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This paper considers the American option pricing problem under the stochastic volatility

models. In particular, we introduce the GARCHmodel with two heavy-tailed distributions:

classical tempered stable (CTS) and normal tempered stable (NTS) distribution. Then we

apply the Markov chain approach to compute the prices of American style options under

these two models. Minimal entropy provides a convenient way to construct equivalent

martingale measure (EMM) and allows us to overcome the difficulties in incorporating the

Markov chain approximation. The convergence of the approximation is also proved. Both

numerical and empirical results are analyzed to show the advantages and drawbacks of

our approach.

Keywords: tempered stable distribution, GARCH, American options, Markov chain, minimal entropy

1. INTRODUCTION

It is commonly known that the Black-Scholes model does not describe the real behavior of
derivatives very well. Themodel is not consistent with the observed behavior found in asset returns,
such as volatility clustering, skewness and fat tails. Many studies have been conducted to modify
Black-Scholes model to incorporate these three empirical features of the asset returns. The α-stable
distribution proposed by Mandelbrot [1] is an alternative to the normal distribution for modeling
asset returns because it allows for skewness and fat tails. While the α-stable distribution has certain
desirable properties, it is not suitable in modeling option prices, because it does not have the
second moment or even the first moment. In order to obtain a well-defined model for pricing
options, the mean, variance, and exponential moments of the return distribution have to be finite.
Therefore, there are many modified distributions proposed for financial modeling based on the
α-stable distribution. For example, the classical tempered stable (CTS) distribution [2, 3], normal
inverse Gaussian (NIG) distribution [4] and its generalization called normal tempered stable (NTS)
distribution [5], the modified tempered stable (MTS) distribution [6] and an extension of the
CTS distribution named the KR distribution [7]. These distributions, called the tempered stable
distributions, not only can incorporate the fat tails and skewness of asset returns, but also have
finite moments for all orders. Furthermore, they are all infinitely divisible, i.e., the random variable
can be decomposed to a sequence of i.i.d random numbers from the same family. So each of them
uniquely corresponds to a Lévy process. Therefore, by replacing the Brownianmotion by these Lévy
processes, one can extend Black Scholes model to the so called exponential Lévy models. However,
these Lévy exponential models are based on the assumptions that the returns are identically and
independently distributed (i.i.d). Therefore, they are not able to explain the volatility clustering
phenomena.

08 January 2016

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/editorialboard
http://dx.doi.org/10.3389/fams.2015.00013
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2015.00013&domain=pdf&date_stamp=2016-01-08
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:xiang.shi@stonybrook.edu
http://dx.doi.org/10.3389/fams.2015.00013
http://journal.frontiersin.org/article/10.3389/fams.2015.00013/abstract
http://loop.frontiersin.org/people/205185/overview
http://loop.frontiersin.org/people/304740/overview
http://loop.frontiersin.org/people/184327/overview


Shi et al. A Markov Chain Approximation

GARCH model have been developed to model the asset
returns under the assumption of a non- Markovian property,
more precisely, the assumption of volatility clustering. In
Duan [8, 9], Kallsen[10], Heston [11], and Christoffersen [12]
theories have been developed for pricing derivatives contracts
using GARCH models. Most of researches assume that the
innovations of GARCH are normally distributed. Although one
can show that the normal GARCH model has heavier tails
than Gaussian white noise, i.e., the kurtosis is greater than
3, it is still not able to fully capture the extreme values and
skewness of the return process. To overcome the drawback
of normal innovation process, Menn and Rachev [13, 14]
introduced an enhanced GARCH model with innovations which
follow the smoothly truncated stable distribution. Stentoft
[15] proposed a GARCH model with NIG distribution for
American option pricing. Kim et al. [7] applied the three
tempered stable distributions (CTS, MTS, and KR distributions)
to model the residual distribution in the GARCH process,
and presented the CTS-GARCH model, MTS-GARCH model,
and KR-GARCH model. Kim et al. [16] presented the RDTS-
GARCH option pricing model. These models can incorporate
the three empirical features of the asset returns pretty well.
In this paper, we will consider the two most widely used
tempered stable distributions to model the residual distribution:
classical tempered stable (CTS) and normal tempered stable
(NTS).

However, it is difficult to price American options under
the GARCH models with tempered stable distributions. It is
widely recognized that the existingmethods for pricing American
options under GARCH are bivariate tree method and least
square simulation method presented by Longstaff and Schwartz
[17]. Ritchken and Trevor [18], Duan and Simonato [19]
have introduced a modified lattice approach and a Markov
chain method, respectively. These methods are applied to price
American options under the normal-GARCH model. Rachev et
al. [20] applied the least square approach to price American
options under different TS-GARCH models. However, the least
square methodmight fail to give accurate results when the option
is out of the price [21]. Furthermore, increasing the order of
the approximating polynomials may not give a good fit to the
price when the returns have heavier tails, i.e., more extreme
values.

In this paper, we consider the Markov chain approach
presented by Duan and Simonato [19] and apply it to the CTS-
GARCH and NTS-GARCH models. The idea of the approach is
to discretized the stock price and the volatility, and use a Markov
chain to approximate the original process. The fixed partition of
the state space simplifies the task of option pricing to a sequence
of standard matrix operations.

There are two major difficulties in applying this approach
to TS-GARCH models. First, the distribution of the residuals
changes over time under the original risk neutral argument
of Rachev et al. [20]. Thus, we have to recompute the
transition matrix each time which makes the Markov chain
approach time-consuming. So we apply the minimal entropy
method to determine the risk neutral measure. This method
provides a large degree of freedom to construct the model

in the risk neutral world. By applying this approach we are
allowed to use the same transition matrix when computing the
option prices. The second difficulty is how to determine the
partition conditions of TS GARCH effectively. The skewness
and heavy tails of the tempered stable distributions implies
that we need a different way to discretize stock price and
volatility in order to make the approximating Markov chain
convergent.

The numerical examples shows that the option values
computed by the Markov chain method converge to the
theoretical value. The computation time of the approach is not
as expensive as one might expect since the transition probability
matrix is highly sparse. It works well for the TS-GARCH option
pricing framework. However, the convergence speed of Markov
chain method depends on GARCH parameters. For stocks with
relatively higher volatilities, the convergence rate becomes slow
even for the normal GARCH model, since we have to increase
the range of the stock price and volatilities. It is not strange
that the convergence speed under the TS-GARCH model would
be slower than the normal GARCH. Nevertheless, the TS-
GARCH model captures the stylized facts of the market and
therefore provides a better fit to the stock price, see Stentoft
[15], Kim et al. [7] and Rachev et al. [20]. In the empirical
analysis we illustrate how to apply our approach to compute the
American option prices in the real world. Calibrated risk neutral
parameters and minimal entropy parameters are computed and
compared.

The paper is organized as follows: Section 2 contains the
introduction to the GARCH model with the tempered stable
distributions. Section 3 presents the Markov chain method under
the CTS-GARCH, and NTS-GARCH models. The convergence
of the Markov chain method is presented in Section 4. In
Section 5, we conduct some numerical experiments and empirical
analysis to illustrate our approach. The last section contains the
concluding remarks.

2. GARCH MODEL WITH TEMPERED
STABLE DISTRIBUTED INNOVATIONS

In this section we briefly review the GARCH model with
tempered stable innovations introduced by Rachev et al. [20].
Furthermore, we apply the minimal entropy approach to
determine the equivalent martingale measure.

2.1. Tempered Stable Distributions
First we introduce two most widely-used tempered stable
distributions: the CTS distribution and the NTS distribution.

The CTS distribution with parameter α,C, λ+, λ−,m is
defined by its characteristic function:

φCTS(u;α,C, λ+, λ−,m)

= exp(ium− iuCŴ(1− α)(λα−1
+ − λα−1

− )+

CŴ(−α)((λ+ − iu)α − λα+ + (λ− + iu)α − λα−)),

where C, λ+, λ− > 0, α ∈ (0, 2) \ {1} and m ∈ R. We denote
X ∼ CTS(α,C, λ+, λ−,m) if the random variable X follows
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CTS distribution. The parameters m and C are the location and
scale parameters respectively. α is the key parameter related to
the heavy tail. And λ+ and λ− control the rate of decay on
the positive and negative tails respectively. The distribution is
symmetric if λ+ = λ−. A Lévy process induced from the CTS
distribution is called the classical tempered stable process with
parameters (α,C, λ+, λ−,m).

The mean and the variance of the CTS distribution are
given by

E[X] = m;

Var(X) = CŴ(2 − α)(λα− 2
+ − λα− 2

− ).

Therefore, if we setm = 0 and

C =
(

Ŵ(2− α)(λα− 2
+ − λα− 2

− )
)−1

,

then X has zero mean and unit variance. In this case, we say
that X follows the standard CTS distribution with parameters
(α, λ+, λ−) and denoted by X ∼ stdCTS(α, λ+, λ−).

Let α ∈ (0, 2), θ, γ > 0 and β,m ∈ R. X is said to follow the
normal tempered stable (NTS) distribution, if the characteristic
function of X is given by:

φNTS(u;α, θ, γ, β,m)

= exp

(

iu(m − β)−
2θ1−

α
2

α

((

θ−iβu+
γ 2u2

2

)
α
2

− θ
α
2

))

.

We denote an NTS distributed random variable X by X ∼

NTS(α, θ, γ, β,m). α and θ control the rate of tail decay; γ and
β control the variance; and β determines the skewness. If β > 0,
the distribution is skewed to the left. The mean and variance of
NTS are given by

E[X] = m;

Var(X) = γ 2 + β2
(

2− α

2θ

)

.

If |β| <
√

2θ
2−α , then we are able to set m = 0 and γ =

√

1− β2( 2−α2θ ) so that X has zero mean and unit variance. In this

case, we say that X follows the standard NTS distribution and
denoted by X ∼ stdNTS(α, θ, β).

The tempered stable distributions, including CTS and NTS,
have heavier tails than Gaussian distribution. On the other hand,
their tails are thinner than the α-stable distribution whose tail has
a power decay. One can show that the moments of CTS and NTS
are all finite. For details we refer to Cont and Tankov [22] and
Rachev et al. [20].

2.2. GARCH Option Pricing Model
2.2.1. Under the Market Measure P

In this section we introduce the GARCHmodel with heavy tailed
distributions under the market measure. We do not consider
dividends here for simplicity. Let (�, {Ft}t=0,1,...,T,P) denote
the standard probability space, where Ft is the sigma algebra

represents the information up to time t. We assume that the
dynamics of the stock price is given by

Xt := log

(

St

St−1

)

= µt + σtεt, t = 1, 2, . . . ,T,

where St is the stock price and Xt is the log return at time
t. Both µt and σt are predictable which represent conditional
mean and conditional variance on t respectively. The well-known
GARCH(1,1) process is given by

σ 2
t = α0 + α1(Xt− 1 − µt− 1)

2 + β1σ
2
t− 1, t = 1, 2, . . . ,T,

ε0 = 0, (1)

where α0, α1, and β1 are positive parameters satisfies α1+β1 < 1
since we want the series to be stationary.

There are different ways to model µt under market measure
P. For example, if {εt}t = 1,2,...,T are i.i.d normally distributed,
we can set the conditional mean to be µt = r + λσt − σ 2

t /2
for t = 1, 2, . . . ,T, where r is the risk free interest rate and λ
is the market price of risk. Then we are able to construct a risk
neutral dynamics in a way similar to Black Scholes model, see
Duan [8]. If {εt}t = 1,2,...,T follows infinitely divisible distribution
like CTS or NTS, we can extend Duan’s model by setting µt =

r + λtσt − g(σt) where g(x) := logE[exp(xεt)]. For tempered
stable distributions the moment generating function E[exp(xεt)]
may not be well-defined on the real line. In that case, we require
σ 2
t to be smaller than a positive number ρ otherwise g(σt) will

turn to infinity. So we would rewrite the Equation (1) as:

σ 2
t = min(α0 + α1σ

2
t− 1ε

2
t− 1 + β1σ

2
t− 1, ρ) t = 1, 2, . . . ,T,

In practice it is very unlikely that σ 2
t will reach the upper bound ρ.

So the properties of GARCH process such as volatility clustering
still apply to our modified model.

2.2.2. Under the Risk Neutral Measure Q

Now we want to find an equivalent risk neutral measure Q

so that the dynamics of stock prices St, t = 1, 2, . . . ,T is a
martingale, i.e.,

St− 1 = EQ[e−rSt|Ft− 1] = St− 1E
Q[eXt − r|Ft− 1] t = 2, . . . ,T.

Rachev et al. [20] define the risk neutral measure Q to be a
product of a sequence of independent measures Q1, . . . ,QT ,
such that ξt:= εt + kt is a standard tempered stable distribution
under Qt , where

kt = λt +
1

σt
(g̃(σt)− g(σt)).

where g̃ is the log moment generating function of ξt . Therefore,
we can obtain the risk neutral dynamic of St :

log

(

St

St− 1

)

= r − g̃(σt)+ σtξt, t = 1, 2, . . . ,T,

so that
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EQ[eXt − r|Ft− 1] = e−g̃(σt) + σtξt = 1.

Under this setting, however, the distribution of the innovations
ξt varies over time. This makes it very difficult to implement
the Markov chain method which we will see later, since we
have to recompute the probability transition matrix at each time.
Furthermore, it is hard to identify the dynamics of λt under P.
We can simply assume it to be a constant, but this assumption
would put strong restrictions on the dynamics of the conditional
mean under P, that is, we would have only one free parameter in
the estimation.

2.2.3. Minimal Entropy Martingale Measure

Luckily, the TS-GARCH model which is a discrete time process
with stochastic volatility implies that the market is incomplete,
that is, the equivalent martingale measure (EMM) is not unique.
In fact, there are several methods to find the “best” EMM of
tempered stable distributions. One classical method in selecting
an EMM is the Esscher transform presented by Gerber and Shiu
[23, 24]. Fujiwara and Miyahara [25] presented the method to
find “minimal entropy martingale measure.” Cont and Tankov
[22] proffered the “the least-squares calibration with a prior” to
find an EMM of the market measure that minimizes the least
square error of the model option prices relative to the market
option price.

In this paper, we apply the minimal entropy approach which
is more flexible than the previous methods. We simply assumes
that µt is modeled by the well-known ARMA(1,1) process:

µt = c+ φXt−1 + ψσt− 1ǫt− 1, t = 1, 2, . . . ,T.

Under the risk neutral measure Q, we assume that our model is
given by

X̃t = µ̃t + σ̃tξt, t = 1, 2, . . . ,T,

where µ̃t is such that the process is a discrete martingale:

µ̃t = rt − g̃(σ̃t), t = 1, 2, . . . ,T.

σ̃t is still a GARCH(1,1) process:

σ̃ 2
t = α̃0 + α̃1(X̃t− 1 − µ̃t− 1 − λ)

2 + β̃1σ̃
2
t− 1, t = 1, 2, . . . ,T,

where, λ is the market price of risk or the skewness parameter of
GARCH, and ξt, t = 1, . . . ,T are i.i.d random variables whose
distribution is in the same parametric family of εt . We denote the
density function by f (·|η) where η is the vector of parameters. For
example, η = (α, λ+, λ−) for standard CTS and η = (α, θ, β) for
standard NTS.

Let p and q be the joint density of the two processes, then the
Kullback-Leibler divergence or relative entropy between q and p
is given by

DKL(Q|P) = EQ

[

log
q(X̃0, X̃1, . . . , X̃T)

p(X̃0, X̃1, . . . , X̃T)

]

= EQ

[ T
∑

t= 1

log
q(X̃t|X̃t− 1)

p(X̃t|X̃t− 1)

]

=

T
∑

t= 1

EQ

[

log
f ((X̃t − µ̃t)/σ̃t|η̃)

f ((X̃t − µt)/σt|η)

]

.

The density function f of the tempered stable distribution can be
calculated via fast Fourier transform (FFT). The expectation in
the equation can be computed numerically.

Finally, we calibrate the risk neutral parameters byminimizing
the Kullback-Leibler divergence:

(λ, α̃0, α̃1, β̃1, η̃) = argminDKL(Q|P).

3. MARKOV CHAIN METHOD UNDER THE
TS-GARCH MODELS

In this section we introduce the Markov chain method proposed
by Duan and Simonato [19], and implement this approach to our
TS-GARCH models. And finally we will prove the convergence
of Markov chain method under TS-GARCH framework.

3.1. Markov Chain Method
We start with the risk neutral GARCH model introduced in the
last section:

Xt = rt − g(σt)+ σtεt,

σ 2t = α0 + α1(Xt− 1 − rt + g(σt)− λ)
2+ β1σ

2
t− 1, t = 1, 2, . . . ,T.

Note that the expression is actually a bivariate Markovian system
{(St, σt+ 1), t = 1, 2, . . . ,T}. We denote the value of the
American option at time t by V(St, σt+ 1, t). Let f : R+ → R

be the payoff function, for call option we have f (ST) = (ST−K)+

and for put option f (ST) = (K−ST)
+. Since the bivariate process

{(St, σt+ 1), t = 1, 2, . . . ,T} is Markovian, then the value of
the American option is given by invoking the following dynamic
programming:

V(ST, σT+ 1,T) = f (ST);

V(St, σt+ 1, t) = max(f (St), e
−rEQ[V(St+ 1, σt+ 2, t + 1)|

St, σt+ 1]). t = 1, 2, . . . ,T. (2)

The Markov property of the bivariate process allows us to
approximate the asset price and conditional volatility (St, σt+ 1)
by a Markov chain.

First let us assume that under the risk neutral measure Q the
stock price and volatility follows a discrete Markov chain. The
stock price St takes m different values: s(1) < s(2) < · · · < s(m);
and the volatility σt+ 1 takes n different values: σ (1) < σ (2) <
· · · < σ (n). So we have overallmn status. Let5 be themn×mn
transition probability matrix for the Markov chain:
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5 =

























π(1, 1; 1, 1) π(1, 1; 2, 1) · · · π(1, 1;m, 1) π(1, 1; 1, 2) · · · π(1, 1;m, 2) · · · π(1, 1;m, n)
π(2, 1; 1, 1) π(2, 1; 2, 1) · · · π(2, 1;m, 1) π(2, 1; 1, 2) · · · π(2, 1;m, 2) · · · π(2, 1;m, n)

...
...

. . .
...

...
. . .

...
. . .

...
π(m, 1; 1, 1)π(m, 1; 2, 1) · · ·π(m, 1;m, 1)π(m, 1; 1, 2) · · ·π(m, 1;m, 2) · · ·π(m, 1;m, n)
π(1, 2; 1, 1) π(1, 2; 2, 1) · · · π(1, 2;m, 1) π(1, 2; 1, 2) · · · π(1, 2;m, 2) · · · π(1, 2;m, n)

...
...

. . .
...

...
. . .

...
. . .

...
π(m, n; 1, 1)π(m, n; 2, 1) · · ·π(m, n;m, 1)π(m, n; 1, 2) · · ·π(m, n;m, 2) · · ·π(m, n;m, n)

























(3)

where

π(i, j; k, l) = Q(St = s(i), σt+ 1 = σ (j)|St− 1 = s(k), σt = σ (l)).

Although the transition matrix is usually very large, we are able
to do matrix operation efficiently since it is a highly sparse.
There are two facts to ensure the sparsity of the matrix. First,
π(i, j; k, l) would be close to zero when the absolute difference
between s(i) and s(k) is too large. Secondly, as we will discuss
later, there are at most m non-zero probability for every row
of 5 even though there are mn entries in each row since σt+1

would be completely determined by St if (St− 1, σt) is given. The
sparsity of the transition matrix is a very important property
when implementing this method, because it can save storage and
computing time. Note that the transition matrix for TS-GARCH
is relatively less sparse then normal GARCH due to the heavy
tails. But it is still good enough for efficient computing.

However, the distribution of (St, σt+ 1) under TS-
GARCH model is continuous. To construct a Markov
chain for approximating the TS-GARCH process, let
{(c(i−1), c(i)]}i= 1,...,m, {(d(j−1), d(j)]}j= 1,...,n be two sequences
of small disjoint intervals such that s(i) ∈ (c(i − 1), c(i)] and
σ (j) ∈ (d(j− 1), d(j)], the transition matrix of the approximating
Markov chain is given by:

π(i, j; k, l) = Q(St ∈ (c(i − 1), c(i)], σt+ 1 ∈ (d(j − 1), d(j)]|

St− 1 = s(k), σt = σ (l)), k = 1, . . . ,m, l = 1, . . . , n.

So the conditional expectation in Equation (2) can be
approximated as follows:

EQ[V(St, σt+ 1, t)|St− 1 = s(k), σt = σ (l)]

≈
∑

i,j

V(s(i), σ (j), t)π(i, j; k, l).

Because σt+1 is uniquely determined by St−1, St, σt , then j 7→

π(i, j; k, l) is either zero or equal to P(St ∈ (c(i− 1), c(i)]|St−1 =

s(k), σt = σ (l)). In the latter case, simple calculations show that

π(i, j; k, l) = Q(c̃(i − 1) < ξt ≤ c̃(i)) = F(c̃(i))− F(c̃(i − 1)),

where

c̃(i) =
1

σ (l)

(

log
c(i)

s(k)
− r + g(σ (l))

)

,

F denotes the cumulative distribution function, and g denotes the
log moment generating function of the innovation εt under Q.

Different with the normal distribution, F does not have a closed
form of solution for tempered stable distributions. Similar as the
density function which can be computed numerically by FFT,
Kim et al. [26] show that we can use one step FFT to obtain F:

F(x) =
exθ

π
Re

( ∫ ∞

0
e−ixu8(u+ iθ)

θ − ui
du

)

,

where 8(·) is the characteristic function of εt and θ is a positive
number such that |8(z)| < ∞ for all z with Im(z) = θ . To
compute F, let K and N be large positive integers with N > K
and xk = (k− N)/K, k = 0, 1, 2, . . . , 2N, then we have

F(xk) ≈
K

N

N− 1
∑

j= 0

ωjkfj, k = 0, 1, . . . ,N − 1.

where ω = e−2π j/N and fj = (−1)j8(2π jK/N + iθ)/(θ −

i(2π jK/N)). Then apply FFT to compute this equation and
we can obtain the cumulative function of the tempered stable
distributions.

Note that we assume that the approximation Markov chain
process is time-homogenous since we want the states of stock
price and conditional variance take values to be in the same set
for every time t. Finally the option value can be approximated as
follows:

V̂(s(k), σ (l),T) = f (s(i));

V̂(s(k), σ (l), t) = max
(

f (s(k)), e−r
∑

i,j

V(s(i), σ (j), t + 1)

π(i, j; k, l)
)

.

3.2. Implementing the Markov Chain
Approach to TS-GARCH
The basic idea of implementing the Markov chain method to the
TS-GARCH model follows Duan and Simonato [19]. First note
that the stock price has a trend in the GARCH process under the
locally risk neutral measure Q, that is, EQ[log(St/St−1)|Ft−1] 6=
0. This contradicts to our assumption that the Markov chain is
homogeneous. Therefore, we need to adjust the stock price such
that theMarkov process based on the adjusted asset price is closer
to homogeneous. For example we can set:

pt = log St − νt,
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where

νt = EQ[log St].

Thus, the mean of pt will not change with time. Unlike the
normal-GARCH in which EQ[log St] is a linear function of t if
the GARCH process is stationary, the mean of log-price is not
linear in TS-GARCH since the log moment generating function
g(σt) can not be assumed to be stationary like σ 2

t . Furthermore,
computing EQ[g(σt)] numerically is time consuming. So instead
we set

νt = rt − g(σ0)t.

Note that all we want is that E[pt] dose not vary much through
time t = 1, 2, . . . ,T; and that σ 2

t will be in a neighborhood of
σ0 in a long term. Since the adjustment factor is deterministic, a
compounding factor can be easily incorporated later to recover
the pre-adjusted stock price. Then we can set the discrete values
for the stock price and its conditional variance. To do this, we
define an interval that covers a chosen set of discrete stock prices
and variances. For the logarithm of the adjusted stock price,
consider an interval around p0: [p0 − Ip, p0 + Ip], Duan and

Simonato [19] use the variance of 1
t

∑t
k= 1 σkεk to determine

Ip. Since the variance cannot fully describe the diversification of
non-symmetric heavy tail distributions, here we use the quantile
instead to determine the range of p. Let F be the cumulative

distribution function of
∑T

t= 1 εt , whose distribution belongs to
the same family of εt due to the infinite divisibility. Then we set
p(1) = p0 + I−p and p(m) = p0 + I+p , where

I−p = σ0F
−1(δp(m)),

I+p = σ0F
−1(1− δp(m)),

F−1 is the inverse function of F which is well defined since F is
continuous for CTS and NTS. δp(m) is a sequence of decreasing
numbers which satisfies the following conditions:

Partition condition. (i) δp(m) → 0 as m → ∞; and (ii)
|I+p − I−p |/m → 0 asm → ∞. (iii) 0 < δp(m) ≤ 1.

For example, if the distribution of ξt is α-stable for some α ∈

(0, 2), then it is natural to set δp(m) = mǫ−α , where 0 < ǫ < α.
This is because

mǫ =
δp(m)

m−α
=

F(I−p /σ0)

m−α
∝ C

(

|I−p |/σ0

m

)−α

→ ∞,m → ∞

where C is some positive constant. Here we use the property
that the tail of α-stable distribution has a power decay, see Cont
and Tankov [22], for details. This implies that |I−p |/m → 0 as

m → ∞. We have similar results for I+p . Thus, δp(m) = mǫ−α

must satisfy the second condition. Furthermore, any function
of m which decays to zero slower than mǫ−α also satisfiess
the partition condition (i) and (ii). For other tempered stable
distributions like CTS or NTS, we can still setmǫ−α as an “upper
bound” of decay speed of δp(m) since their tails are thinner
than the α-stable distribution, that is, the inverse cumulative
distribution function F−1(x) diverges slower than power law as
x → 0 or 1.

Similar to pt , we can also set qt to be the logarithm of σ 2
t .

Luckily we have the upper bound ρ and lower bound α0 for σ
2
t ,

so similar as Duan and Simonato [19] we define the upper and
lower bound of q:

q(1) = log(α)+ log(σ̃ 2/α)δq(n),

q(n) = log(ρ)+ log(σ̃ 2/ρ)δq(n),

where δq(n) is some function which satisfies (i) δq(n) → 0 and
(ii) δq(1) = 1, and σ̃ 2 is the weighted average of the initial value
σ 2
0 and the stationary value σ 2

stat , given by σ 2
stat = α0/(1−α1(1+

k2)− β1):

σ̃ 2 =
τ −min(T, τ )

τ
σ 2
0 +

min(T, τ )

τ
σ 2
stat,

where τ is a preset value. Note that when n → ∞, q(1) and q(n)
converge to log(α) and log(ρ) respectively. When n = 1, which
implies the constant volatility, then q = log(σ̃ 2) would be an
ideal choice.

Then we simply take the equal-distant partition of the
intervals of adjusted price and volatility and obtain a sequence
of discrete values p(1) < · · · < p(m) and q(1) < · · · < q(n).
Now consider the m cells for m status of the adjusted price:
C(k) = (c(k), c(k + 1)] where c(1) = −∞, c(m) = +∞, and
c(k) = (p(k)+p(k+1))/2. Similarly, we have the partitionD(k) =
(d(k), d(k + 1)] for q, where d(1) = log(α0), d(n) = log(ρ), and
d(k) = (q(k)+ q(k+ 1))/2. Let

h(x, y, z):= e−z(x− y+ νt − νt−1 − r + g(ez))

= e−z(x− y+ g(ez)− g(σ0));

and

H(x, y, z):= log(min(α0 + α1e
z(h(x, y, z)− λ)2 + β1e

z, ρ)).

Then the transition probability is given by:

πt(i, j, k, l)

=

{

Q
(

pt ∈ C(i)|pt−1 = p(k), qt = q(l)
)

if H(p(i), p(k), q(l)) ∈ D(j)
0 otherwise

. (4)

If we set

c̃t(i; k, l) = h(c(i), p(k), q(l)),

then the probability in Equation (4) can be represented as:

Q(pt ∈ C(i)|pt−1 = p(k), qt = q(l))

= F(c̃t(i + 1; k, l))− F(c̃t(i; k, l)),

where F is the cumulative distribution function of innovation εt
under Q.

Note that the above approach might not be the best way
to discretize the price and volatility. As long as the ranges of
discretized price and volatility increase and the sizes of grids
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decrease as m and n turns to infinity, we are able to show that
the bivariateMarkov chain can converge to the objective GARCH
process. In the mean time we want to compute the transition
matrix only once in order to make the algorithm efficient. So any
partitions which meets these criteria may potentially improve the
approximation of the Markov chain.

The algorithm is summarized as follows:

1. Compute the discretized adjusted prices and volatilities:
p(1), . . . , p(m) and q(1), . . . , q(n).

2. Compute themn×mn transitionmatrix5 given by Equations
(3) and (4).

3. Compute the terminal value:

V̂T = en ⊗







f (ep(1)+νT )
...

f (ep(m)+νT )






,

where en ∈ Rn is a vector with all ones and⊗ is the Kronecker
product.

4. Given V̂t , compute

V̂t−1 = max






5V̂t, en ⊗







f (ep(1)+νt−1 )
...

f (ep(m)+νt−1 )












,

where max denotes the element-wise maximum for two
vectors.

5. If p(k) ≤ log S0 ≤ p(k+1), then the option price would be the
linear interpolation:

V0 =
V̂0(k+ 1)− V̂0(k)

p(k+ 1)− p(k)
(log S0 − p(k))+ V̂0(k).

3.3. Convergence of the Markov Chain
Approach
Duan and Simonato [19] proves the convergence of the Markov
chainmethod under the normal GARCHmodel. For TS-GARCH
model, the proof is similar. There are two major differences
between the two models. First, the σ 2

t /2 term in the normal
GARCH is replaced by a more general form g(σt). Second, the
distribution of εt is skewed and heavy tailed in TS-GARCH.
Luckily, these differences does not change the idea of the proof.

In this section we denote the adjusted prices and volatilities
of the original GARCH process and the approximating Markov

chain by (pt, qt+1) and (p
(m,n)
t , q

(m,n)
t+1 ), t = 1, . . . ,T, respectively.

The distribution function of the Markov chain at time t
conditional on the information up to t − 1 is given by

F
(m,n)
t|t−1 : R × [log(α0), log(ρ)] → [0, 1]; and the distribution

of the object adjusted stock price and volatility is Ft|t−1 : R ×

[log(α0), log(ρ)] → [0, 1].

Proposition 1. Given the partition condition, F
(m,n)
t|t−1 converges to

Ft|t−1 as m and n go to infinity.

Proof. First note that the marginal distribution of pt :

Q(pt ≤ x|pt−1 = y, qt = z) = F(h(x, y, z)),

where F is the cumulative distribution function of CTS or NTS,
is uniformly continuous with respect to x, y ∈ R and z ∈

[log(α0), log(ρ)]. This is because that the distribution function
F is uniformly continuous on R, and that h(x, y, z) = e−z(x −

y + g(ez) − g(σ0)) is linear with respect to x and y, and g(ez)
is continuous on the closed set [log(α0), log(ρ)]. Note that the
moment generate functions of CTS and NTS are not defined on
ρ, but they have a finite continuous extension on ρ.

Let i∗, k∗, l∗ be the integers such that p(i∗) ≤ x < p(i∗ + 1),
p(l∗) ≤ y < p(l∗ + 1) and q(k∗) ≤ z < q(k∗ + 1), then the

distribution of p
(m,n)
t :

Q(p
(m,n)
t ≤ x|p

(m,n)
t−1 = p(k∗),

q
(m,n)
t = q(l∗)) =

m
∑

i=1

n
∑

j=1

π(i, j, k∗, l∗)I{p(i)≤x}

=

m
∑

i=1

n
∑

j=1

Q(pt ∈ C(i)|pt−1 = p(k∗), qt = q(l∗))

I{H(p(i),p(k∗),q(l∗))∈D(j)}I{p(i)≤x}

=

m
∑

i=1

Q(pt ∈ C(i)|pt−1 = p(k∗), qt = q(l∗))I{p(i)≤x}

= Q(pt ≤ c(i∗ + 1)|pt−1 = p(k∗), qt = q(l∗)) →

Q(pt ≤ x|pt−1 = y, qt = z),

as m, n → ∞. The convergence is uniform, i.e., the rate of
convergence dose not depends on the choices of x, y, and z
because the uniform continuity.

Now consider the joint distribution of (pt, qt+1) conditional
on pt−1 = y and qt = z:

Ft|t−1(x1, x2|y, z): = Q(pt ≤ x1, qt+1 ≤ x2|pt−1 = y, qt = z)

= Q(pt ≤ x1,H(pt, pt−1, qt) ≤ x2|pt−1 = y,

qt = z).

where α0 ≤ x2 ≤ ρ. On the other side the joint distribution of the

Markov chain conditional on p
(m,n)
t−1 = p(k∗) and q

(m,n)
t = q(l∗) is

given by

F
(m,n)
t|t−1 (x1, x2|p(k

∗), q(l∗)): = Q
(

p
(m,n)
t ≤ x1, q

(m,n)
t+1 ≤ x2|p

(m,n)
t−1

= p(k∗), q
(m,n)
t = q(l∗)

)

=

m
∑

i=1

n
∑

j=1

πt(i, j, k
∗, l∗)I{q(j)≤x2}

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 January 2016 | Volume 1 | Article 13

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Shi et al. A Markov Chain Approximation

Let i∗, j∗ be the integers such that p(i∗) ≤ x1 ≤ p(i∗ + 1) and
q(j∗) ≤ x2 ≤ q(j∗ + 1), then

F
(m,n)
t|t− 1(x1, x2|p(k

∗), q(l∗)) =
∑i∗

i= 1

∑j∗

j= 1 πt(i, j, k
∗, l∗)

=
∑m

i= 1

∑n
j= 1 πt(i, j, k

∗, l∗)I{H(p(i),p(k∗), q(l∗))≤ d(j∗ + 1)}

I{p(i)≤ c(i∗ + 1)}

= Q(p
(m,n)
t ≤ c(i∗ + 1),H(p

(m,n)
t , p(k∗), q(l∗))

≤ d(j∗ + 1)|p
(m,n)
t− 1 = p(k∗), q

(m,n)
t = q(l∗)).

Since the distribution of p
(m,n)
t conditioning on t − 1 converges

uniformly to pt and function H is also uniformly continuous,

it is not difficult to show that F
(m,n)
t|t−1 (x1, x2|p(k

∗), q(l∗)) →

Ft|t−1(x1, x2|y, z) uniformly asm, n → ∞.

From the proposition and the property of weak convergence
we can conclude:

Corollary 1. For any bounded continuous function f : R ×

[log(α0), log(ρ)] → R,

E[f (p
(m,n)
t , q

(m,n)
t+1 )|p

(m,n)
t− 1 = p(k∗), q

(m,n)
t = q(l∗)]

→ E[f (pt, qt+ 1)|pt−1 = y, qt = z]

as m, n → ∞, where k∗, l∗ are the integers such that p(k∗) ≤ y <
p(k∗ + 1) and q(l∗) ≤ z < q(l∗ + 1). The convergence is uniform.

Corollary 2. Let f (m,n) : R× [log(α0), log(ρ)] → R be a sequence
of bounded continuous function which converges to a bounded
continuous function f : R × [log(α0), log(ρ)] → R uniformly,
then

E[f (m,n)(p
(m,n)
t , q

(m,n)
t+ 1 )|p

(m,n)
t− 1 = p(k∗), q

(m,n)
t = q(l∗)]

→ E[f (pt, qt+ 1)|pt− 1 = y, qt = z]

as m, n → ∞, where k∗, l∗ are the integers such that p(k∗) ≤ y <
p(k∗ + 1) and q(l∗) ≤ z < q(l∗ + 1). The convergence is uniform.

Proof. Since f (m,n) converges to f uniformly, for any ǫ > 0 we
have

∣

∣E[f (m,n)(p
(m,n)
t , q

(m,n)
t+ 1 )|p

(m,n)
t− 1 = p(k∗), q

(m,n)
t = q(l∗)]

− E[f (p
(m,n)
t , q

(m,n)
t+ 1 )|p

(m,n)
t− 1 = p(k∗), q

(m,n)
t = q(l∗)]

∣

∣ ≤
ǫ

2

for all choice of p(k∗) and q(l∗) if m, n is large enough. On the
other side corollary 1 ensures that

∣

∣E[f (p
(m,n)
t , q

(m,n)
t+ 1 )|p

(m,n)
t− 1 = p(k∗), q

(m,n)
t = q(l∗)]

− E[f (pt, qt+ 1)|pt− 1 = y, qt = z]
∣

∣ ≤
ǫ

2

for all y and z. Combining the two inequalities we prove the the
corollary.

Now consider the American type option with bounded
continuous payoff f . TheMarkov chain method first compute the
conditional expectation:

G
(m,n)
T− 1 (p(k), q(l)) : = E[f (p

(m,n)
T )|p

(m,n)
T−1 = p(k), q

(m,n)
T = q(l)],

k = 1, . . . ,m, l = 1, . . . , n

Note that this is a sequence of discrete values. But we are able to

construct a continuous extension G̃
(m,n)
T−1 : R×[log(α0), log(ρ)] →

R such that G̃
(m,n)
T−1 (p(k), q(l)) = G

(m,n)
T−1 (p(k), q(l)), k =

1, . . . ,m, l = 1, . . . , n, for each m and n. Then we obtain
a sequence of continuous bounded function G̃

(m,n)
T−1 which

converges to the true expectation:

GT− 1(y, z) := E[f (pT)|pT− 1 = y, qT = z]

uniformly. Here we assume thatGT−1 is continuous. This implies
that the value of the American option given by Markov chain
method:

V
(m,n)
T− 1 (p(k), q(l)) = max{G

(m,n)
T− 1 (p(k), q(l)), f (exp(νt + p(k)))}

has a continuous extension Ṽ
(m,n)
T−1 converges to the true value

VT−1 uniformly for continuous and bounded payoff function f .

The corollary 2 allows us to continue doing this and have Ṽ
(m,n)
0

converges to V0.
However, for call and put options whose payoffs are not

bounded we may not have these results. But we are able to use
options truncated payoff to approximate call and put, thanks
for the dominated convergence theorem. Duan and Simonato
[19] loosen the condition by showing if the payoff function is
bounded by a integrable function then the European option
price computed by Markov chain method converges to the true
price. Here we consider the bounded payoff for simplicity. In
fact, by discretizing the stock price into a finite set of numbers
the Markov chain method assumes that the payoff function is
bounded. And by increasing m and n this upper bound will
become larger and therefore the value of bounded payoff option
would be closer to the value of unbound one.

4. NUMERICAL EXAMPLES AND
EMPIRICAL RESULTS

In this section we apply the Markov chain method to compute
European and American options under the CTS-GARCH and
NTS-GARCH models, respectively. The convergence of the
Markov chain method will be illustrated by numerical examples
and empirical results.

4.1. Numerical Examples
In this subsection we test the Markov chain method numerically
by applying it to pricing American option as well as European
option. For simplicity, we set the initial conditional variance to
be the stationary variance under the market measure P; that is
σ 2
0 = α0(1− α1 − β1)

−1. The initial stock price is set as S0 = 50,
and the annualized risk-free rate is r = 0.025.
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TABLE 1 | American put options in the CTS-GARCH framework.

Maturity = 30 Maturity = 60 Maturity = 90

K/S0 0.90 1.00 1.10 0.90 1.00 1.10 0.90 1.00 1.10

m = 150 n = 50 0.0029 0.7340 5.0684 0.0296 1.0106 5.0982 0.0868 1.2969 5.3111

m = 180 n = 60 0.0031 0.7402 5.0612 0.0292 1.0097 5.0881 0.0827 1.2750 5.2704

m = 210 n = 70 0.0026 0.7310 5.0560 0.0324 1.0602 5.1959 0.0824 1.2635 5.2407

m = 240 n = 80 0.0027 0.7224 5.0520 0.0300 1.0403 5.1773 0.0772 1.2386 5.2179

m = 270 n = 90 0.0026 0.7236 5.0489 0.0290 1.0312 5.1627 0.0798 1.2764 5.3124

m = 300 n = 100 0.0029 0.7499 5.1056 0.0295 1.0298 5.1508 0.0808 1.2723 5.2877

m = 250 n = 50 0.0029 0.7359 5.0741 0.0323 1.0619 5.2049 0.0823 1.2654 5.2517

m = 300 n = 60 0.0032 0.7586 5.1056 0.0311 1.0394 5.1508 0.0827 1.2795 5.2877

m = 350 n = 70 0.0030 0.7411 5.0775 0.0315 1.0512 5.1838 0.0854 1.2953 5.3147

m = 400 n = 80 0.0028 0.7458 5.1015 0.0305 1.0530 5.2094 0.0783 1.2539 5.2572

m = 450 n = 90 0.0028 0.7380 5.0797 0.0289 1.0332 5.1722 0.0773 1.2587 5.2824

m = 500 n = 100 0.0029 0.7471 5.0993 0.0304 1.0485 5.1944 0.0810 1.2774 5.3031

TABLE 2 | European put options in the CTS-GARCH framework.

Maturity = 30 Maturity = 60 Maturity = 90

K/S0 0.90 1.00 1.10 0.90 1.00 1.10 0.90 1.00 1.10

m = 150 n = 50 0.0029 0.7156 4.8301 0.0290 0.9689 4.6796 0.0842 1.2240 4.7533

m = 180 n = 60 0.0030 0.7218 4.8244 0.0287 0.9672 4.6715 0.0802 1.2018 4.7153

m = 210 n = 70 0.0029 0.7129 4.8184 0.0317 1.0158 4.7734 0.0799 1.1929 4.6918

m = 240 n = 80 0.0026 0.7043 4.8136 0.0294 0.9960 4.7516 0.0749 1.1680 4.6633

m = 270 n = 90 0.0026 0.7050 4.8107 0.0285 0.9865 4.7368 0.0773 1.2012 4.7430

m = 300 n = 100 0.0029 0.7307 4.8670 0.0289 0.9861 4.7276 0.0784 1.1990 4.7260

m = 250 n = 50 0.0029 0.7175 4.8360 0.0317 1.0175 4.7813 0.0799 1.1948 4.7003

m = 300 n = 60 0.0031 0.7393 4.8681 0.0304 0.9956 4.7313 0.0802 1.2058 4.7299

m = 350 n = 70 0.0030 0.7226 4.8398 0.0309 1.0072 4.7613 0.0828 1.2220 4.7566

m = 400 n = 80 0.0028 0.7268 4.8627 0.0299 1.0079 4.7814 0.0759 1.1819 4.6971

m = 450 n = 90 0.0027 0.7189 4.8413 0.0283 0.9882 4.7450 0.0749 1.1845 4.7148

m = 500 n = 100 0.0029 0.7281 4.8608 0.0298 1.0036 4.7681 0.0786 1.2036 4.7389

Monte Carlo 0.0028 0.7196 4.8506 0.0269 0.9790 4.7510 0.0710 1.1666 4.7099

Monte Carlo errors 0.0001 0.0028 0.0064 0.0006 0.0043 0.0088 0.0015 0.0065 0.0118

The parameters of the GARCH process are set to be α0 =

10−5, α1 = 0.10, β1 = 0.80. These are the same parameters
that Duan and Simonato [19] used in the numerical tests. The
facts that α0 ≈ 0 and α1 < β1 correspond to most empirical
tests in the literature. We set α = 1.70, λ+ = 1.00, λ− = 0.35
to be the parameters of CTS innovation and α = 1.00, θ =

1.00, β = −0.20 to be the parameters of NTS innovation, so
that both distributions are skewed to the left and have heavier
tails than normal distribution. These parameters are also chosen
based on the empirical observations in Rachev et al. [20].

Tables 1, 3 show the results of the Markov chain approach
for American put options. The first column of each table
represents the number of m, n. We set m > n in order
to get a better approximation of the price process when the
size of the Markov chain mn is given. As m, n increases, the
Markov chain method would converge to the true result which
is proved in Section 3. Columns 2–4, 5–7, 8–10 are the prices

of the options with maturity 30, 60, and 90 days respectively.
For each maturity we compute the options with strikes 0.9S0,
1.0S0, and 1.1S0, the corresponding columns are marked by
the second row. Tables 2, 4 compares the results of the Markov
chain approach with the ones of the Monte Carlo with least
square approximation. For Monte Carlo method we generate
100,000 scenarios, and the results are given by the last row in
Tables 2, 4.

From these results one can observe that the results of Markov
chain method with large m and n and the ones of Monte Carlo
correspond roughly in two decimal place. Most of the prices in
Tables 1, 3 is greater than the corresponding prices in Tables 2, 4,
since the American option is always more expensive than the
European option. The convergence of American options is not
as fast as the one of European options. This because that small
differences in accuracy might change the optimal execution time
which would make the price different. We do not compare the
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TABLE 3 | American put options in the NTS-GARCH framework.

Maturity = 30 Maturity = 60 Maturity = 90

K/S0 0.90 1.00 1.10 0.90 1.00 1.10 0.90 1.00 1.10

m = 150 n = 50 0.0029 0.7340 5.0684 0.0296 1.0106 5.0982 0.0868 1.2969 5.3111

m = 180 n = 60 0.0031 0.7402 5.0612 0.0292 1.0097 5.0881 0.0827 1.2750 5.2704

m = 210 n = 70 0.0029 0.7310 5.0560 0.0324 1.0602 5.1959 0.0824 1.2635 5.2407

m = 240 n = 80 0.0027 0.7224 5.0520 0.0300 1.0403 5.1773 0.0772 1.2386 5.2179

m = 270 n = 90 0.0026 0.7236 5.0489 0.0290 1.0312 5.1627 0.0798 1.2764 5.3124

m = 300 n = 100 0.0029 0.7499 5.1056 0.0295 1.0298 5.1508 0.0808 1.2723 5.2877

m = 250 n = 50 0.0029 0.7359 5.0741 0.0323 1.0619 5.2049 0.0823 1.2654 5.2517

m = 300 n = 60 0.0032 0.7586 5.1056 0.0311 1.0394 5.1508 0.0827 1.2795 5.2877

m = 350 n = 70 0.0030 0.7411 5.0775 0.0315 1.0512 5.1838 0.0854 1.2953 5.3147

m = 400 n = 80 0.0028 0.7458 5.1015 0.0305 1.0530 5.2094 0.0783 1.2539 5.2572

m = 450 n = 90 0.0028 0.7380 5.0797 0.0289 1.0332 5.1722 0.0773 1.2587 5.2824

m = 500 n = 100 0.0029 0.7471 5.0993 0.0304 1.0485 5.1944 0.0810 1.2774 5.3031

TABLE 4 | European put options in the NTS-GARCH framework.

Maturity = 30 Maturity = 60 Maturity = 90

K/S0 0.90 1.00 1.10 0.90 1.00 1.10 0.90 1.00 1.10

m = 150 n = 50 0.0029 0.7156 4.8301 0.0290 0.9689 4.6796 0.0842 1.2240 4.7533

m = 180 n = 60 0.0030 0.7218 4.8244 0.0287 0.9672 4.6715 0.0802 1.2018 4.7153

m = 210 n = 70 0.0029 0.7129 4.8184 0.0317 1.0158 4.7734 0.0799 1.1929 4.6918

m = 240 n = 80 0.0026 0.7043 4.8136 0.0294 0.9960 4.7516 0.0749 1.1680 4.6633

m = 270 n = 90 0.0026 0.7050 4.8107 0.0285 0.9865 4.7368 0.0773 1.2012 4.7430

m = 300 n = 100 0.0029 0.7307 4.8670 0.0289 0.9861 4.7276 0.0784 1.1990 4.7260

m = 250 n = 50 0.0029 0.7175 4.8360 0.0317 1.0175 4.7813 0.0799 1.1948 4.7003

m = 300 n = 60 0.0031 0.7393 4.8681 0.0304 0.9956 4.7313 0.0802 1.2058 4.7299

m = 350 n = 70 0.0030 0.7226 4.8398 0.0309 1.0072 4.7613 0.0828 1.2220 4.7566

m = 400 n = 80 0.0028 0.7268 4.8627 0.0299 1.0079 4.7814 0.0759 1.1819 4.6971

m = 450 n = 90 0.0027 0.7189 4.8413 0.0283 0.9882 4.7450 0.0749 1.1845 4.7148

m = 500 n = 100 0.0029 0.7281 4.8608 0.0298 1.0036 4.7681 0.0786 1.2036 4.7389

Monte Carlo 0.0028 0.7196 4.8506 0.0269 0.9790 4.7510 0.0710 1.1666 4.7099

Monte Carlo error 0.0001 0.0028 0.0064 0.0006 0.0043 0.0088 0.0015 0.0065 0.0118

TABLE 5 | ARMA(1,1)-GARCH(1,1) parameters.

c φ (AR) ψ (MA) a0 a1 b1

1.9314× 10−4 0.8020 −0.8664 2.6359× 10−6 0.8743 0.1053

American option price with the well known least squares method
because the latter is not accurate when the option is out of money.
Even for the options which are in the money, the polynomial
approximation is only accurate in a small range of stock prices.
We would expect more extreme values in GARCH model with
heavy tailed distributions. This might make the least square
approach more inaccurate.

The fluctuations in the prices are the results of discretizing
the stock price and volatility. By comparing the results with
the Duan’s Normal GARCH model one can find that we need
larger m and n to get an acceptable result. This is because
we need more grids in a wider interval to approximate the

TABLE 6 | Standard CTS parameters.

α λ+ λ−

1.8123 0.2019 0.1228

cumulative distribution functions of heavy tailed distributions. In
addition, the rate of convergence become slow when the maturity
increases. As Duan and Simonato [19] suggested in his paper, the
Markov chain method might not be good for options with long
maturity.

4.2. Empirical Analysis
In this section, we illustrate the calibration of risk neutral
parameters using Markov chain method. As an example, we
consider the SPX put option on June 13, 2013 whose moneyness
is between 0.9 and 1.1, and whose maturity is 30 days. There are
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TABLE 7 | Standard NTS parameters.

α θ β

0.5819 1.5550 −0.2188

TABLE 8 | Minimal entropy parameters (CTS).

λ α λ+ λ−

0.0121 1.7914 0.3467 0.1122

TABLE 9 | Minimal entropy parameters (NTS).

λ α θ β

0.0261 0.8741 1.1859 −0.2875

TABLE 10 | Errors of minimal entropy measure.

AAE APE ARPE RMSE

CTS 2.0680 0.1013 0.1621 7.9570

NTS 2.5041 0.1226 0.2127 10.9452

TABLE 11 | Calibrated parameters (CTS).

λ α λ+ λ−

−0.0005 1.6001 0.14126 0.0892

TABLE 12 | Calibrated parameters (NTS).

λ α θ β

−0.0002 0.4683 1.8390 0.3729

TABLE 13 | Errors of minimal entropy measure.

AAE APE ARPE RMSE

CTS 1.2077 0.0591 0.1213 3.6134

NTS 1.8629 0.0912 0.3116 5.0308

46 options meet these conditions, the strike price of which ranges
from 1480 to 1740. The initial price of S&P 500 index is 1640.42.

The first step is to estimate the parameters under market
measure P. The maximum likelihood estimation (MLE) of
ARMA(1,1)-GARCH(1,1) with Gaussian innovation is widely
known. For non-Gaussian innovations, we can use the quasi
maximum likelihood estimator (QMLE). That is, we first
estimate the ARMA(1,1)-GARCH(1,1) parameters under
Gaussian assumption. Then we will get a sequence of residuals
which are assumed to be i.i.d. Finally we use other distributions
like CTS or NTS to fit these i.i.d residuals. The convergence
of QMLE is studied by Lee and Hansen [27] and Lumsdaine
[28]. We select 2 years log daily returns of S&P 500 index as

our sample. The data is downloaded from Yahoo finance. The
estimated parameters are given by Tables 5–7.

Then we can compute the risk neutral parameters in two
ways. The first way is to minimize the relative entropy between
P and Q, as described in Section 2.3. The relative entropy is
given by Equation (10), which is computed numerically. Here
we assume that the GARCH parameters do not change under Q.
This assumption is widely used in most GARCH option pricing
papers, see Duan [8], Stentoft [29], Kim et al. [6] and Rachev et
al. [20]. The results of the minimization are shown in Tables 8, 9.

Using these parameters we compute the option price via
Markov chain method. We compute the average absolute
error (AAE), average percentage error (APE), average relative
percentage error (ARPE) and root mean square error (RMSE),
which are give by Table 10.

The second way is to calibrate the risk neutral measure using
realized option price, that is, to find themeasure whichminimizes
the errors between model prices and market prices. In this paper
we use RMSE to measure the error. The calibrated parameters
and their errors are given by Tables 11–13. One can observe
that the calibrated risk neutral parameters are different from the
minimal entropy parameters.

We find that in both risk neutral measures CTS outperform
NTS. However, it is not enough to conclude that CTS is better
than NTS based on this specific example. In fact, NTS is usually
good in the high dimensional case since it is a subordinated
distribution and has a natural multivariate extension. It is also
not enough to conclude that minimal-entropy measure is not the
real risk neutral measure. Theminimal entropy approach is based
on the assumption that the risk neutral world is very close to the
real one. The calibrated parameters might overfit the model if the
option is not volatile. Here we use thismethod because it provides
a convenient way to consider risk neutral model under Markov
chain framework. Selecting the best measure in the incomplete
market is out of the scope of this paper.

5. CONCLUSION

In this paper we employ the Markov chain approximation
method to compute the value of American-style options under
TS-GARCH model. We apply the minimal entropy approach to
find the “best” equivalent martingale measure in an incomplete
market. This risk neutral measure also allows us to compute
the Markov chain method in efficiently. For heavy-tailed
distributions, we use the quantile instead of the variance of the
distribution to determine the range of the discrete Markov chain.
We also consider the rate of tail decay to find the step size
of the discretized stock prices. The convergence of the Markov
chain approximation for TS-GARCH models can be proved
due to the absolute continuity of TS-distribution functions. The
Markov chain method is a good alternative for the least square
approximation, since the latter one is less accurate when the
option is out of the money and when extreme event happens.
Furthermore, although the Markov chain approach for TS-
GARCH is slower than the one for normal GARCH, TS-GARCH
model performs much better than normal GARCH in option
pricing since it has more degrees for freedom to capture the
heavy-tails in financial markets.
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