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In spectral estimation, one has to determine all parameters of an exponential sum

for finitely many (noisy) sampled data of this exponential sum. Frequently used

methods for spectral estimation are MUSIC (MUltiple SIgnal Classification) and ESPRIT

(Estimation of Signal Parameters via Rotational Invariance Technique). For a trigonometric

polynomial of large sparsity, we present a new sparse fast Fourier transform by shifted

sampling and using MUSIC resp. ESPRIT, where the ESPRIT based method has lower

computational cost. Later this technique is extended to a new reconstruction of a

multivariate trigonometric polynomial of large sparsity for given (noisy) values sampled

on a reconstructing rank-1 lattice. Numerical experiments illustrate the high performance

of these procedures.

Keywords: Spectral estimation, ESPRIT, MUSIC, parameter identification, exponential sum, sparse trigonometric

polynomial, sparse FFT

AMS Subject Classifications: 65T50, 42A16, 94A12.

1. INTRODUCTION

The problem of spectral estimation resp. frequency analysis arises quite often in signal processing,
electrical engineering, and mathematical physics (see e.g., the books [1, 2] or the survey [3]) and
reads as follows:

(P1) Recover the positive integer M, the distinct frequencies ϕj ∈ (− 1
2 ,

1
2 ], and the complex

coefficients cj 6= 0 (j = 1, . . . ,M) in the exponential sum of sparsityM

h(x) :=
M

∑

j=1

cj e
2π iϕjx (x ∈ R) , (1.1)

if noisy sampled data h̃k:= h(k) + ek (k = 0, . . . ,N − 1) with N ≥ 2M are given, where ek ∈ C

are small error terms with |ek| ≤ 1
10 minj |cj|.

Introducing so-called left/right signal spaces and noise spaces in Section 2, we explain the
numerical solution of the problem (P1) by the MUSIC method (created by Schmidt [4], see also
Manolakis et al. [1, Section 9.6.3] and the references therein) and the ESPRIT method (created by
Roy and Kailath [5], see also Manolakis et al. [1, Section 9.6.5], Stoica and Moses [2, Chapter 4]
and the references therein). In a new unified approach to MUSIC and ESPRIT, we show that both
methods are based on singular value decomposition (SVD) of a rectangular Hankel matrix of given
sampled data. For the MUSIC and ESPRIT method, it is important to choose the window length
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L (number of rows) of the rectangular Hankel matrix in an
optimal way. Based on Theorem 2.5, where we estimate the
singular values and the spectral norm condition number of the
rectangular Hankel matrix of noiseless data, one can see that
L ≈ N

2 is a good choice. By the right choice of L, one can detect
the correct sparsity M of (1.1) and avoid the computation of
spurious frequencies.

The main disadvantages of MUSIC and ESPRIT are the
relatively high computational cost in the case of large sparsity
M, caused mainly by the SVD. The known algorithms for
MUSIC and ESPRIT have moderate computational cost only for
small sparsity M. Thus, following question arises: How can one
improve theMUSIC and ESPRITmethods for spectral estimation
of exponential sums with large sparsityM? In this paper, we show
that this is possible by a special divide-and-conquer technique.
In the numerical examples of Section 5, the cases M = 256 and
M = 1024 are handled.

The computational cost of an algorithm is measured in the
number of arithmetical operations, where all operations are
counted equally. Often the computational cost of an algorithm
is reduced to the leading term, i.e., all lower order terms are
omitted. For a unified approach to Prony–like methods for the
parameter estimation of (1.1), namely the classical Pronymethod,
the matrix pencil method [6, 7], and the ESPRIT method [5, 8],
we refer also to Potts and Tasche [9] and the references therein.
For a survey of the most successful methods for the data fitting
problem with linear combinations of complex exponentials, we
refer to Pereyra and Scherer [10].

Section 3 is the core of this paper. Here we present a new
efficient spectral estimation with low computational cost for large
sparsity M and a moderate number of given samples, if one has
to recover a trigonometric polynomial of large sparsity M. This
means we specialize the problem (P1). Let S > 0 be a large even
integer. Assume that ϕj =

ωj

S ∈ (− 1
2 ,

1
2 ], whereωj ∈ (− S

2 ,
S
2 ]∩Z.

Replacing the variable x by Sx in (1.1), we consider the 1-periodic
trigonometric polynomial of sparsityM

g(x) := h(Sx) :=
M

∑

j=1

cj e
2π iωjx (x ∈ R) (1.2)

with integer frequencies ωj ∈ (− S
2 ,

S
2 ] ∩ Z. Consequently we

investigate the following spectral estimation problem:
(P2) Recover the sparsity M ∈ N, all integer frequencies

ωj ∈ (− S
2 ,

S
2 ] ∩ Z as well as all non-zero coefficients cj ∈ C

of the trigonometric polynomial (1.2) for noisy sampled values

g̃k := g( kS ) + ek = h(k) + ek (k = 0, . . . ,N − 1) with N ≥ 2M,

where ek ∈ C are small error terms with |ek| ≤ 1
10 minj |cj|. Often

one considers the modified problem (P2∗), where the sparsityM
is known.

A numerical solution of problem (P2) or (P2∗) with low
computational cost is called sparse fast Fourier transform (sparse
FFT). Using divide-and-conquer technique, the trigonometric
polynomial (1.2) of large sparsity M is split into some
trigonometric polynomials of lower sparsity and corresponding
samples are determined by fast Fourier transform (FFT). Here
we borrow an idea from sparse FFT in Lawlor et al. [11]

and Christlieb et al. [12] and use shifted sampling of (1.2),
i.e., equidistant sampling with few equidistant shifts. Then the
trigonometric polynomials of lower sparsity can be recovered by
MUSIC resp. ESPRIT. The computational cost of the new sparse
FFT is analyzed too.

A similar splitting technique is suggested in Lawlor et al. [11]
and Christlieb et al. [12], but with a different method to detect
frequencies, when aliasing between two or more frequencies
occurs. The method in Lawlor et al. [11] and Christlieb et al.
[12] follows an idea of Iwen [13], which is based on the
Chinese Remainder Theorem, see also Ben-Or and Tiwari [14].
A different method for the sparse FFT, based on efficient filters
is suggested in Hassanieh et al. [15] and Gilbert et al. [16].
We remark that there are two types of methods, deterministic
(see [13]) and randomized (see [11, 15, 16]). Further related
randomized methods based on compressed sensing can be
found in the papers [17–19] and in the monograph [20]. Please
note that the sparse FFT methods mentioned before solve the
problem (P2∗), i.e., one assumes that the sparsity (or an upper
bound) is known, whereas our new deterministic sparse FFT
also detects the sparsity M. We remark that preliminary tests
of the implementation [21, 22] of the sfft version 3 algorithm
[15] suggest that this method also works if the sparsity input
parameter is chosen larger than the actual sparsity of the signal.
For further references on sparse FFTs, we refer to Remark 3.1.

In Section 4, we extend our method to a new reconstruction
of multivariate trigonometric polynomials of large sparsity,
where sampled data on a convenient rank-1 lattice are given.
In Section 5, several numerical experiments with noiseless
resp. noisy sampled data illustrate the high performance of the
sparse FFT as proposed in Section 3. Note that in the case of
successful recovery of the sparse trigonometric polynomial (1.2)
all frequencies are correctly detected. For the modified sparse
FFT of Section 4, numerical examples for the reconstruction
of six-variate trigonometric polynomials of sparsity 256 are
given too. Moreover, we compare our results with preliminary
tests of the implementation [21, 22] of the sfft version 3
algorithm [15].

In summary we present a splitting method, in between the
well-known methods ESPRIT, MUSIC, and FFT for the problem
(P2) with the parameters in Table 1. For the results, see the
Tables 3, 4 in Section 3. Furthermore, we use a reconstructing
rank-1 lattice in order to reconstruct multivariate trigonometric
polynomials, see Section 4. Here in the case of successful recovery
of a sparse multivariate trigonometric polynomial, all frequency
vectors are detected without errors.

TABLE 1 | Numbers of required samples and computational costs for

ESPRIT, MUSIC, and FFT, where M denotes the sparsity of (1.1) and S is a

large even integer so that all frequencies ϕj are of the form
ωj
S

with

ωj ∈ (− S
2

, S
2
] ∩ Z.

Method Samples Computational cost

ESPRIT O(M) O(M3 )

MUSIC O(M) O(M3 +M2S+ S logS)

FFT O(S) O(S logS)
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2. RECONSTRUCTION OF EXPONENTIAL
SUMS

The main difficulty is the recovery of the frequency set 8: =
{ϕ1, . . . , ϕM} in (1.1).

We introduce the rectangular Fourier–type matrix FN,M : =
(

e2π iϕj(k−1)
)N,M

k,j=1
. Note that FN,M coincides with the rectangular

Vandermonde matrix VN,M(z) : = (zk−1
j )N,M

k,j=1
with z : = (zj)

M
j=1,

where zj := e2π iϕj (j = 1, . . . ,M) are distinct nodes on the unit
circle. Then the spectral estimation problem can be formulated in
following matrix-vector form

VN,M(z) c = h̃ , (2.1)

where h̃ : = (h̃k)
N−1
k=0

is the vector of noisy sampled data and

c := (cj)
M
j=1 the vector of complex coefficients of (1.1).

Under the natural assumption that the nodes zj (j =
1, . . . ,M) are well-separated on the unit circle, it can be shown
that FP,M has a uniformly bounded spectral norm condition
number for sufficiently large integer P > M.

Theorem 2.1 (see [23, Theorem 2]) Assume that the frequencies
ϕj ∈ (− 1

2 ,
1
2 ] (j = 1, . . . ,M) are well-separated by the separation

distance

q := min
j 6=ℓ

(

min
n∈Z

|ϕj + n− ϕℓ|
)

> 0

and that P > max {M, 2π + 1
q }.

Then the discrete Ingham inequalities related to FP,M indicate that
for all x ∈ C

M

α1(P) ‖x‖22 ≤ ‖FP,M x‖22 ≤ α2(P) ‖x‖22 (2.2)

with α1(P) := P
(
2
π
− 2

πP2q2
− 4

P

)

and

α2(P) :=











P
(
4
√
2

π
+

√
2

πP2q2
+ 3

√
2

P

)

for even P ,

(P + 1)
(
4
√
2

π
+

√
2

π(P+1)2q2
+ 3

√
2

P+1

)

for odd P .

Furthermore, the rectangular Fourier–type matrix FP,M has a
uniformly bounded spectral norm condition number

cond2 FP,M ≤
√

α2(P)

α1(P)
.

Proof. The assumption P > 2π + 1
q is sufficient for the gap

condition

q >
1

P

(

1− 2π

P

)−1/2

(2.3)

to hold. The gap condition (2.3) ensures that α1(P) > 0. For
a proof of the discrete Ingham inequalities (2.2) under the gap
condition (2.3) see Liao and Fannjiang [23, Theorem 2]. Let λ1 ≥
. . . ≥ λM > 0 be the ordered eigenvalues of F∗P,MFP,M ∈ CM×M .

Using the Raleigh–Ritz Theorem and (2.2), we obtain that for all
x ∈ C

M

α1(P) ‖x‖22 ≤ λM ‖x‖22 ≤ ‖FP,M x‖22 ≤ λ1 ‖x‖22 ≤ α2(P) ‖x‖22

and hence

0 < α1(P) ≤ λM ≤ λ1 ≤ α2(P) < ∞ . (2.4)

Thus, F∗P,MFP,M is positive definite and

cond2 FP,M =
√

λ1

λM
≤

√

α2(P)

α1(P)
.

This completes the proof.

Corollary 2.2 Assume that the frequencies ϕj ∈ (− 1
2 ,

1
2 ] (j =

1, . . . ,M) are well-separated by the separation distance q > 0 and
that P > max {M, 2π + 1

q }.
Then the discrete Ingham inequalities related to FTP,M indicate

that for all y ∈ C
P

α1(P) ‖y‖22 ≤ ‖FTP,M y‖22 ≤ α2(P) ‖y‖22 . (2.5)

Proof. The matrices FP,M and FTP,M possess the same singular
values λj (j = 1, . . . ,M). By the Rayleigh–Ritz Theorem we
obtain that

λM ‖y‖22 ≤ ‖FTP,M y‖22 ≤ λ1 ‖y‖22

for all y ∈ C
P. Applying (2.4), we obtain the discrete Ingham

inequalities (2.5).

Remark 2.3 The Riesz stability of the exponentials e2π iϕjx (j =
1, . . . ,M) in the Hilbert space ℓ2(ZN) follows immediately from
the discrete Ingham inequalities (2.2), where ZN := {0, . . . ,N −
1} denotes the sampling grid. If the assumptions of Theorem
2.1 are fulfilled for P = N, then the exponentials e2π iϕjx (j =
1, . . . ,M) are Riesz stable with respect to the discrete norm of
ℓ2(ZN), i.e.,

α1(N) ‖c‖22 ≤
N−1
∑

k=0

|h(k)|2 ≤ α2(N) ‖c‖22

for all exponential sums (1.1) with arbitrary coefficient vectors
c = (cj)

M
j=1 ∈ C

M . Note that the Riesz stability of these

exponentials related to continuous norms was formerly discussed
and applied in spectral estimation in Peter et al. [24] and Potts
and Tasche [25].

In practice, the sparsityM of the exponential sum (1.1) is often
unknown. Assume that L ∈ N is a convenient upper bound ofM
withM ≤ L ≤ N −M+ 1. In applications, such an upper bound
L is mostly known a priori. If this is not the case, then one can
choose L ≈ N

2 . As mentioned in Remark 2.6, the choice L ≈ N
2

is optimal in some sense. Often the sequence {h̃0, h̃1, . . . , h̃N−1}
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of sampled data is called a time series of length N. Then we form
the L-trajectory matrix of this time series

H̃L,N−L+1 :=
(

h̃ℓ+m

)L−1,N−L

ℓ,m=0
(2.6)

with the window length L ∈ {M, . . . , N −M + 1}. Analogously,
we define the L-trajectory matrix of noiseless data

HL,N−L+1 :=
(

h(ℓ +m)
)L−1,N−L

ℓ,m=0
. (2.7)

Obviously, (2.6) and (2.7) are L×(N−L+1) Hankel matrices. For

simplicity, we consider mainly the noiseless case, i.e. h̃k = h(k)
(k = 0, . . . ,N − 1).

The main step in the solution of the frequency analysis
problem (P1) is the determination of the sparsity M and the
computation of the frequencies ϕj or alternatively of the nodes
zj = e2π iϕj (j = 1, . . . , M). Afterwards one can calculate
the coefficient vector c ∈ C

M as least squares solution of the
overdetermined linear system (2.1), i.e., the coefficient vector c
is the solution of the least squares problem

min
c∈CM

‖VN,M(z) c−
(

h̃k
)N−1

k=0
‖2 .

We denote square matrices with only one index and refer to the
well known fact that the square Vandermonde matrix VM(z) is
invertible and the matrix VN,L(z) with L ∈ {M, . . . , N −M+ 1}
has full column rank. Additionally we introduce the rectangular
Hankel matrices

H̃L,N−L(s) := H̃L,N−L+1(1:L, 1+s:N−L+s) (s = 0, 1) . (2.8)

In the case of noiseless data h̃k = h(k) (k = 0, . . . , N − 1),
the related Hankel matrices (2.8) are denoted by HL,N−L(s) (s =
0, 1).

Remark 2.4 The Hankel matrix HL,N−L+1 of noiseless data has
the rank M for each window length L ∈ {M, . . . , N − M + 1}
and the related Hankel matricesHL,N−L(s) (s = 0, 1) possess the
same rankM for each window length L ∈ {M, . . . , N −M} (see
[9, Lemma 2.1]). Consequently, the sparsityM of the exponential
sum (1.1) coincides with the rank of these Hankel matrices.

By the Vandermonde decomposition of the Hankel matrix
HL,N−L+1 we obtain that

HL,N−L+1 = VL,M(z) (diag c) (VN−L+1,M(z))T . (2.9)

Under mild conditions, the Hankel matrixHL,N−L+1 of noiseless
data has a bounded spectral norm condition number too.

Theorem 2.5 Let L, N ∈ N with M ≤ L ≤ N − M + 1 and
min {L, N−L+1} > 2π+ 1

q be given. Assume that the frequencies

ϕj ∈ (− 1
2 ,

1
2 ] (j = 1, . . . ,M) are well-separated by the separation

distance q > 0 and that the non-zero coefficients cj (j = 1, . . . ,M)
of the exponential sum (1.1) fulfill the condition

0 < γ1 ≤ |cj| ≤ γ2 < ∞ (j = 1, . . . ,M) . (2.10)

Then for all y ∈ C
N−L+1

γ 2
1 α1(L)α1(N − L + 1) ‖y‖22 ≤ ‖HL,N−L+1 y‖22

≤ γ 2
2 α2(L)α2(N − L+ 1) ‖y‖22 .(2.11)

Further, the lowest resp. largest positive singular value ofHL,N−L+1

can be estimated by

0 < γ1
√

α1(L)α1(N − L+ 1) ≤ σM ≤ σ1

≤ γ2
√

α2(L)α2(N − L+ 1) . (2.12)

The spectral norm condition number of HL,N−L+1 is bounded by

cond2HL,N−L+1 ≤
γ2

γ1

√

α2(L)α2(N − L+ 1)

α1(L)α1(N − L+ 1)
. (2.13)

Proof. By the Vandermonde decomposition (2.9) of the Hankel
matrixHL,N−L+1, we obtain that for all y ∈ C

N−L+1

‖HL,N−L+1 y‖22 = ‖FL,M (diag c) FTN−L+1,M y‖22 .

By the discrete Ingham inequalities (2.2) and the assumption
(2.10), it follows that

γ 2
1 α1(L) ‖FTN−L+1,M y‖22 ≤ ‖HL,N−L+1 y‖22 ≤ γ 2

2 α2(N−L+ 1)

‖FTN−L+1,M y‖22 .

Using the discrete Ingham inequalities (2.5), we obtain the
estimates (2.11). Finally, the estimates of the lowest resp. largest
positive singular value and the spectral norm condition number
ofHL,N−L+1 arise from (2.11) and the Rayleigh–Ritz Theorem.

Remark 2.6 For fixed N, the positive singular values as well
as the spectral norm condition number of the Hankel matrix
HL,N−L+1 depend strongly on L ∈ {M, . . . ,N − M + 1}. A
good criterion for the choice of optimal window length L is to
maximize the lowest positive singular value σM of HL,N−L+1.
It was shown in Potts and Tasche [submitted, Lemma 3.1 and
Remark 3.3] that the squared singular values increase almost
monotonously for L = M, . . . , ⌈N2 ⌉ and decrease almost

monotonously for L = ⌈N2 ⌉, . . . ,N−M+ 1. Note that the lower
bound (2.12) of the lowest positive singular value σM is maximal
for L ≈ N

2 . Further the upper bound (2.13) of the spectral norm

condition number of (2.7) is minimal for L ≈ N
2 . Therefore, we

prefer to choose L ≈ N
2 as optimal window length. Thus, we can

ensure that σM > 0 is not too small. This property is decisively
for the correct detection of the sparsity M in the first step of the
MUSIC resp. ESPRIT Algorithm 2.8 resp. 2.9.

The ranges ofHL,N−L+1 and VL,M(z) coincide in the noiseless
case withM ≤ L ≤ N −M+ 1 by (2.9). If L > M, then the range
of VL,M(z) is a proper subspace of C

L. This subspace is called left
signal space SL. The left signal space SL is of dimensionM and is
generated by theM columns eL(ϕj) (j = 1, . . . ,M), where

eL(ϕ) :=
(

e2π i ℓϕ
)L−1

ℓ=0

(

ϕ ∈
[

−1

2
,
1

2

])

.
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Note that ‖eL(ϕ)‖2 =
√
L for each ϕ ∈ [− 1

2 ,
1
2 ]. The left noise

space NL is defined as the orthogonal complement of SL in C
L.

The dimension ofNL is equal to L−M.

Remark 2.7 Let M ≤ L < N − M + 1 be given. If we
use H∗

L,N−L+1 instead of HL,N−L+1, then we can define the
right signal space as the range of VN−L,M(z̄), where z̄ denotes
the complex conjugate of z. The right signal space is an M-
dimensional subspace of C

N−L+1 and is generated by the M
linearly independent vectors eN−L+1(−ϕj) (j = 1, . . . ,M). Then
the corresponding right noise space is the orthogonal complement
of the right signal space in C

N−L+1.

By QL we denote the orthogonal projection onto the left noise
space NL. Since eL(ϕj) ∈ SL (j = 1, . . . ,M) and NL ⊥ SL, we
obtain that

QL eL(ϕj) = 0 (j = 1, . . . ,M) .

If the number ϕ ∈ (− 1
2 ,

1
2 ] \ 8, then the vectors

eL(ϕ1), . . . , eL(ϕM), eL(ϕ) ∈ C
L are linearly independent, since

the square Vandermonde matrix

(

eL(ϕ1) | . . . | eL(ϕM) | eL(ϕ)
)

(1 : M + 1, 1 : M + 1)

is invertible for each L ≥ M + 1. Hence eL(ϕ) /∈ SL =
span {eL(ϕ1), . . . , eL(ϕM)}, i.e. QLeL(ϕ) 6= 0. Thus, the
frequency set 8 can be determined via the zeros of the left
noise-space correlation function

NL(ϕ) := 1√
L
‖QL eL(ϕ)‖2

(

ϕ ∈
(

−1

2
,
1

2

])

,

since NL(ϕj) = 0 for each j = 1, . . . ,M and 0 < NL(ϕ) ≤ 1

for all ϕ ∈ (− 1
2 ,

1
2 ] \ 8, where QLeL(ϕ) can be computed on an

equispaced fine grid. Alternatively, one can seek the peaks of the
left imaging function

JL(ϕ) :=
√
L ‖QL eL(ϕ)‖−1

2

(

ϕ ∈
(

−1

2
,
1

2

])

.

In this approach, we prefer the zeros resp. the lowest local minima
of the left noise-space correlation function NL(ϕ).

In the next step we determine the orthogonal projection QL

onto the left noise space NL. Here we can use the SVD or
the QR decomposition of the L-trajectory matrix HL,N−L+1. For
an application of QR decomposition see Potts and Tasche [9].
Applying SVD, we obtain that

HL,N−L+1 = ULDL,N−L+1W
∗
N−L+1 ,

where UL ∈ C
L×L and WN−L+1 ∈ C

(N−L+1)×(N−L+1) are
unitary matrices and where DL,N−L+1 ∈ R

L×(N−L+1) is a
rectangular diagonal matrix. The diagonal entries of DL,N−L+1

are the singular values σj of the L-trajectory matrix arranged in
non-increasing order σ1 ≥ . . . ≥ σM > σM+1 = . . . =
σmin {L,N−L+1} = 0. Thus, we can determine the sparsity M of

the exponential sum (1.1) by the number of positive singular
values σj.

Introducing the matrices

U
(1)
L,M := UL(1 : L, 1 : M) , U

(2)
L,L−M := UL(1 : L, M + 1 : L)

with orthonormal columns, we see that the columns ofU
(1)
L,M form

an orthonormal basis of SL and that the columns of U
(2)
L,L−M are

an orthonormal basis of NL. Hence the orthogonal projection
onto the left noise spaceNL has the form

QL = U
(2)
L,L−M (U

(2)
L,L−M)∗ .

Consequently, we obtain that

‖QL eL(ϕ)‖22 = 〈QL eL(ϕ), QL eL(ϕ)〉 = 〈(QL)
2 eL(ϕ), eL(ϕ)〉

= 〈QL eL(ϕ), eL(ϕ)〉
= 〈(U(2)

L,L−M)∗ eL(ϕ), (U
(2)
L,L−M)∗ eL(ϕ)〉

= ‖(U(2)
L,L−M)∗ eL(ϕ)‖22 .

Hence the left noise-space correlation function can be
represented by

NL(ϕ) =
1√
L
‖(U(2)

L,L−M)∗ eL(ϕ)‖2
(

ϕ ∈
(

−1

2
,
1

2

])

.

In MUSIC, one determines the lowest local minima of the left
noise-space correlation function, see e.g., [1, 4, 26, 27].

Algorithm 2.8 (MUSIC via SVD)
Input: N ∈ N (N ≥ 2M) number of samples, L ≈ N

2 window

length, h̃k = h(k) + ek ∈ C (k = 0, . . . ,N − 1) noisy sampled
values of (1.1), 0 < ε ≪ 1 tolerance.
1. Compute the SVD of the rectangular Hankel matrix

H̃L,N−L+1 = ŨL D̃L,N−L+1 W̃
∗
N−L+1 from (2.6), where the

singular values σ̃ℓ (ℓ = 1, . . . ,min {L, N − L+ 1}) are arranged
in non-increasing order. Determine the numerical rank M of
(2.6) such that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the matrix

Ũ
(2)
L,L−M = ŨL(1 : L, M + 1 : L).

2. Calculate the left noise-space correlation function ÑL(ϕ) : =
1√
L
‖(Ũ(2)

L,L−M)∗eL(ϕ)‖2 on an equispaced grid {− 1
2+

1
S , . . . , 1

2−
1
S ,

1
2 } for sufficiently large S.

3. The M lowest local minima of ÑL(
2k−S
2S ) (k = 1, . . . , S) form

the frequency set 8̃ : = {ϕ̃1, . . . , ϕ̃M}. Set z̃j : = e2π iϕ̃j (j =
1, . . . ,M).
4. Compute the coefficient vector c̃ := (c̃j)

M
j=1 ∈ C

M as solution

of the least squares problem

min
c̃∈CM

‖VN,M(z̃) c̃−
(

h̃k
)N−1

k=0
‖2 ,

where z̃ :=
(

z̃j
)M

j=1
denotes the vector of computed nodes.

Output: M ∈ N sparsity, ϕ̃j ∈ (− 1
2 ,

1
2 ] frequencies, c̃j ∈ C

coefficients (j = 1, . . . ,M).
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Let L, N ∈ N with M < L ≤ N −M + 1 be given. For noisy

sampled data h̃k = h(k) + ek (k = 0, . . . ,N − 1), the MUSIC
Algorithm 2.8 is relatively insensitive to small perturbations on
the data (see [23, Theorem 3]).

In opposite to the MUSIC Algorithm 2.8, the following
ESPRIT Algorithm is based on orthogonal projection onto a right
signal space. For details see [5, 9, submitted].

Algorithm 2.9 (ESPRIT via SVD)
Input: N ∈ N (N ≥ 2M) number of samples, L ≈ N

2 window

length, h̃k = h(k) + ek ∈ C (k = 0, . . . ,N − 1) noisy sampled
values of (1.1), 0 < ε ≪ 1 tolerance.

1. Compute the SVD of the rectangular Hankel matrix

H̃L,N−L+1 = ŨL D̃L,N−L+1 W̃
∗
N−L+1 from (2.6), where the

singular values σ̃ℓ (ℓ = 1, . . . ,min {L, N−L+1}) are arranged in
non-increasing order. Determine the numerical rank M of (2.6)
such that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the submatrices

W̃N−L,M(s) := W̃N−L+1(1+ s : N − L+ s, 1 : M) (s = 0, 1) .

2. Calculate the matrix

F̃M := W̃N−L,M(1)∗
(

W̃N−L,M(0)∗
)†

,

where
(

W̃N−L,M(0)∗
)†

denotes the Moore–Penrose
pseudoinverse.
3. Determine all eigenvalues z′j (j = 1, . . . ,M) of F̃M . Set

ϕ̃j :=
1

2π
Arg

z′j
|z′j|

∈ (−1

2
,
1

2
] (j = 1, . . . ,M) ,

where Arg z ∈ (−π, π] means the principal value of the
argument of z ∈ C \ {0}.
4. Compute the coefficient vector c̃ := (c̃j)

M
j=1 ∈ C

M as solution

of the least squares problem

min
c̃∈CM

‖VN,M(z̃) c̃−
(

h̃k
)N−1

k=0
‖2 ,

where z̃ :=
(

z̃j
)M

j=1
denotes the vector of computed nodes z̃j :=

e2π i ϕ̃j .
Output: M ∈ N sparsity, ϕ̃j ∈ (− 1

2 ,
1
2 ] frequencies, c̃j ∈ C

coefficients (j = 1, . . . ,M).

Note that in Algorithms 2.8 and 2.9 the tolerance can be
theoretically chosen as ε = (2 cond2HL,N−L+1)

−1. Then by
Theorem 2.5, the tolerance ε is not too small for L ≈ N

2 . A
simple procedure for the practical choice of ε is described in the
Example 5.1. By the right choice of the window length L ≈ N

2 ,
we can recover the correct sparsity M of (1.1) and avoid the
determination of spurious frequencies.

The numbers of required samples and the computational costs
of the Algorithms 2.8 and 2.9 are listed in Table 2. Thus, the main
disadvantages of these algorithms are the high computational
costs for large sparsity M, caused mainly by the SVD. Therefore,
in Potts and Tasche [28], we have suggested to use a partial
SVD (based on partial Lanczos bidiagonalization) instead of a
complete SVD. For both Algorithms 2.8 and 2.9, one needs too
many operations in the case of large sparsityM, see Table 2.

3. SPARSE FAST FOURIER TRANSFORM

In this section, we apply Algorithm 2.8 (MUSIC) resp.
Algorithm 2.9 (ESPRIT) to the reconstruction of sparse
trigonometric polynomials. Clearly, one can approximate the
unknown frequencies ϕj of the exponential sum (1.1) by
fractions. Therefore, we assume that the unknown frequencies
ϕj of (1.1) are fractions

ωj

S with ωj ∈ (− S
2 ,

S
2 ] ∩ Z, where S

is a large even integer. Replacing the variable x by Sx in (1.1),
we obtain the new exponential sum (1.2). Then (1.2) is a 1-
periodic trigonometric polynomial with sparsity M. Consequently
we consider the spectral estimation problem (P2) as mentioned
in Section 1. A fast algorithm, which solves the problem (P2)
or (P2∗), is called sparse fast Fourier transform (sparse FFT).
In recent years many sublinear algorithms for sparse FFTs were
proposed, see Section 1 and Remark 3.1.

In the following, we propose a new deterministic sparse FFT
for solving the problem (P2) of a trigonometric polynomial (1.2)
with large sparsity M. Using divide–and–conquer technique, we
split the trigonometric polynomial (1.2) of large sparsity M into
some trigonometric polynomials of lower sparsity and determine
corresponding samples. Here we borrow an idea from sparse FFT
in Christlieb et al. [12] and use shifted sampling of (1.2). For a
positive integer P ≤ S and a parameter K ∈ N, K ≥ 2, we
construct a discrete array of samples of size P × (2K + 1) via

gP[s, k] := g

(
s

P
+ k

S

)

, (s = 0, . . . , P − 1; k = 0, . . . , 2K).

(3.1)
For each k = 0, . . . , 2K we form the discrete Fourier transform
(DFT) of length P and obtain

ĝP[ℓ, k] :=
P−1
∑

s=0

gP[s, k] e
−2π isℓ/P (ℓ = 0, . . . , P − 1) . (3.2)

The fast Fourier transform (FFT) allows the rapid
computation of this DFT of length P in O(P log P) operations.
In Figure 1, the sampling scheme and the applied DFTs are
visualized. Next, for each ℓ = 0, . . . , P − 1, it follows that

ĝP[ℓ, k] =
P−1
∑

s=0

M
∑

j=1

cj e
2π iωj(s/P+k/S) e−2π isℓ/P

=
M

∑

j=1

cj e
2π iωjk/S

P−1
∑

s=0

e2π i(ωj−ℓ)s/P

︸ ︷︷ ︸

= 0 or P

.

TABLE 2 | Computational costs for the Algorithms 2.8 and 2.9 in the case

of N given samples, where S is a large even integer so that all frequencies

ϕj are of the form
ωj
S

with ωj ∈ (− S
2

, S
2
] ∩ Z.

Method Computational cost

Algorithm 2.8 (MUSIC) O(N3 + N2S+ S logS)

Algorithm 2.9 (ESPRIT) O(N3 )
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FIGURE 1 | Illustration of the sampling scheme (3.1) and the applied DFTs (3.2).

Now we define the index sets

IP(ℓ) :=
{

j ∈ {1, . . . ,M} : ωj ≡ ℓ (mod P)
}

such that

ĝP[ℓ, k] = P
∑

j∈IP(ℓ)
cj e

2π iωjk/S.

Consequently, for each ℓ = 0, . . . , P − 1, we may interpret
ĝP[ℓ, k] (k = 0, . . . , 2K) as samples of a trigonometric
polynomial with frequencies supported only on the index set
{ωj}j∈IP(ℓ) ⊂ {ω1, . . . , ωM}, where the samples are taken at
the nodes k/S (k = 0, . . . , 2K). In simplified terms, the
trigonometric polynomial (1.2) is partitioned into P many
trigonometric polynomials of smaller sparsity.

Next, we use K ∈ N, K ≥ 2, as sparsity cut-off parameter.
This means for each ℓ = 0, . . . , P − 1, we apply Algorithm 2.8

resp. 2.9 to the “samples” h̃k := ĝP[ℓ, k] (k = 0, . . . , 2K) and we
check if we can uniquely identify all frequencies ωj, j ∈ IP(ℓ), i.e.,
if the determined sparsityMℓ := M from Algorithm 2.8 resp. 2.9
fulfills Mℓ < K. In this case, we use the obtained local fractions
ϕ̃j to compute the frequencies ωj = round (ϕ̃jS) by rounding to
nearest integer and we use the corresponding coefficients cj.

When the condition |IP(ℓ)| < K is fulfilled for all ℓ =
0, . . . , P − 1, this approach requires (2K + 1) P samples of g
and 2K + 1 FFTs of length P. The computational costs for the
corresponding algorithms are listed in Table 3.

If we cannot uniquely identify all frequencies, i.e., if |IP(ℓ)| ≥
K for some ℓ, then we form iteratively the new trigonometric
polynomial

g1(x) := g(x)−
∑

j∈I
cj e

2π iωjx , (3.3)

where I is the union of all IP(ℓ) with the property |IP(ℓ)| < K.
In the next iteration step, we choose a positive integer P1 ≤ S
different from P and repeat the method on the trigonometric
polynomial g1. In doing so, we can compute the values

∑

j∈I
cj e

2π iωj(
s
P1

+ k
S ) =

∑

j∈I

(

cj e
2π i

ωj
P1

s
)

e2π i
ωj
S k

(s = 0, . . . , P1 − 1; k = 0, . . . , 2K)

TABLE 3 | Computational cost of one iteration step of Algorithm 3.2 in the

case of (2K + 1)P given samples (3.1).

Method Computational cost

Alg. 3.2 via MUSIC O

(

KP2 + K3P+ K2S+ S log S
P

)

Alg. 3.2 via ESPRIT O

(

KP2 + K3P
)

by the non-equispaced fast Fourier transform (NFFT) [29] in
O

(

P1(K logK + |I|)
)

arithmetic operations.
We perform additional iterations until all frequencies can be

identified, i.e., if |IP1 (ℓ)| < K for all ℓ = 0, . . . , P1 − 1. Note that
our algorithm is related to the sparse FFT proposed in Christlieb
et al. [12]. But here we use the methods of Section 2, if aliasing
with respect to modulo P occurs.

Remark 3.1 (Relations to other sparse FFTs) In Hassanieh et al.
[15], an algorithm for the problem (P2∗) is presented, which
allows to determine the (unknown) support I and the Fourier
coefficients cj from O(M log S) samples with computational
cost of O(M log S) operations, as well as a second algorithm,
which allows the M-sparse ℓ2 best approximation of the
Fourier coefficients of g from O(M log(S) log(S/M)) samples
with computational cost of O(M log(S) log(S/M)) operations.
As mentioned in the introduction, preliminary tests of the
implementation [21] suggest that this method may also work
for the problem (P2), if an upper bound for the sparsity of
the signal is used as sparsity input parameter. In Indyk et al.
[30], another variant was discussed, where the number of
samples is O(M log S) (log log S)O(1) and the computational cost
isO(M log2 S) (log log S)O(1).

Recently in Indyk and Kapralov [31], a result was presented
for the multivariate case where the number of required
samples is O(M log S) for constant dimensions d and the

computational cost is O(Sd logO(1) S). In general the exact
constants, especially the dependence on d, are unknown due to
missing implementations. For instance the number of samples
O(M log S) of the last mentioned algorithm contains a factor of
dO(d), see Section [31, Section 4].

Moreover, a deterministic sparse FFT, using the Chinese
Remainder Theorem, was presented in [13] for the univariate
case and in Iwen [32] for the multivariate case, which
takes O(d4M2 log4(dS)) samples and arithmetic operations.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 February 2016 | Volume 2 | Article 1

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Potts et al. Spectral Estimation and Sparse FFT

This means there is neither a exponential/super-exponential
dependency on the dimension d ∈ N nor a dependency
on a failure probability in the asymptotics of the number of
samples and arithmetic operations for this method. Besides this
deterministic algorithm, there also exists a randomized version
which only requires O(d4M log4(dS)) samples and arithmetic
operations.

Recently, another sparse FFT, which is based on a multiscale
approach, was presented in Christlieb et al. [12] as an extension
of the method [11]. Their algorithm is able to handle (additive)
noise and requiresO(M log(S/M)) on average.

For further references on the sparse FFT we refer to the
nice webpage http://groups.csail.mit.edu/netmit/sFFT/. Despite
the fact that the computational cost of the sparse FFT is
lower, it is not clear which algorithm is indeed faster and
more stable for the practical problems mentioned in the
Section 5.

We stress again that it is already well known that one can use
Prony-type methods for the sparse FFT, see e.g., Heider et al.
[33]. Using the proposed splitting approach, one can significantly
decrease the high computational cost of MUSIC and ESPRIT, but
keep the numerical stable evaluation. Clearly one can combine
the suggested method with a reconstruction of the non-zero
Fourier coefficients in a dimension incremental way [34].

All of the methods described in Section 2 apply an SVD
and use the tolerance ε as a relative threshold parameter to
determine the local sparsity Mℓ of the signal. A good choice of
this parameter may depend without limitation on noise in the
sampling values of the trigonometric polynomial g and on the
smallest distance between two frequencies, where this distance
may change for each ℓ ∈ {0, . . . , P − 1} in each iteration.
We propose to use a (small) list of possible relative threshold
parameters ε, which are tested for each ℓ ∈ {0, . . . , P − 1} in
each iteration.

Our sparse FFT for recovery of a trigonometric polynomial
(1.2) with large sparsityM reads as follows:

Algorithm 3.2 (Sparse FFT via MUSIC resp. ESPRIT, see
Algorithm 6.1 for detailed listing with extended parameter list).

Input: S ∈ 2N frequency grid parameter, K ∈ N (K ≥ 2)
Hankel matrix size parameter, P ∈ N (P ≤ S) initial FFT length,
g̃ 1-periodic sparse trigonometric polynomial (1.2) of unknown
sparsity M ∈ N with frequencies in (− S

2 ,
S
2 ] ∩ Z perturbed by

noise.

1. For each k = 0, . . . , 2K, sample g̃P[s, k]: = g̃
(

s
P + k

S

)

,

s = 0, . . . , P − 1, and compute
(

ĝP[ℓ, k]
)P−1

ℓ=0
by FFT of

(

g̃P[s, k]
)P−1

s=0
.

2. for ℓ = 0, . . . , P − 1

2.1. Apply Algorithm 2.8 resp. 2.9 with L : = K and

N : = 2K + 1 on the values
(

h̃k : = ĝP[ℓ, k]
)2K

k=0
to obtain the local sparsity Mℓ : = M and the
local fractions ϕ̃ℓ,m : = ϕ̃m ∈ (− 1

2 ,
1
2 ] for m =

1, . . . ,Mℓ. If Mℓ ≥ K, then go to step 2 and

continue with next ℓ. Otherwise, compute the local
frequencies ωℓ,m : = round (ϕ̃ℓ,m S) by rounding
to nearest integer.

2.2. Compute the local coefficients cℓ,m as least squares
solution of the overdetermined Vandermonde
system

min
(cℓ,m)

Mℓ
m= 1∈C

Mℓ

∥
∥
∥ P

(

e2π ikωℓ,m/S
)2K,Mℓ

k= 0,m= 1

(cℓ,m)
Mℓ

m= 1 −
(

ĝP[ℓ, k]
)2K

k=0

∥
∥
∥
2
. (3.4)

2.3. If the residual of (3.4) is small (see step 3.3.6 of
Algorithm 6.1), then append the frequencies ωℓ,m

(m = 1, . . . ,Mℓ) to the frequency set �.

3. If the (global) residual

max
s=0,...,P−1
k=0,...,2K

∣
∣
∣

|�|
∑

j′=1

C[j′] e
2π i�[j′]

(
s
P+

k
S

)

− g
(
s
P + k

S

) ∣
∣
∣

is small, then exit the algorithm. Otherwise, form the new
trigonometric polynomial (3.3). In the next iteration step
choose a positive integer P1 ≤ S different from P, sample

(3.3) on s
P1

+ k
S for s = 0, . . . , P1 − 1 and k = 0, . . . , 2K,

and repeat the above method.

Output: � ⊂ (− S
2 ,

S
2 ] ∩ Z set of recovered frequencies ωj (j =

1, . . . ,M),M := |�| detected sparsity, cj ∈ C coefficient related
to ωj (j = 1, . . . ,M).

For (2K + 1) P given samples (3.1), the computational
cost for one iteration of Algorithm 3.2 is shown in
Table 3.

If we take (2K + 1)P = O(M) samples, then we obtain
minimal computational cost for the parameters K = O(M1/3)
and P = O(M2/3). For this case, we compare the numbers of
required samples and computational costs for different methods
of spectral estimation in Table 4 such as sparse FFT via MUSIC,
sparse FFT via ESPRIT, MUSIC, ESPRIT, and classical FFT. As
we can see, the sparse FFT via ESPRIT is very useful for the
spectral estimation by a relatively low number of samples and low
computational cost.

4. RECONSTRUCTION OF MULTIVARIATE
TRIGONOMETRIC POLYNOMIALS

Let d, M ∈ N with d > 1 be given. We consider the d-variate
exponential sum of sparsity M

g(x):=
M

∑

j=1

cj e
2π iωj·x (4.1)

for x: = (x1, . . . , xd)
T ∈ R

d with non-zero coefficients cj ∈ C

and distinct frequency vectors ωj ∈ Z
d. Here the dot in the
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TABLE 4 | Numbers of required samples and computational costs using

the splitting approach for one iteration of Algorithm 3.2 as well as for

Algorithms 2.8 and 2.9 in the case K = O(M1/3), P = O(M2/3) and

M ≈ L/2 ≈ N/4.

Method Samples Computational cost

Alg. 3.2 via MUSIC Alg. 2.8 O(M) O

(

M2/3S+ S log S

M2/3

)

Alg. 3.2 via ESPRIT Alg. 2.9 O(M) O

(

M5/3
)

Alg. 2.8 (MUSIC) O (M) O

(

M2S+ S logS
)

Alg. 2.9 (ESPRIT) O (M) O

(

M3
)

FFT of length S S O(S logS)

exponent denotes the usual scalar product in R
d. Note that the

function (4.1) is a d-variate trigonometric polynomial of sparsity
M which is 1-periodical with respect to each variable. Let � : =
{ω1, . . . , ωM} be the set of the frequency vectors.

Assume that it is known a priori that ωj are contained in

a frequency set Ŵ ⊂ Z
d. Then the cardinality of Ŵ satisfies

|Ŵ| ≥ M. Examples of possible frequency sets Ŵ are the cube
{k ∈ Z

d
: ‖k‖∞ ≤ N} and the symmetric hyperbolic cross






k = (ks)

d
s=1 ∈ Z

d
:

d
∏

s=1

max {1, |ks|} ≤ N






.

For given z ∈ Z
d and S ∈ N, the set

3(z, S) :=
{

xk =
k

S
zmod 1; k = 0, . . . , S− 1

}

⊂ T
d ≃ [0, 1)d

is called rank–1 lattice, where 1 : = (1, . . . , 1)T. Note that xk =
xk+nS for k = 0, . . . , S − 1 and n ∈ Z. For given Ŵ ⊂ Z

d, there
exists a reconstructing rank-1 lattice 3(z, S) such that the matrix

AS,|Ŵ| :=
(

e2π ik·x
)

x∈3(z,S), k∈Ŵ

fulfills the condition (see [35] and [36, Section 3.2])

A∗
S,|Ŵ| AS,|Ŵ| = S I|Ŵ| . (4.2)

Then we consider the following spectral estimation problem:
(P3) Assume that ωj ∈ Ŵ (j = 1, . . . ,M) and that 3(z, S)

is a reconstructing rank–1 lattice with respect to Ŵ. Recover the
sparsity M ∈ N, all frequencies ωj ∈ Ŵ as well as all non-zero
coefficients cj ∈ C of the d-variate exponential sum (4.1), if noisy
sampled data

g̃k := g(xk)+ ek

(

|ek| ≤
1

10
minj |cj|

)

for all k = 0, . . . , 2L− 2 are given, where xk ∈ 3(z, S), S ≥ L >

M and ek ∈ C are small error terms.
For simplicity we discuss only noiseless data. Let HL : =

(

g(xk+n)
)L−1

k,n=0
be the response matrix of the given data. Then

HL is a Hankel matrix. Further we introduce the rectangular
Fourier-type matrix

FL,M :=
(

e2π iωj· xk)L−1,M

k=0,j=1
.

From (4.2) it follows in the case L = S that F∗S,M FS,M = S IM and

hence for all x ∈ C
M

‖FS,Mx‖22 = x∗F∗S,M FS,Mx = S ‖x‖22 .

Consequently, all positive singular values of FS,M are equal to
√
S

and cond2FS,M = 1.
The matrixHL can be represented in the form

HL = FL,M
(

diag (cj)
M
j=1

)

FTL,M . (4.3)

The ranges ofHL and FL,M coincide in the noiseless case by (4.3).
The range of FL,M is a proper subspace of C

L. This subspace is
called left signal space SL. The left signal space SL is of dimension
M and is generated by the M columns eL(ωj) (j = 1, . . . ,M),
where

eL(ω) :=
(

e2π iω·xk
)L−1

k=0
(ω ∈ Ŵ) .

Note that ‖eL(ω)‖2 =
√
L for each ω ∈ Ŵ. The left noise space

NL is defined as the orthogonal complement of SL in C
L. The

dimension ofNL is equal to L−M > 0.
By QL we denote the orthogonal projection onto the left noise

space NL. Since eL(ωj) ∈ SL (j = 1, . . . ,M) and NL ⊥ SL, we
obtain that

QL eL(ωj) = 0 (j = 1, . . . ,M) .

If ω ∈ Ŵ \ �, then the vectors eL(ω1), . . . , eL(ωM), eL(ω) ∈ C
L

are linearly independent for S ≥ L > M. This can be seen as
follows: For distinct ω, ω′ ∈ Ŵ , it follows by [36, Lemma 3.1]
that

ω · z 6≡ ω′ · z (mod S).

Consequently the vectors

eL(ωj) :=
(

e2π i (ωj·z) k
S
)L−1

k=0
(j = 1, . . . ,M)

and eL(ω) with ω ∈ Ŵ \ � are linearly independent for S ≥ L >

M, since the square Vandermonde matrix

(

eL(ω1)| . . . |eL(ωM)|eL(ω)
)

(1 : M + 1, 1 : M + 1)

is invertible for each L ≥ M + 1. Hence

eL(ω) /∈ SL = span {eL(ω1), . . . , eL(ωM)} ,

i.e. QL eL(ω) 6= 0.
Thus, the frequency vectors can be determined via the M

zeros resp. lowest local minima of the left noise-space correlation
function

NL(ω) := 1√
L
‖QL eL(ω)‖2 (ω ∈ Ŵ)
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or via theM peaks of the left imaging function

JL(ω) :=
√
L ‖QL eL(ω)‖−1

2 (ω ∈ Ŵ) .

Similar to Section 2, one can determine the left noise-space
correlation function resp. the left imaging function on Ŵ by using
SVD of the response matrixHL.

Now, we proceed analogously to Section 3. For a positive
integer P ≤ S and a parameter K ∈ N, K ≥ 2, we construct
the sampling array of (4.1) of size P × (2K + 1) via

gP[s, k] := g

((
s

P
+ k

S

)

z

)

(s = 0, . . . , P−1; k = 0, . . . , 2K).

As in the univariate case, for each k = 0, . . . , 2K we form the
DFT of length P

ĝP[ℓ, k] :=
P−1
∑

s=0

gP[s, k] e
−2π isℓ/P (ℓ = 0, . . . , P − 1) .

For each ℓ = 0, . . . , P − 1, we obtain that

ĝP[ℓ, k] =
P−1
∑

s=0

M
∑

j=1

cj e
2π i(s/P+k/S)ωj·z e−2π isℓ/P

=
M

∑

j=1

cj e
2π ikωj·z/S

P−1
∑

s=0

e2π i((ωj·z)−ℓ)s/P .

Introducing the index sets

IP(ℓ) :=
{

j ∈ {1, . . . ,M}:ωj·z ≡ ℓ (mod P)
}

(ℓ = 0, . . . , P−1) ,

it follows that

ĝP[ℓ, k] = P
∑

j∈IP(ℓ)
cj e

2π ikωj·z/S .

This means for each ℓ = 0, . . . , P − 1, we may interpret ĝP[ℓ, k]
(k = 0, . . . , 2K) as samples of a multivariate trigonometric
polynomial with frequencies supported on the index set
{ωj}j∈IP(ℓ) ⊂ {ω1, . . . ,ωM}, where the samples are taken at

the nodes k
S z (k = 0, . . . , 2K). In Figure 2, a two-dimensional

example is shown which visualizes the partitioning by the index
sets IP(ℓ).

Next, we apply Algorithm 2.8 resp. 2.9 with L : = K

and N : = 2K + 1 on the values h̃k : = ĝP[ℓ, k] (k =
0, . . . , 2K) for each ℓ = 0, . . . , P − 1 to obtain the local
sparsity Mℓ = M and the local fractions ϕ̃ℓ,m : = ϕ̃m ∈
(− 1

2 ,
1
2 ] for m = 1, . . . ,Mℓ. Afterwards, we compute the

one-dimensional frequencies ωℓ,m : = round (ϕ̃ℓ,m S) ∈
(− S

2 ,
S
2 ] ∩ Z by rounding to nearest integer. We transform

these one-dimensional frequenciesωℓ,m into their d-dimensional
counterparts ωℓ,m ∈ Ŵ using the relation ωℓ,m · z ≡
ωℓ,m (mod S) given by the reconstructing rank-1 lattice 3(z, S).
Then we compute coefficients cℓ,m from the samples ĝP[ℓ, k]
(k = 0, . . . , 2K) by solving the corresponding overdetermined
Vandermonde system. If we cannot identify all the frequencies,
i.e., if |IP(ℓ)| ≥ K for some indices ℓ, we consider the new
trigonometric polynomial

g1(x): = g(x)−
∑

j∈I
cj e

2π iωj·x =
M

∑

j=1

cj e
2π iωj·x −

∑

j∈I
cj e

2π iωj·x

(x ∈ T
d) (4.4)

in an additional iteration, where the index set I contains all index
sets IP(ℓ) with |IP(ℓ)| < K. In the next iteration, we choose a
positive integer P1 ≤ S different from P and repeat the method
for the trigonometric polynomial g1. In doing so, we compute the
values

∑

j∈I
cj e

2π i( s
P1

+ k
S )ωj·z =

∑

j∈I

(

cj e
2π i

ωj
P1

s
)

e2π i
ωj ·z
S k

(s = 0, . . . , P1 − 1; k = 0, . . . , 2K)

of the second sum in (4.4) evaluated at the nodes x = ( s
P1

+
k
S )z with the univariate NFFT [29] in O

(

P1(K logK + |I|)
)

arithmetic operations. We perform additional iterations until
all frequencies can be identified, i.e. |IP1 (ℓ)| < K for all ℓ =
0, . . . , P1 − 1.

We modify Algorithm 3.2 from Section 3 as described
above and additionally in the following way. Here, we
describe the changes in the detailed listing (see Algorithm 6.1)
of Algorithm 3.2. In step 1, we sample the multivariate

FIGURE 2 | Illustration of an example frequency index set {ωj}
19
j=1

and corresponding one-dimensional frequencies ωj · z mod S partitioned by IP(ℓ)

with parameters P := 5, z := (1,33)T, S := 37.
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trigonometric polynomial at the nodes
(
s
P + k

S

)

· z (s =
0, . . . , P − 1, k = 0, . . . , 2K). In step 3.3.3, we compute the
local frequencies ωℓ,m : = round (ϕ̃ℓ,m S) for m = 1, . . . ,Mℓ.
Next, we compute the d-dimensional counterparts ωℓ,m of the
one-dimensional frequencies ωℓ,m using the relation ωℓ,m · z ≡
ωℓ,m (mod S). In step 3.3.4, we filter the frequencies ωℓ,m by
removing non-unique ones and by keeping only those with ωℓ,m ·
z ≡ ℓ (modP). We remark that we have to modify step 3.3.4
and that we have to perform the conversion of one-dimensional
frequenciesωℓ,m to their d-dimensional counterpartsωℓ,m before
the filtering, since the conditions ωℓ,m · z ≡ ℓ (mod P) and
ωℓ,m ≡ ℓ (mod P) are not equivalent in general if P is not a
divisor of S.

5. NUMERICAL EXPERIMENTS

In this section, we present some numerical results for Algorithm
3.2. The related software is available from the authors’ homepage.
All computations are performed in MATLAB with IEEE double–
precision arithmetic. First we consider noiseless sampled data
and later the case, where the sampled data are perturbed
by additive (white) Gaussian noise. Finally we present some
numerical results for the modified Algorithm 3.2 of Section 4.

5.1. Noiseless Sampled Data
Example 5.1 From noiseless sampled values, we reconstruct 100
trigonometric polynomials (1.2) of sparsity M = 256 with
random frequencies ωj ∈ (− S

2 ,
S
2 ] ∩ Z and random coefficients

cj on the unit circle. We set the array of relative SVD threshold
values epsilon_svd_list : = [10−3, 10−4, . . . , 10−8], the
parameter εspatial : = 10−8, the absolute value of minimal non-

zero coefficients εfc_min : = 10−1 = 10−1 · minj |cj| and the
maximal number of iterations R := 10, see Algorithm 6.1 for the
extended parameter list. Applying the sparse FFT Algorithm 3.2
withMUSIC in the case S = 216 with parameters K ∈ {6, 12, 16}
and P ∈ {16, 32, 64, 128}, we can successfully detect all integer
frequencies ωj. In Table 5, the column “iterations” depicts the
maximal number of iterations actually used by the Algorithm
3.2 (computed over 100 trigonometric polynomials). The column
“samples” contains the maximal number of sampled values used
by the Algorithm 3.2. The column “ℓ2–errors” shows themaximal
relative ℓ2–error of the coefficients, which are locally computed
in step 2.2 of Algorithm 3.2. The column “updated ℓ2–errors”
shows the maximal relative ℓ2–error of the coefficients, which
are determined by additionally solving one large Vandermonde
system at the end of Algorithm 3.2 with all frequencies as well as
all samples of (1.2). For comparison, the classical FFT of length
216 requires 216 samples and the resulting ℓ2–error is 2.6e-16.
The minimal number of samples for the cases K ∈ {6, 12, 16}
and P ∈ {16, 32, 64, 128} is reached for K = P = 16 with
1716 samples, the next smallest number of samples is 1725 for
K = 12 and P = 32. If we do not use the splitting approach
(P = 1 and R = 1), we observe that the detection of some
frequencies fails for exactly 1 of the 100 signals for K = 750 and
the detection of all frequencies of all 100 signals succeeds for K =
850 requiring 1701 samples. This number of samples is very close

to the minimum of 1716 samples from above. However, a direct
application of MUSIC method (entry K = 850) has distinctly
more computational cost than using the sparse FFT Algorithm
3.2. Note that R denotes the maximal number of iterations in
Algorithm 6.1, the detailed description of Algorithm 3.2.

Example 5.2 Now we apply Algorithm 3.2 via ESPRIT with the
same parameters as in Example 5.1. Then we obtain identical
results for the number of iterations and samples as well as almost
identical ℓ2-errors, but Algorithm 3.2 via ESPRIT has lower
computational cost. If we do not use the splitting approach (P =
1 and R = 1), we observe that the detection of some frequencies
fails for exactly 2 of the 100 signals for K = 750 and the detection
of all frequencies of all 100 signals again succeeds for K = 850
requiring 1701 samples.

Additionally, we apply the implementation [21] of the sfft
version 3 algorithm. The number of used samples is 7669, which
is about two to four times the number of samples for the MUSIC
and ESPRIT algorithm in Table 5, and the maximal relative ℓ2-
error of the coefficients is 3.6e-04, which is about five orders of
magnitude larger.

Example 5.3 We generate 100 random trigonometric
polynomials (1.2), where the coefficients cj are drawn uniformly
at random from [−1, 1] + [−1, 1] i with |cj| ≥ 10−2. We
set the absolute value of minimal non-zero coefficients
εfc_min := 10−3 = 10−1 ·minj |cj|. For the cases K ∈ {6, 12, 16}
and P ∈ {16, 32, 64, 128}, we apply Algorithm 3.2 via ESPRIT.
We obtain results almost identical to the ones from Example 5.2.
This means, all frequencies of all 100 signals are correctly
detected and the maximal relative ℓ2-errors differ slightly from

TABLE 5 | Results for Algorithm 3.2 via MUSIC for frequency grid

parameter S = 216 and sparsity M = 256 with random coefficients on the

unit circle.

K P Iterations Samples ℓ2-errors Updated ℓ2-errors

6 16 10 3939 3.1e-09 2.8e-15

6 32 5 2600 8.5e-10 2.5e-15

6 64 3 2626 3.0e-10 2.5e-15

6 128 2 3367 5.7e-11 1.9e-14

12 16 5 2600 3.4e-10 2.4e-15

12 32 2 1725 1.7e-10 9.2e-15

12 64 2 3275 1.3e-10 7.9e-14

12 128 1 3200 1.4e-11 1.6e-14

16 16 3 1716 5.2e-10 2.3e-15

16 32 2 2277 2.3e-10 4.4e-14

16 64 2 4323 9.9e-11 3.3e-14

16 128 1 4224 7.4e-12 6.3e-15

850 1 1 1701 2.3e-13 2.3e-13

The entry with parameter P=1 in the last row shows the result for Algorithm 2.8 (MUSIC).

The results for Algorithm 3.2 via ESPRIT and for Algorithm 2.9 (ESPRIT) are identical for

the shown parameters K and P except for slightly different ℓ2-errors.
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those in Table 5. The maximal numbers of iterations and samples
are identical.

Additionally, we apply the implementation [21] of the sfft
version 3 algorithm. For each signal, the number of taken samples
is 7669. Only for 16 of the 100 signals, all frequencies are detected
correctly, whereas between 1 and 7 frequencies are not correctly
detected for 84 signals.

Example 5.4 Next we apply Algorithm 3.2 via ESPRIT for
signals with higher sparsity. From noiseless sampled values, we
reconstruct 100 trigonometric polynomials (1.2) of sparsityM =
1024 with random frequencies ωj ∈ (− S

2 ,
S
2 ] ∩ Z and random

coefficients cj on the unit circle. The results for the frequency grid
parameter S := 222 are shown in Table 6. The minimal number
of samples is about six times higher compared to the results in
Table 5.

In general, we observe that the maximal number of used
iterations decreases for increasing initial FFT length P ∈
{64, 128, 256, 512} as well as for increasing values K ∈
{8, 10, 12}. In the cases, where all frequencies of all the 100
trigonometric polynomials are correctly detected, the number
of required samples first decreases and later increases again for
increasing initial FFT length P and fixed values K. The reason
for this is that the number of samples per iteration increases
for growing FFT length, while the number of used iterations
decreases until its minimum one is reached.

Again, we apply the implementation [21] of the sfft version
3 algorithm. Here, the number of used samples is 31718, which
is up to three times the number of samples of Algorithm 3.2
via ESPRIT in Table 6, and the maximal relative ℓ2-error of the
coefficients is 3.6e-04, which is about five orders of magnitude
larger than in Table 6.

5.2. Noisy Case
In this subsection, we test the robustness to noise of
Algorithm 3.2. For this, we perturb the samples of the

TABLE 6 | Results for Algorithm 3.2 via ESPRIT for frequency grid

parameter S = 222 and sparsity M = 1024 with random coefficients on the

unit circle.

K P Iterations Samples ℓ2-errors Updated ℓ2-errors

8 64 10 14059 – –

8 128 8 19635 1.3e-09 6.0e-15

8 256 3 13192 1.0e-09 5.0e-15

8 512 2 17561 8.3e-10 9.0e-15

10 64 10 17367 2.7e-09 5.7e-15

10 128 6 17535 1.2e-09 5.5e-15

10 256 2 10773 1.2e-09 4.7e-15

10 512 2 21693 6.2e-10 1.6e-14

12 64 10 20675 1.5e-09 6.0e-15

12 128 4 13375 1.0e-09 5.0e-15

12 256 2 12825 1.1e-09 5.1e-15

12 512 2 25825 1.1e-09 1.9e-14

trigonometric polynomials g from (1.2) by additive complex
white Gaussian noise with zero mean and standard deviation σ ,

i.e., we have measurements g̃
(
k
S +

s
P

)

= g( kS +
s
P )+ ηk,s, where

ηk,s ∈ C are independent and identically distributed complex
Gaussian noise values. Then, we may approximately compute the
signal-to-noise ratio (SNR) in our case by

SNR ≈
1
S

∑S−1
k=0 |g(

k
S )|2

1
S

∑S−1
k=0 |ηk,0|2

≈
∑M

j=1 |cj|2

σ 2
.

Correspondingly, we choose σ = ‖(cj)Mj=1‖2/
√
SNR for

a targeted SNR value. For the numerical computations
in MATLAB, we generate the noise by ηk,s : = σ/

√
2

* (randn + 1i*randn). Moreover, we choose the
parameter εspatial : = 5σ and this means that the absolute value
of the noise |ηk,s| ≤ εspatial for more than 99.9998% of the noise
values ηk,s. Since we assume that the absolute value of the noise
≤ 1

10 minj |cj| throughout this paper, we should choose the SNR

such that 5σ = 5‖(cj)Mj=1‖2/
√
SNR ≤ 1

10 minj |cj|, which yields

SNR ≥ 502‖(cj)Mj=1‖22/(minj |cj|)2.

Example 5.5 As in Example 5.1, we generate 100 trigonometric
polynomials (1.2) of sparsity M = 256 with random frequencies
ωj ∈ (− S

2 ,
S
2 ] ∩ Z and random coefficients cj from the unit

circle. We set the frequency grid parameter S = 216, the
signal sparsity M = 256, the array of relative SVD threshold
values epsilon_svd_list : = [10−3, 10−4, . . . , 10−8] and
the maximal number of iterations R : = 10. Here, we set
the absolute value of minimal non-zero coefficients εfc_min : =
10−1 = 10−1 · minj |cj| and we use the parameters P ∈
{32, 64, 128} and K ∈ {12, 24}. For possible SNR values, we
have SNR ≥ 50‖(cj)Mj=1‖22/(minj |cj|)2 = 6.4 · 105 and we

consider the SNR values 1010, 108, and 106 in our numerical
tests. The results of Algorithm 3.2 via ESPRIT are presented
in Table 7. Additionally, we test the sparsity cut-off parameter
K2 ∈ N differently from the Hankel matrix size parameter K,
see Algorithm 6.1. Here, we use the parameter combinations
(K,K2) ∈ {(12, 6), (12, 12), (24, 12)}. In general, we observe that
we require more samples for SNR = 106 than for SNR = 108 and
again more for SNR = 108 than for SNR = 1010. The relative
errors are about one order of magnitude larger for SNR = 106

than for SNR = 108 as well as for SNR = 108 than for SNR =
1010, since the maximal noise values ηk,s are larger by about one
order of magnitude with high probability each time. Moreover,
themaximal number of samples in the noisy case is higher than in
the noiseless case, cf. Table 5. For some parameter combinations
at SNR = 108, exactly one of the 100 signals is not correctly
detected and this is indicated by the entry “–” in the column “ℓ2-
errors” resp. “updated ℓ2-errors.” For SNR = 106 with K = 12,
K2 = 6, and P = 64 exactly one frequency at three of the 100
signals is not correctly detected, whereas all frequencies of all 100
signals for SNR = 106 are correctly detected in the other cases
shown in Table 7. All parameters of (1.2) are correctly detected in
the case SNR = 1010 for the parameter combinations (K,K2) ∈
{(12, 6), (12, 12), (24, 12)} and P = 32. For the considered test
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TABLE 7 | Results for Algorithm 3.2 via ESPRIT for frequency grid

parameter S = 216 and sparsity M = 256 with noisy data.

SNR K K2 P Iterations Samples ℓ2-errors Updated

ℓ2-errors

1010 12 6 32 6 6325 1.4e-05 2.8e-06

1010 12 12 32 5 5000 1.7e-05 3.4e-06

1010 24 12 32 3 5390 8.9e-06 3.0e-06

1010 3000 3000 1 1 6001 – –

1010 3500 3500 1 1 7001 3.3e-06 3.3e-06

108 12 6 32 7 7800 – –

108 12 6 64 4 6875 3.9e-04 2.8e-05

108 12 6 128 3 9900 2.0e-04 2.2e-05

108 12 12 32 6 6325 – –

108 12 12 64 4 6875 – –

108 12 12 128 3 9900 2.0e-04 2.2e-05

108 24 12 32 4 7497 3.9e-04 2.8e-05

108 24 12 64 3 9898 1.4e-04 2.2e-05

108 24 12 128 2 12691 2.4e-05 2.3e-05

108 3000 3000 1 1 6001 4.2e-05 4.2e-05

108 3500 3500 1 1 7001 2.9e-05 2.9e-05

106 12 6 64 10 20675 – –

106 12 6 128 8 28875 7.2e-03 1.5e-04

106 12 12 128 7 24800 5.7e-03 1.5e-04

106 24 12 32 6 12397 1.5e-02 2.0e-04

106 24 12 64 4 13475 8.5e-03 2.1e-04

106 24 12 128 3 19404 5.8e-03 1.6e-04

parameters, the choices (K,K2) ∈ {(12, 6), (24, 12)}, which yield
a higher oversampling within the ESPRIT algorithm, give slightly
better results compared to the choice K = K2 = 12.

Additionally, we apply the implementation [21] of the sfft
version 3 algorithm. We remark that this particular algorithm
is not suited for noisy samples. The number of taken samples
is 7669 for all signals, which is about 50 percent higher than for
Algorithm 3.2 at SNR = 1010 and similar at SNR = 108. In the
cases SNR = 1010 and SNR = 108, all frequencies of all 100
signals are correctly detected and the maximal relative ℓ2-errors
of the Fourier coefficients are about 3.6e-04. For SNR = 106, all
frequencies of 94 of the 100 signals are correctly detected and up
to four frequencies at four of the 100 signals are not correctly
detected.

Example 5.6 Additionally, we generate 100 random
trigonometric polynomials (1.2), where the coefficients cj
are drawn uniformly at random from [−1, 1] + [−1, 1] i
with |cj| ≥ 10−2. We set the absolute value of minimal
non-zero coefficients εfc_min : = 10−3 = 10−1 · minj |cj|.

TABLE 8 | Results of the modified Algorithm 3.2 via ESPRIT with sparsity

M = 256, frequency vectors within six-dimensional hyperbolic cross index

set Ŵ = {k ∈ Z
6 :

∏6
s=1 max {1, |ks|} ≤ 16}, and reconstructing rank-1 lattice

3(z,S) with z = (1,33,579,3628,21944,169230)T and S = 1105193.

SNR K K2 P Iterations Samples ℓ2-errors Updated

ℓ2-errors

∞ 8 8 8 10 3893 5.1e-08 6.2e-11

∞ 8 8 16 10 5151 5.1e-08 6.4e-11

∞ 8 8 32 10 8687 6.6e-09 9.3e-11

∞ 8 8 64 3 3434 2.6e-09 3.2e-10

∞ 8 8 128 2 4403 2.8e-09 1.8e-09

∞ 10 10 8 9 3948 5.0e-09 6.5e-11

∞ 10 10 16 10 6363 1.0e-08 6.8e-11

∞ 10 10 32 10 10731 3.9e-09 1.1e-10

∞ 10 10 64 10 17367 6.2e-09 5.5e-10

∞ 10 10 128 2 5439 2.3e-09 1.7e-09

∞ 12 12 8 10 5725 8.6e-09 6.8e-11

∞ 12 12 16 10 7575 1.1e-08 7.1e-11

∞ 12 12 32 3 2750 2.9e-09 1.3e-10

∞ 12 12 64 4 6875 3.0e-09 8.5e-10

∞ 12 12 128 2 6475 2.2e-09 1.9e-09

1010 12 12 64 4 6875 2.2e-05 2.5e-06

1010 24 12 32 5 9800 6.2e-05 2.4e-06

1010 24 12 64 3 9898 8.4e-06 2.2e-06

108 24 12 32 10 25039 8.6e-05 1.4e-05

108 24 12 64 7 25774 5.1e-05 1.5e-05

106 48 24 256 10 267429 1.8e-03 4.6e-05

106 48 24 512 5 256468 7.3e-04 4.3e-05

In the case SNR = 108, we observe in each considered
parameter combination that the correct detection of one or
two frequencies fails for several of the 100 trigonometric
polynomials. The most likely reason is the fact that the smallest
coefficient can be very close to the noise level. If we decrease
the noise by one order of magnitude, i.e. SNR = 1010, the
frequency detection succeeds for all considered parameter
combinations.

Furthermore, we generate 100 random trigonometric
polynomials (1.2), where the coefficients cj are drawn uniformly
at random from [−1, 1] + [−1, 1] i with |cj| ≥ 10−1. Then
we set the absolute value of minimal non-zero coefficients
εfc_min := 10−2 = 10−1 · minj |cj|. This means that the smallest
possible coefficient as well as the parameter εfc_min are by
one order of magnitude larger than before. Now in both of
the cases SNR = 1010 and SNR = 108, we observe for each
parameter combination (K,K2) ∈ {(12, 6), (12, 12), (24, 12)}
and P ∈ {32, 64, 128} that all frequencies of all trigonometric
polynomials are correctly detected.

For results of the implementation [21] of the sfft version 3
algorithm, we refer to Example 5.3.
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5.3. Reconstruction of 6-variate
Trigonometric Polynomials
Finally we test the modified Algorithm 3.2 of Section 4 for the
reconstruction of six-variate trigonometric polynomials with the
sparsityM = 256.

Example 5.7 We choose the index set Ŵ of possible frequency
vectors as the six-dimensional hyperbolic cross Ŵ : = {k ∈
Z
6

:

∏6
s=1max {1, |ks|} ≤ 16} of cardinality 169209. Further

we use the reconstructing rank-1 lattice 3(z, S) with generating
vector z = (1, 33, 579, 3628, 21944, 169230)T and rank-1 lattice
size S = 1105193, see Kämmerer et al. [37, Table 6.2].
We generate 100 random trigonometric polynomials (4.1) with
sparsityM = 256, where the frequency vectors ωj (j = 1, . . . ,M)
are chosen uniformly at random from Ŵ (without repetition)
and the corresponding coefficients cj are randomly chosen on
the unit circle. We set the array of relative SVD threshold
values epsilon_svd_list : = [10−3, 10−4, . . . , 10−8], the
absolute value of minimal non-zero coefficients εfc_min : =
10−1, and the maximal number of iterations R : = 10. In
the noiseless case, we set the parameter εspatial : = 10−8,
and in the noisy case as described in Section 5.2. The results
of the modified Algorithm 3.2 via ESPRIT are presented in
Table 8.

The columns of Table 8 have the same meaning as in
Section 5.2. For the noiseless case, i.e., “SNR = ∞,” we observe
the same behavior as in the one-dimensional case in Section 5.1.
The detection of all frequency vectors of all 100 trigonometric
polynomials (4.1) succeeds for K = K2 ∈ {8, 10, 12} and
P ∈ {8, 16, 32, 64, 128}. For the noisy case, the results are worse

than inTable 7 of the one-dimensional case. The reason for this is
that we have a bijective mapping between six-dimensional ωj and
one-dimensional frequencies ωj by means of the reconstructing
rank-1 lattice, ωj · z ≡ ωj(mod S), and the rank-1 lattice size
S influences how close two distinct one-dimensional fractional
frequencies ω′

j/S and ω′′
j /Smay get in the ESPRIT algorithm, see

also Figure 2.
We tried to apply the implementation [21] of the sfft version

3 algorithm in this test setting. However, the implementation
failed with an internal error caused by the used problem size
n = S = 1105193 and sparsity M = 256. Another test run
with rank-1 lattice size S = 221 = 2097152 yielded 7938 samples
and a maximal relative ℓ2-error of 6.8e-04, where the latter is
about 4 orders of magnitude larger than the results in Table 8.
Moreover, we consider the noisy case. Again, we remark that
the implementation [21] is not suited for noisy samples. For
SNR = 1010, the detection of one frequency fails for one of the
100 signals. If we increase the SNR to 108, then between one and
9 frequencies are not correctly detected for 81 of the 100 signals.
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APPENDIX

Detailed Sparse FFT Algorithm
Algorithm 6.1 (Detailed listing of Algorithm 3.2 with extended
parameter list)

Input: S ∈ 2N frequency grid parameter,K ∈ NHankel matrix
size parameter, K2 ∈ N sparsity cut-off parameter (default value
K), P ∈ N initial FFT length, g 1-periodic sparse trigonometric
polynomial of unknown sparsity M ∈ N with frequencies
in (− S

2 ,
S
2 ] ∩ Z, epsilon_svd_list array of relative SVD

threshold values 0 < εSVD < 1 in descending order, εspatial > 0
estimate for maximal noise value, εfc_min > 0 lower bound of
absolute values of non-zero coefficients, R ∈ N maximal number
of iterations.

Create empty index set array � and coefficient
array C.

for iteration r := 1, . . . ,R
1. Construct the discrete array of samples of g of length P ×

(2K + 1) via

gP[s, k] : = g
(
s
P + k

S

)

−
∑|�|

j′=1 C[j
′] e

2π i�[j′]
(

s
P+

k
S

)

(s =
0, . . . , P − 1; k = 0, . . . , 2K).

2. Compute for each k = 0, . . . , 2K an FFT of length P
and obtain array ĝP of length P × (2K + 1), ĝP[ℓ, k] : =
∑P−1

s=0 gP[s, k] e
−2π isℓ/P for ℓ = 0, . . . , P − 1, if P > 1.

Otherwise if P = 1, then set ĝP[ℓ, k] : = gP[ℓ, k] for
ℓ = 0, . . . , P − 1.

3. for ℓ := 0, . . . , P − 1

3.1. If ‖ĝP[ℓ, 0 : 2K]‖∞/P < εspatial, then go to 3. and
continue with next ℓ.

3.2. Set variable found_svd := 0.

3.3. for εSVD in epsilon_svd_list

3.3.1. Apply Algorithm 2.8 resp. 2.9 with L : =
K, N : = 2K + 1 and ε : = εSVD
on the values

(

h̃k : = ĝP[ℓ, k]
)2K

k=0
to

obtain the (local) sparsity Mℓ : = M and
fractions ϕ̃ℓ,m : = ϕ̃m ∈ (− 1

2 ,
1
2 ] for

j = m, . . . ,Mℓ.

3.3.2. If Mℓ ≥ K2 then go to 3.3. and continue
with next (smaller) εSVD.

3.3.3. Compute local frequencies ωℓ,m : =
round (ϕ̃ℓ,m S) form = 1, . . . ,Mℓ.

3.3.4. Filter frequencies ωℓ,m by removing non-
unique ones and by keeping only those

where ωℓ,m ≡ ℓ (mod P). Set Mℓ to
number of resulting frequencies ωℓ,m.

3.3.5. Compute (local) Fourier coefficients
cℓ,m as least squares solution from
the overdetermined Vandermonde
system (ĝP[ℓ, 0 : 2K])T ≈
(e2π ikωℓ,m/S)

2K; Mℓ

k=0; m=1
(P · cℓ,m)Mℓ

m= 1.

3.3.6. If the residual
‖(e2π ikωℓ,m/S)

2K,Mℓ

k=0,m=1
(cℓ,m)

Mℓ

m= 1 −
(ĝP[ℓ, 0 : 2K])T/P‖∞ ≤ 10 · εspatial, then
set variable found_svd : = 1, leave for
εSVD loop and go to 3.5.
Otherwise, go to 3.3. and continue with
next (smaller) εSVD.

3.3. end for εSVD

3.4. If found_svd 6= 1, then go to 3. and continue
with next ℓ.

3.5. If a frequency has already been found, i.e., ωℓ,m =
�[j′] for any m = 1, . . . ,Mℓ, then update
the corresponding coefficient C[j′] by computing
C[j′]:= C[j′]+ cℓ,m.

3.6. Append new frequencies of ωℓ,m, m = 1, . . . ,Mℓ,
to array � and append corresponding coefficients
to array C.

3. end for ℓ

4. Remove small coefficients
∣
∣C[j′]

∣
∣ < εfc_min from array C

and remove corresponding frequencies from array � for
any j′.

5. If the residual

max
s=0,...,P−1
k=0,...,2K

∣
∣
∣
∣
∣
∣

|�|
∑

j′=1

C[j′] e
2π i�[j′]

(
s
P+

k
S

)

− g
(
s
P + k

S

)

∣
∣
∣
∣
∣
∣

< 10·εspatial,

then set Rused := r and exit r-loop.
Otherwise, determine next prime number larger than
current FFT length P and use this larger prime as P in the
next iteration.

end for iteration r
Output: Detected sparsity M := |�| ∈ N, array � ⊂ (− S

2 ,
S
2 ] ∩

Z of detected frequencies, array C ∈ C
M of corresponding

coefficients.
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