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The goal of this paper is to review some work on agent-based financial market models

in which the dynamics is driven by piecewise-linear maps. As we will see, such models

allow deep analytical insights into the functioning of financial markets, may give rise to

unexpected dynamics effects, allow explaining a number of important stylized facts of

financial markets, and offer novel policy recommendations. However, much remains to

be done in this rather new research field. We hope that our paper attracts more scientists

to this area.
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1. INTRODUCTION

Two of the most important characteristics of the dynamics of financial markets are that asset prices
may substantially disconnect from their fundamental values and that asset prices are excessively
volatile. Without question, these phenomena may be quite harmful for the real economy, as
witnessed, for instance, by the Great Depression, triggered by the world-wide stock market crash
in 1929, and the Great Recession, triggered by the world-wild stock market crash in 2007 (see e.g.,
[1–3]). However, three further statistical properties of asset price dynamics have received increasing
attention in the finance literature. First, asset prices are—despite their boom-bust behavior—hardly
predictable and their time evolution thus closely resembles a randomwalk. Second, the distribution
of returns, i.e., the distribution of relative (or log) asset price changes, displays fat tails, meaning, in
particular, that extreme price fluctuations emerge more frequently than warranted by the normal
distribution. Third, volatility tends to cluster in the sense that periods of low volatility alternate
with periods of high volatility. Surveys of the stylized facts of financial markets are provided, among
others, by Mantegna [4], Cont [5], and Lux and Ausloos [6].

Agent-based financial market models seek to explain these challenging phenomena. For general
reviews of this research field see, for instance [7–9]. Supported by experimental evidence [10] and
questionnaire studies [11], these models assume that financial market participants rely on technical
and fundamental trading rules to determine their orders. Technical analysis [12] aims at identifying
trading signals out of past price movements and suggests buying (selling) when asset prices increase
(decrease). In contrast, fundamental analysis [13] is based on the belief that asset prices return
toward their fundamental values and thus suggests buying (selling) in undervalued (overvalued)
markets. Agent-based models by e.g., Day et al. [14], De Grauwe et al. [15], Lux [16], Brock and
Hommes [17], Farmer and Joshi [18], Chiarella et al. [19], and Franke and Westerhoff [20] show
that interactions between traders relying on technical and fundamental analysis rules can generate
complex price dynamics. Within the seminal model of Day et al. [14], for instance, destabilizing
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traders dominate themarket near fundamental values and initiate
bull or bear markets. Far from fundamental values, however,
stabilizing fundamental traders become increasingly active and
drive asset prices back to fundamental values. Since the relative
strength of technical and fundamental trades thus constantly
changes, the model produces intricate price fluctuations.

The goal of our paper is to review agent-based financial
market models in which the dynamics is driven by piecewise-
linear maps. Examples from this stream of literature include, for
instance [21–25]. One important advantage of piecewise-linear
maps is that they allow very clear analytical insights into the
functioning of the underlying model. Another interesting aspect
of such maps is that they give rise to very puzzling dynamics.
For instance, the transition between fixed point dynamics and
chaotic motion can be very abrupt, i.e., a tiny change in one
of the model’s parameters can have a significant effect on the
model’s dynamics. From a policy perspective, this is an important
message since also small changes in policy measures can have
great effects for the stability of financial markets. Piecewise-linear
maps are naturally appealing to explain the dynamics of financial
markets since abrupt regime changes may give rise to extreme
price changes (thereby generating fat-tailed return distributions)
and since infrequent changes between coexisting regimes may
give rise to alternating periods of low and high volatility (thereby
producing volatility clustering). Moreover, deterministic models
have so far offered several novel reasons for the emergence of
bull and bear markets and can also explain the excess volatility
of asset prices. However, there are also a few stochastic models
which mimic the stylized facts of financial markets quite well.
Unfortunately, piecewise-linear models are still not completely
understood. Working in this area may thus have the additional
benefit that one discovers new dynamic phenomena such a new
bifurcation structures. For a true scientist, that’s of course quite
exciting. By surveying the origins and some recent advances in
this field we hope to motivate other researchers to start also
working in this prospering research direction.

The remainder of our paper is organized as follows. In Section
2, we introduce the class of maps we use to study the dynamics
of financial markets. In Section 3, we review the seminal model
of Huang and Day [21]. In Section 4, we present two more recent
lines of research. In Section 4.1, we first discuss models in which
the trading behavior of the traders is more general than in Huang
and Day [21]. In Section 4.2, we then report models in which
the traders update their perception of the fundamental value over
time. Finally, Section 5 concludes our paper.

2. PIECEWISE-LINEAR MAPS

A piecewise-linear, one-dimensional, map f (x) is characterized
by at least two different definitions for different values of the
dynamic variable x, that is:

f (x) =





f1(x) for x ∈ D1

f2(x) for x ∈ D2

..
fn(x) for x ∈ Dn

(1)

where:

• n ∈ N, n ≥ 2;
• fk(x) with k = 1, .., n are all linear/affine functions;
• Dk with k = 1, .., n are non-overlapping intervals of real

numbers. To each bounding value x = xk separatingDk from
Dk+1, it can be applied either fk(x) or fk+1(x), not both;

• D1 and Dn can be unbounded.

In Figure 1 we have represented a linear function (Figure 1A),
a piecewise-linear continuous function defined differently
in two contiguous intervals (Figure 1B), a piecewise-linear
discontinuous function defined differently in two contiguous
intervals (Figure 1C) a finally a piecewise-linear discontinuous
function defined differently in three contiguous intervals with
two discontinuity points (Figure 1D).

Basically, themain feature of piecewise smooth (continuous or
not) systems is that there is a change of definition when a border
separating Di and Di+1 is crossed or met1. This gives rise to a
peculiar kind of bifurcation, nowadays known as border collision
bifurcations (BCBs henceforth), and firstly introduced by Nusse
and Yorke [26, 27] andMaistrenko et al. [28–30]2. BCBs cause the
passage from one attractor to another like other local bifurcation
of smooth functions, but in this case the transition can be abrupt.
By changing the value of a parameter, a point of the attractor can
collide with the border of the region of definition and after that a
new attractor appears. It is possible to pass from a cycle to chaos
(or the opposite) without following the well-known “routes to
chaos” typical of smooth functions. Even in the one-dimensional
linear version (1), which is the simplest, all the features of these
maps have still not been completely understood. A lot of work has
been done on one-dimensional piecewise-linear maps with only
one not derivability (or discontinuity) point (i.e., two regimes
maps, surveyed in Avrutin et al. [35]) and some work on maps
with three linear pieces or two-dimensional maps.

Piecewise smooth systems are relevant in many applications,
from Electrical and Mechanical Engineering ([28, 29, 36–40],
among the others) to Sociology (see [41, 42]), but one of the main
fields of application is Economics. We mention here Business
Cycle models (see [43, 44]), Growth models [45] and Oligopoly
models [46, 47]. In the next sections of the paper we illustrate
their application to financial markets, starting from the seminal
paper of Huang and Day [21].

3. THE HUANG-DAY (1993) MODEL

Huang and Day (1993) propose a simple prototype financial
market model with a market maker and two types of traders.
The two trader types differ in their reaction to the markets
misalignment, i.e., the difference between the asset price and its
fundamental value, and are called fundamentalists and chartists3.

Fundamentalists buy the asset when it is undervalued (that is
the price is lower than its fundamental value) and sell it when
it is overvalued (that is the price is higher than the fundamental

1Obviously it makes sense when Di and Di+1 are contiguous.
2Early studies on this topic can be found in Leonov [31, 32] and Mira [33, 34].
3Actually they label them as α-investors and β-investors, but lately they have been

more commonly called fundamentalists and chartists, respectively.
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FIGURE 1 | In (A) a linear map. In (B) a piecewise-linear continuous map

with two regimes. In (C) a piecewise-linear discontinuous map with two

regimes. In (D) a piecewise-linear discontinuous map with three regimes.

value). Their excess demand is formalized as follows:

DF
t =





A if Pt < ZF,B

f (ZF,D
− Pt) if ZF,B

≤ Pt < ZF,D

0 if ZF,D
≤ Pt < ZF,U

−f (Pt − ZF,U) if ZF,U
≤ Pt < ZF,T

−A if ZF,T
≥ Pt

(2)

where P is the asset price, A > 0 is a fixed amount of assets,
f > 0 measures the strength of the response of the investors to
the misalignment and the other parameters are threshold prices,
such that:

ZF,B < ZF,D < F < ZF,U < ZF,T

where F is the exogenously given fundamental value.
The interpretation of the excess demand (Equation 2) is the

following. When the price is close to its fundamental value,
i.e., between ZF,D and ZF,U , these traders think that the chance
of gain or loss is basically zero and they do not move their
portfolios. When the price crosses the upper or the lower
sensitivity thresholds (ZF,D and ZF,U) they start to buy or sell
the asset and the amount is proportional to the distance between
the price and the crosses threshold and also proportional to the
reaction parameter f . Finally, there are two extreme thresholds,
ZF,B and ZF,T , that, if crossed by the price, permit to this kind
of traders to conclude that the price is going to go back toward
its fundamental value almost certainly, so they buy or sell a fixed
amount A ≡ f (ZF,T

− ZF,U) = f (ZF,D
− ZF,B).

Chartists are assumed to be optimistic when the price is higher
than the fundamental value and pessimistic in the opposite case,
so they will buy the asset in the first case and sell it in the second
one. Their excess demand is the following:

DC
t = c (Pt − F) (3)

where c is a positive reaction parameter.
Finally, as usual in this branch of the literature, there is a

market maker who adjusts the asset price from period to period
according to the total excess demand:

Pt+1 = Pt + a(DF
t + DC

t ) (4)

By substituting the excess demands (Equations 2, 3) into the
market maker (Equation 4) we get the following one-dimensional
piecewise-linear map regulating price movements:

Pt+1 =





f1(Pt) = k1 + πPt if Pt < ZF,B

f2(Pt) = k2 + ρPt if ZF,B
≤ Pt < ZF,D

f3(Pt) = k3 + πPt if ZF,D
≤ Pt < ZF,U

f4(Pt) = k4 + ρPt if ZF,U
≤ Pt < ZF,T

f5(Pt) = k5 + πPt if ZF,T
≥ Pt

(5)

where:

π = 1+ ac
ρ = 1− a(f − c)
k1 = a(A− cF)

k2 = a(fZF,D
− cF)

k3 = −acF

k4 = −a(fZF,U
+ cF)

k5 = −a(A+ cF)

The piecewise-linear map (Equation 5), whose typical shape is
represented in Figure 2A, permits Huang and Day to obtain
price movements such as those represented in Figure 2B, that
endogenously generate bull and bear fluctuations through the
emergence of chaotic dynamics with regime switching, so
these dynamic are at the same time bounded but also almost
unpredictable. The bifurcation diagrams in Figure 3 do not
only show how high values of the chartists’ reaction parameter
and/or low values of the fundamentalists’ reaction parameter
may generate complex dynamics, but also show a peculiarity
of piecewise defined maps: the sudden transition by varying
some parameters, from convergence to a steady state to complex
dynamics, without the gradualness of the routes to chaos typical
of smooth functions.

Day [48] extends this model by considering different types
of fundamentalists and different types of chartists. For instance,
by assuming three types of fundamentalists and one type of
chartists he obtains a one-dimensional piecewise-linear map
made up by eleven linear pieces. In this way he can replicate even
better some stylized facts of financial markets such as ascending
and descending triangles, wedges, breakways, runaways and
exhaustion price patterns—typical price formations observed by
technical traders in real markets [12].

4. RECENT GENERALIZATIONS AND
EXTENSIONS

Piecewise defined maps permit, as we have seen, to model
price movements that depend upon different regimes. The
switches among the various regimes and the occurring of the
so-called border-collision bifurcations, make unnecessary to
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FIGURE 2 | The shape of the map (A) and a timeplot (B) obtained by

using the following set of parameters: a = 2.6, c = 0.6, f = 2, F = 1,

ZF,B
= 0.2, ZF,D

= 0.7, ZF,U
= 1.3, ZF,T

= 1.8.

introduce nonlinear functions (for instance, in the market maker
mechanism or in some behavioral rule) in order to obtain
complicated price and qualitatively realistic price movements.

More recently some researchers have tried to explain by using
piecewise defined maps some stylized facts of financial market,
not only qualitatively but also quantitatively. In this section we
refer to two of these new strands of research. The first one
is a generalization of the Huang and Day [21] paper and is a
deterministic model used also as a basis for the introduction of
some stochastic elements. The secondmodel we consider extends
to its extreme consequences the potentiality of piecewise-linear
maps, by considering an high (potentially infinite) number of
regimes and discontinuity points.

4.1. A Mixed Deterministic/Stochastic
Piecewise Linear Model
In a series of papers, [24, 25, 49–52] extend the framework of
Huang and Day [21] in the following sense:

• they consider threshold values of the misalignment also for
chartists;

• they consider that the fixed amounts of the assets the traders
may buy or sell in the different regimes do not necessarily
depend on the thresholds;

FIGURE 3 | The bifurcation diagram with respect to c (A) is obtained by

using a = 1.7, while the bifurcation diagram with respect to f (B) is

obtained with a = 2.6. The remaining parameters are the same used in

Figure 2.

• they introduce the possibility for an asymmetric behavior of
the traders in bull and bear markets.

From amathematical point of view, themap they build is not only
one-dimensional and piecewise-linear (as in the original model
of Huang and Day), but also in general discontinuous. While
equilibria may not exist, erratic endogenous switching among
the various regimes may arise, mimicking some important
stylized facts of financial markets. However, under some
suitable parameter values, they can recover the one-dimensional
piecewise-linear and continuous model of Huang and Day as a
special case.

To be precise, they consider a market maker who adjusts the
log price of the asset on the basis of a log-linear price adjustment
rule:

Pt+1 = Pt + a
(
DC,1
t + DF,1

t + DC,2
t + DF,2

t

)
(6)
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where the four excess demand terms in bracket characterize
the trading rule of four groups of speculators (two types of
fundamentalists and two types of chartists).

Let us start by considering the first type of chartists. Their
transactions are given by the following rule:

DC,1
t =

{
c1,a + c1,b(Pt − F) for Pt − F ≥ 0

−c1,c + c1,d(Pt − F) for Pt − F < 0
(7)

where the parameters are all non-negative and in particular c1,b

and c1,d are reaction parameters, while c1,a and c1,c denote the
amount of the asset they buy (resp. sell) in the bull (resp. bear)
market, that do not depend on the size of the misalignment.

So, with respect to the chartists considered by Huang and Day
[21] they may have different reactivities in the two regimes and
their order only partially depend upon how much the current
price deviates from its fundamental value.

The first type of fundamentalists behaves as follows:

DF,1
t =

{
−f 1,a + f 1,b(F − Pt) for Pt − F ≥ 0

f 1,c + f 1,d(F − Pt) for Pt − F < 0
(8)

where the non-negative parameters f 1,b and f 1,d are the reaction
parameters for the bull and the bear market and f 1,a and f 1,c are
non-negative too, characterizing the fixed amounts of assets they
sell (resp. buy) in the bull and in the bear market.

This type of fundamentalist is different with respect to the
fundamentalists of Huang and Day [21] not only for their
potentially asymmetric behavior but also because they are always
active, for any size of the distance between the price and the
fundamental value.

The second type of trader (both chartists and fundamentalists)
have the additional feature to remain inactive if the distance
between the price and fundamental is not considered large
enough to create an opportunity for making profits. Moreover,
the thresholds can be different in the bull and in the bear market
and those used by chartists can deviate from those adopted by
fundamentalists.

Under these assumptions, the excess demand of type 2
chartists is:

DC,2
t =





c2,a + c2,b(Pt − F) for Pt − F ≥ ZC,U

0 for −ZC,D < Pt − F < ZC,U

−c2,c + c2,d(Pt − F) for Pt − F ≤ −ZC,D

(9)
where the interpretation of the non-negative parameters c2,a, c2,b,
c2,c and c2,d is the same already seen for type 1 chartists, with the
additional restriction that:

c2,a ≥ −c2,b
(
ZC,U

− F
)
and c2,c ≥ −c2,d

(
ZC,D

+ F
)

that permit to avoid negative transactions in the bull market or
positive transactions in the bear market. ZC,U and−ZC,D are the
potentially different thresholds for becoming active in the bull
and the bear market, respectively. The asymmetry between bull
and bear markets and the possible inactivity differentiate these
type of chartists from those considered by Huang and Day [21].

Finally, type 2 fundamentalists adopt the following trading
rule:

DF,2
t =





−f 2,a + f 2,b(F − Pt) for Pt − F ≥ ZF,U

0 for −ZF,D < Pt − F < ZF,U

f 2,c + f 2,d(F − Pt) for Pt − F ≤ −ZF,D

(10)
with non-negative parameters. Also in this case the following
restrictions must hold:

f 2,a ≥ f 2,b
(
F − ZF,U

)
and f 2,c ≥ f 2,d

(
Z,D

+ F
)

in order to have non-negative order in the bear market and
non-positive order in the bull market.

The asymmetry between bull and bear markets would make
this type of fundamentalists different from those considered by
Huang and Day [21].

Now that the four excess demands have been specified we
can build the model’s law of motion. The authors always use the
simplifying restriction:

z = ZC,U
= ZC,D

= ZF,U
= ZF,D

that permits to obtain a four pieces map, expressed in deviation
from the fundamental value (̃P = P − F):

P̃t+1 =





m1
+m3

+ (1+ s1 + s3 )̃Pt for P̃t ≥ z

m1
+ (1+ s1 )̃Pt for 0 ≤ P̃t < z

m2
+ (1+ s2 )̃Pt for −z < P̃t < 0

m2
+m4

+ (1+ s2 + s4 )̃Pt for P̃t ≤ −z
(11)

where the parameters have been grouped as follows:

m1
= c1,a − f 1,a, s1 = c1,b − f 1,b,

m2
= f 1,c − c1,c, s2 = c1,d − f 1,d,

m3
= c2,a − f 2,a, s3 = c2,b − f 2,b,

m4
= f 2,c − c2,c, s4 = c2,d − f 2,d.

Slopes and offsets of the piecewise-linear map (Equation 11) can
be both positive and negative, giving rise to several quite different
scenarios.

The authors have studied different subcases of the map
(Equation 11). They have until now considered subcases with two
branches and others with three branches. They obtain bull and
bear dynamics due to the chaotic motion of prices.

These models are surveyed in Tramontana and Westerhoff
[53] where they also consider a stochastic version with calibrated
parameters. They move from a version of the map (Equation 11)
wherem1

= m2 and s1 = s2. In this way they obtain a three pieces
piecewise-linear and in general discontinuousmap that forms the
deterministic skeleton of their model:

P̃t+1 =





m1
+m3

+ (1+ s1 + s3 )̃Pt for P̃t ≥ z

m1
+ (1+ s1 )̃Pt for −z < P̃t < z

m1
+m4

+ (1+ s1 + s4 )̃Pt for P̃t ≤ −z
(12)

Then, they fix the fundamental value to F = 0 and the symmetric
threshold to z = 0.2 and calibrate, with a trial and error
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FIGURE 4 | The shape of the map is obtained by using m1
= −0.2, m3

= 0.3, m4
= 0.6, s1 = 1.4, s3 = −2.3, s4 = −1.7, and z = 0.2.

calibration process, the other six parameters, assumed to be
normally distributed. The shape of the deterministic skeleton
of the model is represented in Figure 4 where the three linear
pieces and the two discontinuity points are clearly visible. The
bifurcation diagrams in Figure 5 are an example of the kind of
complex scenarios that may arise from such a map.

By performing Monte Carlo simulations the authors replicate
stylized facts of financial markets that are quite hard to obtain
with a purely deterministic model. For instance, the simulation
run depicted in Figure 6 reveals that the model is able to produce
bubbles and crashes, excess volatility, fat tails for the distribution
of the returns, uncorrelated returns and volatility clustering;
typical phenomena observed in many financial markets. For
a review of the stylized facts of financial markets see, for
instance [5].

4.2. Increasing the Number of Branches
Weihong Huang, one of the two coauthors of the seminal work
wemoved from, and other collaborators have recently introduced
a piecewise-linear framework to replicate the different kinds of
crisis that may occur in financial markets. In particular they refer
to the so-called sudden, disturbing and smooth crisis4. Examples
of this line of work include, among others [22] and [23].

They consider a classic market maker mechanism with
price movements regulated by the excess demand of chartists
fundamentalists:

Pt+1 = Pt + a
(
DC
t + DF

t

)
(13)

4A sudden crisis is a crisis characterized by a sequence of important price drops,

from a peak to the bottom. The price drop requires a very short time and the

recovery is usually long. An example is the tulip crisis in 1637. A smooth crisis

is characterized by a moderate but continuous and persistent price decrease, such

as the Japanese crisis of 1990–2007. Finally, the disturning crisis is a sudden crash

which follows a period of fluctuations with a negative trend. This kind of crisis

is considered the most common and the most dangerous. The 2007–2009 global

credit cruch is one of them.

FIGURE 5 | In (A) bifurcation diagram with respect to s1, while in (B)

with respect to s3. The other parameters are the same used for Figure 4.

The excess demand of fundamentalists is linear and depends
upon the difference between the actual price and an exogenously
given fundamental value:

DF
t = f (F − Pt) (14)

where f > 0 is a measure of the reactivity of fundamentalists.
The originality of this model relies on the chartists’ trading

rule. They are assumed to make a short-term expectation (Pβ )
for the asset value. Chartists subdivide the price domain into n
regimes:

r1 :

[
P0, P1

]
, r2 :

[
P1, P2

]
,...,rn :

[
Pn−1, Pn

]

and the short-term expectation varies according to the regime
where the current asset price is located. In particular, the middle
value of each regime represents the short-term expectation:

Pβ
=

Pj−1 + Pj

2
for P ∈ rj, j = 1, 2, ..., n (15)

and the trading rule of chartists is:

DC
t = c (Pt − Pβ ) (16)
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FIGURE 6 | The panels show from top to bottom the evolution of

prices, the corresponding returns, the distribution of returns (left

panel: usual representation; right panel: log-linear representation), the

autocorrelation function of returns and the autocorrelation function of

absolute returns, respectively.

FIGURE 7 | The shape of the map if the price domain is subdivided in

interval of length equal to 10. The values of the parameters are: a = 1, f =

0.1, c = 2, and F = 50.

By inserting the trading rules (Equations 14, 16) into the market
maker (Equation 13) we get the following piecewise-linear map:

Pt+1 =





Pt + a[f (F − Pt)+ c(Pt −
P0+P1

2 ) for P0 ≤ Pt < P1

Pt + a[f (F − Pt)+ c(Pt −
P1+P2

2 ) for P1 ≤ Pt < P2
... ...

Pt + a[f (F − Pt)+ c(Pt −
Pn−1+Pn

2 ) for Pn−1

≤ Pt < Pn

An example of the shape of the map is given in Figure 7, where
we have considered 10 regimes5.

Obviously, the number of regimes is arbitrary. They obtain
timeplots similar to the one represented in Figure 8 and they
show how all kinds of crisis can be replicated by such a
model.

5. CONCLUSIONS

Agent-based financial market models are quite powerful in
explaining the dynamics of financial markets. Since the main
building blocks of these models are also based on empirical
observations, they may be regarded as quite realistic descriptions
of the actual price formation process of financial markets. The
goal of our paper is to review some recent work on agent-based
models in which the dynamics is driven by piecewise-linearmaps.
Besides presenting the seminal contribution of Huang and Day
[21], we illustrate model extensions in which the trading behavior
of the agents is more general and in which the agents’ perception
of the fundamental value evolves over time. As we have seen,
these models are able to produce bubbles and crashes and excess
volatility. Buffeted with dynamics noise, these models are even

5Actually Huang and Zheng [23] endogenize the speed of adjustment of

fundamentalists, but this is behind our purposes.
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FIGURE 8 | Timeplot obtained with the same values of the parameters

of Figure 6 and initial condition P0 = 54.

capable of replicating the finer details of the dynamics of financial
markets.

Let us finally point out some avenues for future research.

• In our review, we have presented a few mechanisms that
can lead to a piecewise-linear map. However, there may
be more mechanism around. For instance, the behavior
of the market maker hasn’t received much attention so
far. One may consider, for instance, that the market
maker’s price adjustment behavior depends on the market’s
distortion.

• Since piecewise-linear agent-based financial market models
offer novel explanations for the emergence of bubbles and
crashes and excess volatility, it is very natural to ask whether
there are regulatory policies which may tame such kind
of dynamics. For instance, one could imagine that there
is a central authority who acts as a further player in the
models we have presented in our paper, using a linear
intervention (demand) function such as DA

t = r (F − Pt)
with r > 06. Unfortunately, not much work exists in this
direction.

• Moreover, there are a number of regulatory policies which
may itself create piecewise maps, either linear or not.
Examples in this direction include, among others, the work
on price limiters by He and Westerhoff [55], on short-
selling constraints by Anufriev and Tuinstra [56] and on
profit taxes by Schmitt and Westerhoff [57]. It seems that
the mathematical progress which has been made in the
analysis of piecewise-linear models may be used to revisit these
models.

• Of course, even the existing models are still not completely
understood. Without question, more work is needed to

6For instance, the average relative mispricing visible in the top panel of Figure 6

reduces from 10.80 percent for r = 0 to 3.51 percent for r = 0.01. This example

illustrates the potential of such an intervention function. However, the impact of

such an intervention function on the model dynamics may, in general, be much

more intricate since it affects the slopes of all branches of the underlying map.

While some branches of the map may give rise to more stable dynamics, others

may not. It is also clear that small changes in the intervention parameter r may

have significant effects on the dynamics (they may just turn a steady state stable

or unstable). Clearly, this important aspect deserves more attention in future

research. For some guidance in this direction see Westerhoff and Franke [54].

develop a better mathematical handling of them. In this
sense we also mention that future work may attack
in more detail models with more than two or three
branches.

• The models we have presented in our review have in common
that the trading rules of the traders formalize their orders
and that a market maker adjusts the price of the asset with
respect to the sum of these orders. One drawback of such
a setup is that the positions of the traders and the market
maker may become unreasonable high. In contrast, Brock and
Hommes [17] develop a framework in which similar trading
rules, derived from mean variance preferences, indicate the
positions of traders. Moreover, Brock and Hommes [17]
assume market clearing, i.e., the price of the risky asset
adjusts such that demand is equal to supply, keeping the
positions of the traders bounded. It might be worthwhile
to develop the models we have presented here also in that
direction.

• Moreover, Brock and Hommes [17] assume that traders
switch between different trading rules (or different expectation
schemes) according to an evolutionary fitness measure such
as past realized profits. The switching rate of the traders
depends on their intensity of choice. The higher the intensity
of choice, the more sensitive the traders are in selecting
the more attractive trading rule. However, if the intensity
of choice approaches infinity, all traders simultaneously
switch trading rules and the underlying map becomes
piecewise defined. It seems to be worthwhile to explore
also this aspect in more detail. Although it is an extreme
assumption that the intensity of choice goes to infinity
(sometimes referred to as the neoclassical limit), piecewise
linear maps may allow clear-cut analytical insights in these
situations which are otherwise precluded (see [52] for some
ideas).

• The models we have presented in this paper are only
concerned with the dynamics of a single risky asset. For simple
multi-asset market models see e.g., Tramontana et al. [58] and
Schmitt and Westerhoff [59]. Moreover, future work should
try to extend these models such that they also interact with the
real side of the economy. We venture that sharp transitions
in the dynamics of financial markets will spill-over to the
dynamics of the real economy.

• Recently, Schmitt and Westerhoff [60] derive a rather simple
small-scale agent-based model out of a more complex
large-scale agent-based model. It would be interesting to
do the same for a piecewise-linear agent-based model. As
we have seen in this paper, the dynamics of piecewise-
linear models lives from the fact that the whole group of
a trader type collectively changes its behavior. Having a
microfounded model would allow to relax this assumption
and to explore how some additional in-group-heterogeneity
affects the dynamics. Analytical insights derived from
simple piecewise-linear agent-based models maybe helpful
to understand the functioning of more complex companion
models.

• A few piecewise-linear agent-based financial market models
have already been calibrated and demonstrate that they
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can mimic the dynamics of actual financial markets quite
well. However, it is an important task to bring this line
of work closer to the data. Since the building blocks of
these models consist of linear equations, they may have a
straightforward economic interpretation. Some inspiring work
in this direction was already done by Day [61], albeit in a
macroeconomic context.

To conclude, we hope that our paper stimulates more work in
this exciting research direction.
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