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On macrohedging problem in
semimartingale markets

Mohamed Abdelghani and Alexander Melnikov*

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada

Macrohedging is a hedging technique commonly used in practice. It allows one to

find a hedging policy that offsets several underlying risk factors of a portfolio of

assets as a whole. Here, we develop a macrohedging methodology in a general

semimartingale market. We calculate the optimal macrohedge that achieves minimum

risk, in a quadratic-variation sense, given a set of possible hedging instruments. We

illustrate general macrohedging results by the Black-Scholes model.

Keywords: hedging, portfolio optimization, open portfolios, dynamic risk

1. Introduction

Traditional hedging requires that one hedges individual assets comprising the portfolio. On the
other hand, macrohedging is about reducing several underlying risk factors, such as, volatility of
interest rate, volatility of exchange rates and variability of a portfolio of assets as a whole. In a
macrohedge one must carry on an investment policy to maximize returns, and a hedge policy that
reduces the risk of the entire portfolio, a balance sheet or a financial entity with hedge instruments,
such as, futures and option contracts.

Examples of macrohedge strategies are plenty in practice, we will mention a few here. Consider
an index fund manager who wants to reduce the risk of a probable future down turn in the price
of an index fund. The fund manager can take a short position in index futures to lock in the
value of the index fund and hedge the potential risk of any downfall [1]. Interest rate portfolio
managers invest in fixed income assets that follow rates of credible global debt, for example, US
treasury bills, European goverment bonds, developed or emerging nation government bonds. Fixed
income securities are traded over-the-counter or in derivatives’ markets dominated by banks and
institutional funds. A fixed income macrohedge strategies include, an outright directional trades
of government debt or relative value trading, in which one trades one debt instrument relative to
another [2]. Global investment funds are wider in scope than indices. They focuses on investing in
instruments whose price variation are based on changes in economic policies and flow of capital
around the globe. Global funds macrohedge strategies accounts primarily for market risks, e.g.,
credit risk and liquidity risks, to drive trading decisions [2] and ignore other local and minor
risk factors. Global funds hedge against currency prices fluctuations, interest rates changes and
global events, such as, a possible break down of the Euro a collapse of the Chinese banking system,
escalation of the conflict in Ukraine, hurricanes etc. Moreover, global funds focus on indices based
hedge instruments to hedge their positions. Each scenario involves different co-movements of asset
classes and must be dealt with in the context of macrohedging [3].

Another common examples of macrohedges are from the commodities markets. Suppose an
airline company wants to avoid the variation in the price of jet fuel for which futures or option
contracts may not exist or with enough liquidity and time horizons. By buying futures in another
correlated assets such as oil and natural gas the company can offset the risk of the price of jet
fuel fluctuations [4]. But note that, even though jet fuel prices are correlated with oil and gas, the
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different properties of the underlying and a possible maturity
dates mismatches makes it impossible to hedge all the risk
associated with jet fuel price variability. Another example of
hedging in the commodities market, specially for commodities
such as oil and gas, is that of commodities exporters. Global
commodities exporters can insure against the risk in exported
income by accumulating foreign assets in stabilization funds, or
by hedging with derivatives [5].

In insurance market, insurance companies are considering
more of a macro view to hedge their risks [6]. There are many
risks inherent to the portfolio of an insurer, not all of it are
market risks. Some of these risk factors offset one another. To
hedge each instrument independently is redundant and costly.
Therefore, a macrohedge strategy is used to hedge leftover risk.
The fact that some risk factors in an insurer portfolio offset
each other is not just true for insurance portfolios, it is true
for all diversified financial portfolios. Hence, macrohedging is in
principle the best option for hedging the risks in large financial
portfolios.

From the examples above one realizes the benefits
macrohedging. First, the risk factors of the entire portfolio
is less than the absolute sum of risk factors of assets comprising
the portfolio if they were to be taken independently. This stems
from the fact that anticorrelated assets in a portfolio offset
each other. Furthermore, hedging of the entire portfolio can be
less costly than hedging the assets comprising it individually.
Moreover, macrohedging is better suited for hedging global
economic risks such as interest rate fluctuations, currency price
changes, wars, changes in weather and changes in economic
policies. Additionally, In certain cases, some assets don’t have
tradable or liquid hedge instruments and can only be hedged by
other instruments of correlated underlying assets. In addition to
the benefits of macrohedge we have listed, Casano [7] pointed
out that macrostrategies have outperformed other investment
strategies for three fundamental reasons: one, macrohedges
benefits from a sustained increase in volatility of currencies,
interest rates, and commodities. Two, macrohedges have a low
correlation to equities. Three, they are driven by macroeconomic
themes and not by individual bottom-up fundamental analysis.

With all its benefits, macrohedging is hard to implement in
practice. Because, it is not usually possible to find a fewer set
of hedging instruments that can offset most of the risk factors
of the broader aspects of a portfolio. Also, buying the necessary
set of hedge instruments to eliminate all risks of a portfolio
may not be possible due to costs and availability. Furthermore,
macrohedging requires that we assess risk exposures on a
continuous basis at the portfolio level where as time passes new
exposures are being added to the portfolio and others removed
[8]. This is a difficult problem known as the open dynamic
portfolio hedging problem. Macrohedge instruments have a finite
time horizon with which portfolio exposures are hedged. As a
result of these changes, multiple finite time horizons and the
addition and removal of risk exposure, one can address them
by treating the macrohedged portfolio as a series of closed
portfolios with short lives. However, this introduces complexities
in accounting of hedges as regards to tracking, amortization of
hedge, and adjustments and classification of gains and losses. So,

one must examine the impact of each hedging strategy in terms
of the trade offs between risk and return IAS14.

Furthermore, we like to point out that having amacroportfolio
and then applying a hedge policy on it can be suboptimal. The
best method is to find the optimal portfolio is to include the
hedge instruments and assets together in a single portfolio and
use utility maximization given some constraints algorithm to find
the optimal allocation of assets and hedge instruments. However,
this may not be possible in practice for a variety of reasons such as
cost, liquidity and computational complexity of the optimization
problem for a large number of financial instruments. To address
these problems one uses hierarchical optimization techniques [9]
. Hierarchical optimization partitions the optimization problem
in a way, such that, a subset of variables (assets) are constrained to
a solution of an optimization problem (e.g., to maximize returns)
and the remaining variables (hedge instruments) are optimized
by another objective function (e.g., to minimize risk exposure).

One can state that macrohedging entails solving several
related problems: (1) Selecting the set of assets that make up the
portfolio. (2) Find the optimal portfolio to achieve, for example,
optimal expected returns. (3) Assessing the risk exposures of
the portfolio. (4) Selecting the appropriate hedge instruments
based on some sort of a selection criteria keeping in mind time
horizons and costs. (5) Finding the hedge policy—the allocation
of hedge instruments by which one can hedge most of the of the
investment portfolio risks. The problems we will examine in this
work are (5) and (4); That is in a general Cadlag semimartingale
market under the usual conditions, given a portfolio of assets
and a number of hedging instruments we will show how one can
find a hedge portfolio to remove part of the portfolio risks using
different methods. We will also show that given a set of hedge
instruments how can we select a smaller subset that is perhaps
less costly and hedges most of the portfolio exposures. We will
illustrate the workings of our methods in a Black-Scholes market.

The paper is organized as follows: In Section 2, we formulate
the macrohedging problem in a general semimartingale market.
In Section 3, we describe two different methods to derive
the macrohedge. In Section 4, we present an example of a
macrohedge in a Black-Scholes financial market.

2. Market Model

Let (�,F, F = (Ft)t≥ 0,P) be the standard stochastic basis
and that the financial market evolves on this basis over a time
horizon [0,T]. In this world, the market is composed of two
baskets of assets: the portfolio basket of assets and a set of hedging
instruments. An example of such a world is, a portfolio basket
could be a bond and a stock while the hedging instrument is
a European put option on the stock. Another example is of a
portfolio of a stock and a put option on another stock “closely
related” to the portfolio stock.

Let X = (X1,X2, ...,Xn) be a vector of n assets determining
the value V of the portfolio π . The portfolio basket (or space) of
assets is X and X ∈ X. Let Y be the space of hedging instruments
and Y = (Y1,Y2, ...,Ym) is the vector of instruments in Y.
We associate with X the filtration FX = (FX

t )t≥ 0 which we
assume complete and right continuous. With Y we associate the
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filtration FY = (FY
t )t≥ 0, which we also assume to be complete

and right continuous. Together σ (FX
t ∪ F

Y
t ) ⊆ Ft for all t. The

space of all possible self financing portfolios is 5 and the vector
π = (π1, π2, ..., πn) ∈ 5. All securities and hedge instruments
in this market are Cadlag semimartingales.

Note that in general
[

Xi,Yk
]

6= 0 and F
X ∩ F

Y 6= ∅ for all

t and (i, k). In other words, the spaces X and Y overlap in most
practical cases and that we will assume this true in our model of
the market. This overlap is needed for the hedging instruments
to be useful.

The value V of portfolio π is given by

V =
∑n

i= 1
πiX

i
t = π ′X.

The portfolio π is self financing and a predictable process that
depends on X, hence it is an F

X-measurable process. Therefore,
the value processV is alsoFX measurable. We let FV = (FV

t )t≥ 0

be the filtration associated with the value process V and assume
that, it is right continuous and complete and FV ⊆ FX .

Now, let us consider the hedging portfolio λ over the set of the
hedge instruments Y having the value,

U = λ′Y.

Similarly, we require that λ be self-financing. Let 3 be the set
of all self-financing portfolios over Y for which λ ∈ 3. We
let FU = (FU

t )t≥ 0 be the filtration associated with the value
process U and assume that, it is right continuous and complete
and FU ⊆ FY .

The macroportfolio is φ = (π, λ) is composed of both the
assets and hedge instruments and has a value

Z = π ′X + λ′Y.

Therefore, one can define macrohedging as all those methods by
which one can select a hedge portfolio λ given the investment
portfolio π . Since π is usually the optimal portfolio for some
objective function JX that maximizes wealth, one can understand
macrohedging as a hierarchical optimization problem; First, one
optimizes the objective function JX , for example, to maximize
returns. Then, followed by a risk minimization problem in which
one minimized the risk of the entire portfolio. Risk minimization
can be achieved by minimizing some sort of a risk measure say
ρZ such as variance of Z or Value-at-Risk of Z. Below we will
consider two different but simple methodologies of finding λ.

3. Macrohedging

Here we describe several methods for macrohedging under the
assumptions we have described above.

3.1. Quadratic Projection
Here we describemacrohedging in semimartingales market using
“quadratic projection.” The projection of macroportfolio Z on
the space Y where the projection here is computed in the sense
of the quadratic variation.

THEOREM 3.1. Given the portfolio and its associated value (π,V)

and hedge instruments Y such that, E [V,V]t < ∞, E
[

Y,Y ′]
t
<

∞ and the matrix
[

Y,Y ′]
t
is not singular for all t ≥ 0 then one

can write the value as

V = λ′Y + ξ

where λ = d[V,Y ′]
d[Y,Y ′] and

[

ξ,Y ′] = 0.

Proof: Consider the process V − λ′Y where λ is a
predictable process. Then λ that renders the quadratic variation
[

V − λ′Y,Y ′] = 0 is

0 =
[

V − λ′Y,Y ′] =
[

V,Y ′] − λ′ ·
[

Y,Y ′] ⇒

λ =
d

[

V,Y ′]

d [Y,Y ′]
.

So, one sets ξ = V − λ′Y and the theorem is proven.

REMARK 3.2. Note that the process V̂ = λ′Y with λ = d[V,Y ′]
d[Y,Y ′]

is FY -measurable defined over the space of hedge instruments Y,
and we will refer to it as the projection of V on Y. Furthermore,
the quadratic variation of the unhedged part ξ = V − V̂ of V is

[ξ, ξ ] =
[

ξ,V − V̂
]

= [ξ,V]; since
[

ξ, V̂
]

= 0. So

[ξ, ξ ] = [V,V]−
[

V,Y ′] [

Y,Y ′]−1
[Y,V] .

Now we layout simple consequences as relates to the projection
process V̂ .

PROPOSITION 3.3. In general, the quadratic correlation of the
portfolio V and V̂, defined as

⌊

V, V̂
⌋

=

[

V, V̂
]

√
[V,V]

√

[

V̂, V̂
]

is either zero, less that or equal to 1 or larger than or equal to−1.

Proof: Simply by using Kunita-Watanabe inequality
∣

∣

∣

[

V, V̂
]∣

∣

∣ ≤ [V,V]1/2
[

V̂, V̂
]1/2

, the fact that V ≥ 0, the

fact that Yk ≥ 0 for each component k in Y , and that the
components of the hedge portfolio λ could either be positive or
negative depending on the position with respect to the hedge
instrument we arrives at

−1 ≤
⌊

V, V̂
⌋

≤ 1,

which proves the result.

REMARK 3.4. This simple result is an interesting one. It allows us
to take a portfolio and hedge instruments and hedge the projection
of the portfolio on the instruments by going short or long according
to its quadratic correlation of the hedge instrument with the

portfolio. Moreover, one notices that it is possible for
⌊

V, V̂
⌋

= 0

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 May 2015 | Volume 1 | Article 3

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Abdelghani and Melnikov On macrohedging problem in semimartingale markets

meaning that we can form a 0 variance portfolio in the projection
space Y. A similar result was presented by Denev [3] in the context
of two period model using standard correlation as a measure of
risk.

The next result will help us determine a hedge portfolio for which
the projection of the macroportfolio value Z on Y is zero.

THEOREM 3.5. Given the macroportfolio Z there is a hedge

portfolio λ = −π
d[X,Y ′]
d[Y,Y ′] such that

[

Z,Y ′] = 0 and for which

the maximally hedged macroportfolio
◦
Z is given by

◦
Z = π

[

X −
d

[

X,Y ′]

d [Y,Y ′]
Y

]

.

Proof: Let us compute the projection of Z = V + U on Y ;

[

Z,Y ′] =
[

V,Y ′] +
[

U,Y ′]

=
[

V,Y ′] + λ′ ·
[

Y,Y ′] ,

since λ is self-financing and predictable i.e.,
[

U,Y ′] = λ′·
[

Y,Y ′].
Set

[

Z,Y ′] = 0 one finds λ,

◦
λ′ = −

d
[

V,Y ′]

d [Y,Y ′]
= −π ′ d

[

X,Y ′]

d [Y,Y ′]
.

Similarly, since π is self-financing and predictable then

d
[

V,Y ′] = π ′d
[

X,Y ′]. Substituting
◦
λ in Z one finds the

maximally hedged portfolio
◦
Z,

◦
Z = π ′X − π ′ d

[

X,Y ′]

d [Y,Y ′]
Y

= π ′
[

X −
d

[

X,Y ′]

d [Y,Y ′]
Y

]

.

REMARK 3.6. The choice of the hedge portfolio λ provided by the
above theorem will affect the average returns of the portfolio π in
the case of non-0 price instruments.

A different approach and perhaps a more general one is to
consider macrohedge in the context of a portfolio optimization
problem where one finds the hedge portfolio to minimize some
sort of a risk measure under constraints. Next we will consider
this approach to macrohedging.

3.1.1. Quadratic-Variation Minimization Problem
There are several macrohedge risk minimization problems that
are possible. Here we outline a procedure for determining a
hedge portfolio that minimizes the quadratic variation of the
macroportfolio as a whole. Few authors have investigate the
macrohedge risk minimization problem. Denev [3] considered
macrohedging in a two period financing model. Borensztein et
al. [5] considered macrohedging for commodity exporters. They
used a dynamic optimization in discrete time to estimate welfare
gains of hedging against commodities’ price risk for commodities

exporting countries by using futures and options to reduce the
volatility of exported income.

Macrohedging can be thought of as a general risk
minimization problem under constraints. Constraint risk
minimization problems have been addressed in the mathematical
finance literature. We mention a few here. For example, in
Becherer and Ward [10] the problem of finding a minimum
variance hedge of a portfolio of derivatives through other
derivatives (i.e., partial hedging) was investigated. In incomplete
markets a contingent claim cannot be perfectly replicated but it is
possible to eliminate risk by superhedging [11]. Another method
of hedging is quantile hedging first developed by Follmer [12].

Here we will consider local minimization of macroportfolio
quadratic variation. The optimization problem can be stated as
follows,

◦
λt = arg min

λ∈3
[Z,Z]t. (1)

The solution of this problem is contained in the following simple
theorem.

THEOREM 3.7. The solution of 1 is

◦
λ = − d[X,Y ′]

d [Y,Y ′]
π.

Proof: Let’s write the quadratic variation of Z;

[Z,Z]t = [U + V,U + V]t

= [U,U]t + 2[U,V]t + [V,V]t

=
[

π ′X,X′π
]

t
+ 2[π ′X,Y ′λ]t +

[

λ′Y,Y ′λ
]

t

=
∫ t

0
π ′
sd

[

X,X′]
s
πs + 2π ′

sd[X,Y ′]sλs + λ′sd
[

Y,Y ′]
s
λs.

Given π , X, and Y are constraint, one must vary λ to minimize
the integral above. We can approach this problem by computing
the derivative of [Z,Z] with respect to λ,

∂[Z,Z]

∂λ
= 2π ′d[X,Y ′]+ 2λ′d

[

Y,Y ′] = 0. (2)

Solving for λt ,

◦
λ′t = −π ′

t

d[X,Y ′]t
d [Y,Y ′]t

. (3)

REMARK 3.8. Equation (2) can be justified by Embedding λt(ω) in
the space {(ω, t, λ)}. One can think of λt(ω) as a curve on a surface
in this space. A curve on a surface in {(ω, t, λ)} can be defined as
a function ̥(ω, t, λ) = λt(ω). Then, we can write

∂[Z,Z]

∂λ
= ∂

∂λ

∫ t

0
π ′
sd

[

X,X′]
s
πs + 2π ′

sd[X,Y ′]s̥(ω, s, λ)

+ ∂

∂λ

∫ t

0
̥(ω, t, λ)′d

[

Y,Y ′]
s
̥(ω, t, λ)

= 2π ′d[X,Y ′]+ 2̥(ω, t, λ)
∂̥(ω, t, λ)

∂λ
d

[

Y,Y ′]

= 2π ′d[X,Y ′]+ 2λ′d
[

Y,Y ′] .

Further details, are out of scope of the current paper.
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REMARK 3.9. The optimal solution of the local optimization
problem infλ∈3[Z,Z]t is the same solution as the one we have
obtained by solving the projection problem in theorem 5 were we

have set the projection [Z,Y] = 0. By substituting for
◦
λ in the

macroportfolio one finds the minimum risk portfolio value,

◦
Z = V +

◦
λ′Y = V − π ′

t

d[X,Y ′]t
d [Y,Y ′]t

Y

= π ′
t

[

X −
d

[

X,Y ′]

d [Y,Y ′]
Y

]

.

The two views are equivalent.

REMARK 3.10. The term X − d[X,Y ′]
d[Y,Y ′] Y are the basket of assets

hedged by instruments Y. This term tells us that one can first think
about hedging the basket of assets without knowing the portfolio
π . Then with this new basket of hedged instrument we can go
ahead and compute the optimal portfolio. This provides us with
an alternative way of looking at macrohedging.

The usefulness of the optimization problem stems from the
fact that we can add constraints to the optimization problem
and solve the problem using Lagrangian method. Consider for
example, minimizing the quadratic variation but subject to the
initial cost of the hedge being less than some positive constant
value u,

◦
λt = arg min

λ∈3
[Z,Z]t,

s.t. U0 ≤ u.

This is an important problem that we will consider in future
work.

Next we consider macrohedging in markets were assets and
hedge instruments are described by stochastic exponential.

3.1.2. Stochastic-Exponential markets and

Macrohedging
Suppose that the securities and hedge instruments in this market
follow the stochastic exponential equations,

Xi
t = Xi

0E(x
i
t), xit = ait +Mi

t (4)

and

Yk
t = Yk

0E(y
k
t ), ykt = bkt + Nk

t (5)

where E(·) is the Dolean-Dade exponential. X0 and Y0 are F0-
measurable random variables. yk = (ykt )t≥ 0 and xi = (xit)t≤ 0

are semimartingales admitting the representation shown above
where ai = (ait)t≥ 0 and bk = (bkt )t≥ 0 are locally bounded
variation processes (ai, bk ∈ V), Mi = (Mi

t)t≥ 0 and Nk =
(Nk

t )t≥ 0 are local martingales inMloc with respect to P.
In this market the optimal hedging portfolio Equation (3) can

be written as follows,

◦
λ′t = −π ′

t

d[X,Y ′]t
d [Y,Y ′]t

= −π ′
t

diag (Xt−) d[M,N′]tdiag (Yt−)

diag (Yt−) d [N,N′]t diag (Yt−)

= −π ′
t

diag (Xt−) d[M,N′]t
diag (Yt−) d [N,N′]t

. (6)

A fundamental issue in macrohedging, is how do we find the best
subset of instruments of the many available ones to hedge our
portfolio with. Below we provide a recipe that will address this
problem.

3.1.3. Essential Hedge Instruments
With macrohedging one might not want to hedge with all given
hedge instruments. This could be as a result of, the price of the
total hedge and transaction costs. In this case one must search for
the best possible subset of hedge instrument that can offset much
of the risk. Here we propose the following method.

First, we compute the total square of quadratic covariation of
V and all hedge instruments Y over the duration of the hedge
[0,T];

(

V,Y i
)

T
=

∫ T

0
[V,Y i]2s ds. (7)

Then, one simply select k < m largest values in the set
{(

V,Y i
)

T

}

as our new subset of hedge instruments. The largest values
represent the hedge instrument that are most correlated with the
assets X and therefore would offset most of the risk.

REMARK 3.11. Onemight wonder how do we calculate the integral
in Equation (7). One possibility is by simulation. Knowing the
volatilities and drifts of the processes X and Y from historical data
one can predict the matrix

(

V,Y ′)
T
.

Next we consider macrohedging from a different point
view, describe hedging by optional projection on the filtration
generated by hedge instruments.

3.2. Information Projection
An alternative approach to “quadratic projection” is to find
the hedging portfolio by optional projection on the filtration
generated by the hedge instruments FY

t ,

V̂t = E
[

Vt|FY
t

]

= E
[

π ′X|FY
t

]

.

V̂ is the value process of the hedgable part of the portfolio π .
Since F

Y represents the total accumulated information up to
time t of the hedging instruments the E

[

Vt|FY
t

]

is a projection
of the investment portfolio on the hedging instrument space Y.
It is essentially that part where it is possible to eliminate the risk.
Therefore, the process ξ = V − V̂ represent the value process
associate with the unhedgable part of the portfolio π .

For E
[

Vt|FY
t

]

to have a computational value one usually seeks

to find an integral representation of V̂ in terms of Y . However,
Y is a semimartingale under the measure P. That brings us to a
related problem of finding a decomposition of V in terms of Y .
We will not be able to consider this problem in its entirety but we
would like to allude to the theorem of optional decomposition
due to Kramkov [13] as a possible way to solving this problem.
Here is the gist of our approach.

Let M(Y) be the family of all equivalent local martingale
measures Q for Y where we assume in this case to be a locally
bounded hedge instruments, and V our portfolio be a positive
process, which is reasonable to assume. Then the portfolio value
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V is a supermartingale for every Q ∈ M(Y) if and only if V
admits the decomposition:

Vt = V0 +
∫ t

0
λ′sdYs − ξt a.s.Q. (8)

where ξ is an optional adapted increasing process. By the above
decomposition one can identify the representation of V̂ ,

V̂ = V̂0 +
∫ t

0
λ′sdYs a.s.Q. (9)

and ξ = V − V̂ .
From Equation (9) we write the hedge portfolio λ as,

◦
λ = dV̂

dY
a.s.Q.

We conclude this work by an example of macrohedge on a
Black-Scholes market.

4. Example

Consider a Black-Scholes market of n assets and m hedge
instruments m ≤ n. We assume either that the interest rate on
the money market account is zero or that all assets are hedge
instruments are discounted by the rate of growth of the money
market account. Let the basket of assets be described by

Xi
t = Xi

0 exp
(

µit +
∑n

i= 1
σ i
j B

j
t

)

.

The portfolio π is to hold the following allocation
π = (π1, π2, ..., πn) for a market duration [0,T]. The value of
the portfolio is Vt =

∑n
i= 1 πiX

i
t .

Let FY = σ
(

B1, ...,Bm
)

be the filtration generated by hedge
instruments, which is a subset of sources of risks in the assets i.e.,
B1 to Bn, as risk factors. The hedge instruments are specified by
the following equations,

Yk(t,T) = Yk(0,T) exp
(

ρk(T − t)+
∑m

l= 1
γ l
j B

j
t

)

.

REMARK 4.1. Without loss of generality we have assumed a
particular ordering of the risk factors

(

B1, ...,Bn
)

where the first
m risk factors are to be hedged by the available hedge instruments.

Let us compute the
〈

Y,Y ′〉 and
〈

X,Y ′〉; since all processes are
continuos we can use the sharp brackets instead of square ones.
Because both hedge and assets are of stochastic exponential form
(see Equation 6) we only have to compute the following two
matrices

σ
[

(

B1, ...,Bn
)′

,
(

B1, ...,Bm
)

]

t
γ =

[

σ1′n1mγ ′] t,

γ
[

(

B1, ...,Bm
)′

,
(

B1, ...,Bm
)

]

t
γ =

[

γ 1m×mγ ′] t

where 1n and 1m are vectors of 1s of length n andm, respectively.

1m×m is identity matrix of size m2. γ =
(

γ
j
i

)

and σ =
(

σ
j
i

)

are matrices of instruments and assets volatilities, respectively.
Therefore, the hedge portfolio will be

◦
λ = −π ′

t exp
(

µt + σBn
t

) [

σ1′n1mγ ′] [

γ 1m×mγ ′]−1

exp
(

−ρ(T − t)− γBm
t

)

.

where µ =diag(µi), ρ=diag(ρi), Bn =
(

B1, ...,Bn
)

and Bm =
(

B1, ...,Bm
)

.
Let us consider computing the hedge in terms of a numerical

example. We choose

σ=









4 3 1 0
0 −2.9 1 1
0 0 −3 1
0 0 0 −1









, µ =









5
4
3
1









,

γ=





1 0 1
0 −1 1
0 0 −1



 , ρ =





1
1
1



 .

where F
X = σ

(

B1,B2,B3,B4
)

and F
Y = σ

(

B1,B2,B3
)

.
Calculating quadratic variations we find

σ
[

(

B1,B2,B3,B4
)′

,
(

B1,B2,B3
)

]

t
γ = tσ









1 0 0
0 1 0
0 0 1
0 0 0









γ ′

=









5 −2 −1
1 3.9 −1
−3 −3 3
0 0 0









t

and

γ
[

(

B1,B2,B3
)′

,
(

B1,B2,B3
)

]

t
γ ′ =





2 1 −1
1 2 −1
−1 −1 1



 t.

Therefore, the hedge is

◦
λt = −π ′

t exp
(

µt + σBn
t−

)









4 −3 0
0 2.9 1.9
0 0 3
0 0 0









exp
(

−ρ(T − t)− γBm
t−

)

.
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