

n= 1

wnσn(k+ 1)(Zn(k+ 1)− Zn(k))
∣

∣

∣

F(k)

d
=

N
∑

n= 1

wnσn(k+ 1)Zn(∆t)

Hence, we have

N
∑

n= 1

wnσn(k+ 1)(Zn(k+ 1) − Zn(k))
∣

∣

∣

F(k)

d
= 4(∆t), (18)

where (4(t))t≥ 0 ∼ NTS1(α, θ, β̄, γ̄ , 1) with

β̄ =

N
∑

n= 1

wnσn(k+ 1)βn,

γ̄ =

√

√

√

√

N
∑

m= 1

N
∑

n= 1

wmwnσm(k+ 1)σn(k+ 1)σm,nγmγn,

and

γn =

√

1− β2
n

(

1− α

2θ

)

, n = 1, 2, · · · ,N,

by Proposition 1. Therefore, we can discuss VaR and AVaR as fol-
lows. The VaR and AVaR for R(k + 1) with the significance level
η under information until time tk are defined by

VaRη(R(k+ 1)
∣

∣F(k)) = − inf{x|P[R(k+ 1) ≤ x
∣

∣F(k)] > η}.

and
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AVaRη(R(k+ 1)
∣

∣F(k)) =
1

η

∫ η

0
VaRx(R(k+ 1)

∣

∣F(k))dx.

respectively. By Equation (16), we have

VaRη(R(k+ 1)
∣

∣F(k))

= −

N
∑

n= 1

wn(cn + anYn(k) + bnσn(k)εn(k))

+ VaRη

(

N
∑

n= 1

wnσn(k+ 1)εn(k+ 1)
∣

∣F(k)

)

,

and by Equation (17), we obtain

VaRη(R(k+ 1)
∣

∣F(k))

≈ −

N
∑

n= 1

wn(cn + anYn(k) + bnσn(k)εn(k))

− (∆t)−H
N
∑

n= 1

k− 1
∑

j= 0

wnσn(k+ 1)(KH(tk+ 1, tj)

− KH(tk, tj))(Zn(tj+ 1)− Zn(tj))

+ (∆t)−HKH(tk+ 1, tk)VaRη
(

N
∑

n= 1

wnσn(k+ 1)(Zn(k+ 1) − Zn(k))
∣

∣F(k)

)

Thus, by Equation (18) we obtain

VaRη(R(k+ 1)
∣

∣F(k))

≈ −

N
∑

n= 1

wn(cn + anYn(k) + bnσn(k)εn(k))

− (∆t)−H
N
∑

n= 1

k− 1
∑

j= 0

wnσn(k+ 1)(KH(tk+ 1, tj)

− KH(tk, tj))(Zn(tj+ 1) − Zn(tj))

+ (∆t)−HKH(tk+ 1, tk)VaRη

(

4(∆t)
)

, (19)

By the same argument, we obtain AVaR as follows

AVaRη(R(k+ 1)
∣

∣F(k))

≈ −

N
∑

n= 1

wn(cn + anYn(k) + bnσn(k)εn(k))

− (∆t)−H
N
∑

n= 1

k− 1
∑

j= 0

wnσn(k+ 1)(KH(tk+ 1, tj)

− KH(tk, tj))(Zn(tj+ 1) − Zn(tj))

+ (∆t)−HKH(tk+ 1, tk)AVaRη

(

4(∆t)
)

, (20)

The closed-form solutions of VaRη

(

4(∆t)
)

and AVaRη

(

4(∆t)
)

for NTS process (4(t))t≥ 0 is presented in Kim et al. [27].
The Figures 3A,B exhibit the forecasted 1min ahead VaR and

AVaR values, respectively, for an equally weighted portfolio for

FIGURE 3 | Forecasted 1 min (A) VaR and (B) AVaR under the

ARMA-GARCH model with non-fractional NTS and fNTS innovations.

VaR and AVaR values for the ARMA-GARCH model with fNTS innovations

are given by solid curves, and those values for the ARMA-GARCH model

with non-fractional NTS innovations are given by dash curves.

the five stocks in this study based on the parameters in Table 2

and information we discussed in the Section 5. The equally
weighted portfolio is the portfolio having allocation weight as
w = (1/N, 1/N, · · · , 1/N), where N is the number of stocks
in the portfolio. The forecasted 1-min VaR and AVaR values are
calculated by Equation (19) and Equation (20), respectively, at
confidence levels from 0.5 to 10%. The VaR and AVaR values
for the portfolio based on the ARMA-GARCH model with non-
fractional NTS innovations are presented in the figure. The VaR
(AVaR) values of the ARMA-GARCH model with fNTS inno-
vations are larger than VaR (AVaR) values of the model with
non-fractional NTS innovations.

7. Portfolio Optimization and Risk
Budgeting on the ARMA-GARCH Model
with fNTS Innovations

Using VaR and AVaR values by Equation (19) and Equation (20),
we can find the optimal portfolio. The VaR minimizing portfolio
is obtained by solving the following optimization problem:
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TABLE 5 | Optimal allocation weight for the portfolio with the five stocks

and performance measures.

wn Equally VaR AVaR

weighted minimizing minimizing

portfolio portfolio portfolio

Apple Inc. w1 0.2 0.0641 0.0229

Google Inc. w2 0.2 0.0001 0.0069

IBM Co. w3 0.2 0.2330 0.2905

AT&T w4 0.2 0.3195 0.3030

Wal-Mart Stores Inc. w5 0.2 0.3833 0.3766

E[R(k + 1)|F (tk )] 2.5924 · 10−4 2.6435 · 10−4 2.8388 · 10−4

VaR0.01 (R(k + 1)|F (tk )) 1.2243 · 10−3 0.9455 · 10−3 0.9501 · 10−3

AVaR0.01 (R(k + 1)|F (tk )) 1.6534 · 10−3 1.2686 · 10−3 1.2645 · 10−3

VaRRatio(1%) 0.2117 0.2742 0.2988

STARR(1%) 0.1568 0.2044 0.2245

min
w

VaRη(R(k+ 1)
∣

∣F(k)) s.t.



















E[R(k+ 1)
∣

∣F(k)] ≥ µ0,
∑N

n= 1 wn = 1,

wn ≥ 0.0001, for

n = 1, 2, · · · ,N

where µ0 is the benchmark expected return. Similarly, the AVaR
minimizing portfolio is obtained by solving the following opti-
mization problem:

min
w

AVaRη(R(k+1)
∣

∣F(k)) s.t.



















E[R(k+ 1)
∣

∣F(k)] ≥ µ0,
∑N

n= 1 wn = 1,

wn ≥ 0.0001, for

n = 1, 2, · · · ,N

Table 5 presents the VaR and AVaR minimizing portfolios with
the benchmark return µ0 = 2.5924 · 10−4. To measure perfor-
mance of the optimal portfolio, we use the VaR ratio and stable
tail-adjusted return ratio (STARR), which are defined by

VaR Ratio(η) =
E[R(k+ 1)|F(tk)]

VaRη(R(k+ 1)|F(tk))

and

STARR(η) =
E[R(k+ 1)|F(tk)]

AVaRη(R(k+ 1)|F(tk))
,

respectively5. The following is concluded from the results
reported in Table 5:

• The VaR minimizing portfolio has the best expected return
among the three portfolios.

• The AVaR minimizing portfolio has smaller VaR than the
case of the VaR minimizing portfolio, but that is not
surprising since the AVaR minimizing portfolio has less
expected return than the case of the VaR minimizing
portfolio.

• The AVaR minimizing portfolio has the largest VaR Ratio
among the three VaR ratios.

• The AVaR minimizing portfolio has the largest STARR among
the three STARR.

8. Conclusion

The multivariate ARMA-GARCH model with fNTS innova-
tions exhibits fat-tails, asymmetric dependence, volatility cluster-
ing, and long-range dependence. Comparing with two ARMA-
GARCH models with non-fractional NTS innovation and nor-
mal innovations, the ARMA-GARCH model with fNTS inno-
vations has better performance in parameter estimation for 1-
min stock return data investigated in this paper. That means
the fNTS process describes the behavior of the residual pro-
cess of 1-min returns better than the non-fractional NTS pro-
cess or Brownian motion. The portfolio VaR and AVaR are cal-
culated by the approximation method under the model, and
those risk measures are used for portfolio optimization. In this
investigation, we obtain the fact that the risk measures of the
ARMA-GARCH model with fNTS innovations are more conser-
vative than those of the model with non-fractional NTS inno-
vations. The AVaR minimizing portfolio performs better than
the VaR minimizing portfolio for the case considered in this
paper.

5Many literatures define the VaR ratio and STARR as

VaR Ratio(η) =
E[R(k+ 1)− Rf (k+ 1)|F(tk)]

AVaRη(R(k+ 1)− Rf (k+ 1)|F(tk))

and

STARR(η) =
E[R(k+ 1)− Rf (k+ 1)|F(tk)]

AVaRη(R(k+ 1)− Rf (k+ 1)|F(tk))
,

respectively, where Rf is a market index return. In this paper, we assume Rf = 0

for considering absolute performance.
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8. Rosiński J. Tempering stable processes. Stochast Proce Appl. (2007) 117:677–

707. doi: 10.1016/j.spa.2006.10.003

9. Barndorff-Nielsen OE, Shephard N. Normal Modified Stable Processes. Eco-

nomics Series Working Papers from University of Oxford, Department of

Economics. (2001) 72.

10. Barndorff-Nielsen OE, Levendorskii S. Feller processes of normal inverse

gaussian type. Quantitat Finan. (2001) 1:318–31. doi: 10.1088/1469-

7688/1/3/303

11. Eberlein E, Madan DB. On correlating lévy processes. J Risk. (2010) 13:3–16.

12. Kim YS, Giacometti R, Rachev ST, Fabozzi FJ, Mignacca D. Measuring finan-

cial risk and portfolio optimization with a non-Gaussian multivariate model.

Anna Operat Res. (2012) 201:325–43. doi: 10.1007/s10479-012-1229-8

13. Kim YS, Volkmann D. Normal tempered stable copula. Appl Math Lett.

(2013). 26:676–80. doi: 10.1016/j.aml.2013.01.009

14. Kim YS, Rachev ST, Chung DM, Bianchi ML. The modified tempered stable

distribution, GARCH-models and option pricing. Probabil Math Stat. (2009)

29:91–117.

15. Kim YS. Fractional multivariate normal tempered stable process. Appl Math

Lett. (2012) 25:2396–401. doi: 10.1016/j.aml.2012.07.011

16. Pflug G. Some Remarks on the value-at-risk and the Conditional value-at-risk.

In: Uryasev S, editor. Probabilistic ConstrainedOptimization:Methodology and

Applications. Kluwer Academic Publishers (2000). p. 272–281.

17. Rockafellar RT, Uryasev S. Optimization of conditional value-at-risk. J Risk

(2000) 2:21–41.

18. Rockafellar RT, Uryasev S. Conditional value-at-risk for general loss dis-

tributions. J Bank Finance. (2002) 26:1443–71. doi: 10.1016/S0378-4266(02)

00271-6

19. Artzner P, Delbaen F, Eber JM, Heath D. Coherent measures of risk. Math

Finance. (1999) 9:203–28. doi: 10.1111/1467-9965.00068

20. Rachev ST, Stoyanov S, Fabozzi FJ. Advanced Stochastic Models, Risk Assess-

ment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Perfor-

mance Measures.Hoboken, NJ: John Wiley & Sons (2007).

21. Markowitz HM. Portfolio selection. J Finance. (1952) 7:77–91.

22. Samorodnitsky G, Taqqu MS. Stable Non-Gaussian Random Processes. Chap-

man & Hall/CRC (1994). (Baca Raton, London, New York, Washinton,

DC).

23. Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion.

IEEE Trans Inf Theory. (1992) 38:910–17. doi: 10.1109/18.119751

24. Abry P, Flandrin P, TaqquMS, Veitch D. Self-similarity and long-range depen-

dence through the wavelet lens. In: Theory and Applications of Long-Range

Dependence. Birkhäuser (2003). eds D. Paul, O. George and T. Murad p.

527–556.

25. Marsaglia G, Tsang WW, Wang G. Evaluating kolmogorov’s distribution. J

Stat Softw. (2003) 8:1–4.

26. Marsaglia G, Marsaglia J. Evaluating the anderson-darling distribution. J Stat

Softw. (2004) 9:1–5.

27. Kim YS, Rachev ST, Bianchi ML, Fabozzi FJ. Computing VaR and AVaR in

infinitely divisible distributions. Probab Math Stat. (2010) 30:223–45.

28. Nualart D. Stochastic integration with respect to fractional Brown-

ian motion and applications. Contemp Math. (2003) 336:3–39. doi:

10.1090/conm/336/06025

Conflict of Interest Statement: The author declares that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Kim. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or repro-

duction in other forums is permitted, provided the original author(s) or licensor are

credited and that the original publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution or reproduction is permitted which

does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 May 2015 | Volume 1 | Article 1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Kim NTS model with LRD & Volatility-clustering

Appendix

To define a process with long-range dependence, we use the
Volterra kernel KH : [0,∞)× [0,∞) → [0,∞), given by

KH(t, s)

= cH

(

(

t

s

)H− 1
2

(t − s)H− 1
2 −

(

H −
1

2

)

s
1
2−H

∫ t

s
uH− 3

2 (u− s)H− 1
2 du

)

1[0,t](s)

with

cH =

(

H(1− 2H)Ŵ( 12 −H)

Ŵ(2− 2H)Ŵ(H + 1
2 )

)
1
2

.

andH ∈ (0, 1). According to Nualart [28] andHoudre and Kawai
[7], we have the following facts:

• We have

∫ t∧s

0
KH(t, u)KH(s, u)du =

1

2

(

t2H + s2H − |t − s|2H
)

,

(21)

and
∫ t

0
KH(t, s)

2ds = t2(H− 1
2 )+1. (22)

• If H ∈ ( 12 , 1) then

KH(t, s) = cH

(

H −
1

2

)

s
1
2 −H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du1[0,t](s).

Moreover, K 1
2
(t, s) = 1[0,t](s).

• Let t > 0 and let p ≥ 2. KH(t, ·) ∈ Lp([0, t]) if and only if

H ∈
(

1
2 −

1
p ,

1
2 +

1
p

)

. When KH(t, ·) ∈ Lp([0, t]), we have

∫ t

0
KH(t, s)

pds = CH,pt
p(H− 1

2 )+1,

where

CH,p = c
p
H

∫ 1

0
vp
(

1
2 − H

)

×

[

(1− v)H− 1
2 −

(

H −
1

2

)

∫ 1

v
wH − 3

2 (w− v)H− 1
2 dw

]p

dv. (23)
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