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Generalized Linear Mixed Models (GLMMs) are widely used to model clustered

categorical outcomes. To tackle the intractable integration over the random

effects distributions, several approximation approaches have been developed for

likelihood-based inference. As these seldom yield satisfactory results when analyzing

binary outcomes from small clusters, estimation within the Structural Equation Modeling

(SEM) framework is proposed as an alternative. We compare the performance

of R-packages for random-intercept probit regression relying on: the Laplace

approximation, adaptive Gaussian quadrature (AGQ), Penalized Quasi-Likelihood (PQL),

an MCMC-implementation, and integrated nested Laplace approximation within the

GLMM-framework, and a robust diagonally weighted least squares estimation within

the SEM-framework. In terms of bias for the fixed and random effect estimators, SEM

usually performs best for cluster size two, while AGQ prevails in terms of precision (mainly

because of SEM’s robust standard errors). As the cluster size increases, however, AGQ

becomes the best choice for both bias and precision.

Keywords: categorical data analysis, multilevel modeling, mixed models, structural equation modeling, monte

carlo studies

1. INTRODUCTION

In behavioral and social sciences, researchers are frequently confronted with clustered or correlated
data structures. Such hierarchical data sets for example arise from educational studies, in which
students are measured within classrooms, or from longitudinal studies, in which measurements
are repeatedly taken within individuals. In these examples, two levels can be distinguished within
the data: measurements or level-1 units (e.g., students or time points), and clusters or level-2 units
(e.g., classes or individuals). These lower level units are correlated, as outcome measures arising
from students with the same teacher, or measurements within an individual, will be more alike than
data arising from students with different teachers, or measurements from different individuals. As
such, an analysis that ignores these dependencies may yield underestimated standard errors, while
inappropriate aggregation across levels may result in biased coefficients [1, 2].

Over the course of decades, several frameworks that can deal with such lower-level correlation
have been developed. One such framework entails mixed effect models, which model both the
ordinary regression parameters common to all clusters (i.e., the fixed effects), as well as any cluster-
specific parameters (i.e., the random effects). Using a parametric approach, two different types can
be distinguished: Linear Mixed Models (LMMs) when the outcome is normally distributed, and
Generalized Linear Mixed Models (GLMMs) when it is not. A second framework that allows the
analysis of multilevel outcomes consists of Structural Equation Models (SEM). Structural Equation
Models can be split up into two main classes: “classic” SEM, which is restricted to balanced data,
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and multilevel SEM, which is able to deal with unbalanced
data structures by relying on likelihood-based or Bayesian
approaches. Generally, SEM supersects its GLMM counterpart,
as the former is able to additionally include latent measures (and
measurement error) and assess mediation, in one big model.
Discounting these two assets, however, recent literature proves
that SEM is completely equivalent to its GLMM counterpart
when considering balanced data (e.g., when considering equal
cluster sizes in a random intercept model) [3–5].

As clustered Gaussian outcomes have already been discussed
thoroughly in the LMM and SEM literature [4–10], we will focus
on GLMM- and SEM-methods for non-normal outcome data.
More specifically, we will target binary data from small clusters,
with a particular focus on clusters of size two, as such settings
have proven difficult for the available GLMM methodologies
[11, 12]. Clusters of size two are frequently encountered in
practice, e.g., when studying dyads [13], in ophthalmology data
[14], in twin studies [15], or when analyzing measurements from
a 2-period - 2-treatment crossover study [16].

Focusing on the two aforementioned frameworks, current
literature on the analysis of clustered binary outcomes reveals two
major limitations: clusters of size two were either not considered
[17–20], or they were, but limited to only one of both frameworks
[21–24]. Here, we compare several estimation procedures within
both GLMM- and SEM-frameworks for modeling this type of
data, by considering the performance of relevant R-packages. By
limiting our comparison to implementations from the statistical
environment R (version 3.2.3., [25]), we rely on estimation
techniques that are easily accessible to all practitioners (this
software is freely available, while at the same time enjoying a
wide range of open-source packages). Additionally, we choose
to only focus on R-packages which stand on themselves and
are not dependent on external software. We do, however, check
several of the R-based implementations against others such
as implementations in SAS R© software (version 9.4 [26])1, the
MPLUS R© program (version 7 [27]) or the JAGS implementation
(version 4.1.0. [28]), as to verify the independence of conclusions
on the software used.

In the following sections, we first introduce a motivating
example. After this we elaborate on the GLMM and SEM
frameworks in general, so that the various estimation methods
capable of analyzing the example can be enumerated. Next, we
illustrate these methods on our example data. To facilitate the
practitioner’s decision on which method is most appropriate in
which setting, we subsequently conduct a simulation study. Based
on our findings we provide recommendations, and end with a
discussion.

2. AN EXAMPLE

As a motivating example, we consider data from a randomized
study executed by Vandeweghe et al., in preparation in two
Flemish nursery schools. As healthy eating habits are important

1SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc. in the USA and other countries.
R© indicates USA registration.

to achieve healthy growth and development in young children,
Vandeweghe et al., in preparation focus on strategies to improve
the liking of vegetables in preschool children: a child given a
tangible or non-tangible reward after tasting should be motivated
to taste again. To this end, Vandeweghe et al., in preparation
incorporated four possible intervention plans: encouragement
toward eating chicory, an active reward after consumption,
repeated exposure of the vegetable, and a control group.
The binary variable “vegetable liking” (like/ok vs. dislike) was
measured during three phases: once during a pre-test (to test
their inherent liking of chicory), once during a post-test, and
once during a follow-up test.When we only consider the pre- and
post-test, we end up with two measurements for each child, while
additionally including the follow-up measurements will increase
this number to three. So irrespective of whether or not the follow-
up measurement is included, the authors end up with a small
cluster size.

For illustrative purposes, we will only consider the results
from a single school, so that the data structure simplifies to
a simple two-level setting where a binary outcome is assessed
repeatedly within within each child. Additionally, we will only
contrast the “encouragement” vs. the “control” group, as to
simplify interpretation and results. The sample size of this
reduced data set consists of 37 children (only retaining the
complete cases), of which 21 were assigned to the control group
and 16 to the encouragement group.

To test whether encouragement increases the liking of chicory,
we consider the following random-intercept probit regression
model:

P(yij = 1 | xij, bj) = 8(β0 + β1xij + bj) (1)

with index i referring to the measurement moment (i = 0,
1 or 2 for pre-, post- and follow-up test, respectively), index
j to the individual (j = 1, . . . , 37), and with 8 representing
the cumulative normal distribution. Additionally, a random
intercept bj, which is assumed to follow a normal distribution,
is included in model (1) to capture the correlation between
measures taken from the same toddlers. In this model, the
outcome variable Yij represents Liking (Liking equals zero when
child j dislikes the vegetable at time i and one it is liked/tolerated),
while the predictor xij represents Encouragement (xij equals
one when child j is encouraged at time i, and zero when
it is not). To capture the effect of Encouragement within a
single parameter, we have opted to model the intervention
as a time-dependent covariate, rather than a between-subject
effect interacting with time. This assumption is reasonable here,
given the absence of group differences at the pre-test, the non-
existence of a time effect in the control group, and a similar
effect of Encouragement during the post-test and follow-up (see
Figure 1).

With model (1) defined, the research question of whether
or not a reward system will increase the liking of chicory will
amount to testing the null hypothesisH0 :β1 = 0. When this null
hypothesis is rejected, we will conclude that the reward system
significantly increases (when β > 0) the probability of liking the
vegetable. But how do we estimate and test the fixed effects and
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FIGURE 1 | Percentages of vegetable liking in 37 preschool children,

for the tree measurement moments (pre-test, post-test, and follow-up)

and two reward systems (control vs. encouragement).

random intercept variance? Since there are myriad options and
recommendations in current literature, and some of these may
not yield satisfactory results for binary outcomes in such small
clusters, we will introduce and compare several possibilities. As
mentioned in the introduction, these estimation methods stem
from both the GLMM- and SEM-frameworks; to this end, the
next section provides an introduction of both frameworks, a short
note on their equivalence, and an explanation of the difficulties
that accompany marginalizing the GLMM-likelihood function
over the random effects distribution.

3. METHODS

3.1. Generalized Linear Mixed Models
Generalized linear mixed models (GLMMs) are basically
extensions of Generalized Linear Models (GLMs) [29], which
allow for correlated observations through the inclusion
of random effects. Such effects can be interpreted as
unobserved heterogeneity at the upper level, consequently
inducing dependence among lower-level units from the same
cluster.

Let xij and yij denote the ith measurement from cluster j,
for the predictor and the binary outcome respectively (where
i = 1, .., I and j = 1, ..., J). Note that since we primarily focus on
clusters of size two, we will set I to 2. Moreover, as I = 2 limits the
identification of random effects, we will consider GLMMs with

a random intercept only. In a fully parametric framework, this
particular GLMM is typically formulated as:

E(Yij|xij, bj) = g−1(β0 + β1xij + bj) with bj ∼ N(0, τ )
(2)

where g−1(·) represents a known inverse link function, β0

represents the intercept, β1 the effect of the predictor xij, and
bj the cluster-specific random intercept. In this paper, we only
consider probit regression models, where the standard normal
cumulative distribution 8(·) is defined as the inverse link
function g−1(·) [or equivalently the link function g(·) is defined
as probit(·)]. Our reasoning behind this is that probit-regression
applies to all estimation procedures we investigate, in contrast
to the logit link. Converting Equation (2) to a random intercept
probit-regression model yields us:

P(yij = 1 | xij, bj) = 8(β0 + β1xij + bj) (3)

In order to obtain estimates for β0, β1 and τ , the marginal
likelihood function is typically maximized. For a random-
intercept GLMM, this function is obtained by integrating out the
cluster-specific random effect, and can be written as:

l(β, τ |yij) =
J

∏

j=1

∫ +∞

−∞

I
∏

i=1

f (yij|β, bj)φ(bj|τ )dbj (4)

where f denotes the density function of the outcomes and φ the
density of the random intercept (which is assumed to be normal
here).

Unfortunately, statistical inference based on maximizing
Equation (4) is hampered, because integrating out the random
effects from the joint density of responses and random effects
is, except for a few cases, analytically intractable. To tackle this,
several techniques have been proposed, which can be divided
into two main classes: likelihood-based methods and Bayesian
approaches.

3.1.1. Estimation Through Likelihood-Based

Approximation Methods
One way to tackle the intractability of integrating out the random
effects of the GLMM likelihood function, is to either approximate
the integrand or to approximate the integral itself. We briefly
introduce three such methods below, and refer the interested
reader to Tuerlinckx et al. [30] for more details.

Technically speaking, the Laplace approximation [31]
approximates the integrand by a quadratic Taylor expansion. This
results in a closed-form expression of the marginal likelihood,
which can be maximized to obtain the maximum likelihood
estimates of the fixed effects and random effect variances. In R,
the implementation based on this approximation is available
within the function glmer, from the package lme4 [32].

The Penalized Quasi-Likelihood method (PQL) [11, 33, 34]
also approximates the integrand; more intuitively put, PQL
approximates the GLMM with a linear mixed model. This is
achieved by considering a Taylor expansion of the response
function and by subsequently rewriting this expression in
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terms of an adjusted dependent variable on which estimation
procedures for LMM can be implemented. Consequently, the
algorithm cycles between parameter estimation by linear mixed
modeling, and updating the adjusted dependent variable until
convergence. This approach can be implemented using the
function glmmPQL from the R-package MASS [35].

Finally, a tractable marginal likelihood can also be obtained
by approximating the integral itself with a finite sum. In regular
Gauss-Hermite (GH) Quadrature (e.g., [36]), this summation
occurs over a fixed set of nodes, while Adaptive Gaussian
Quadrature (AGQ) [37] uses a different set of nodes for each
cluster. As such, when applying AGQ, fewer nodes are necessary
to achieve equal accuracy as compared to the regular GH
quadrature. AGQ estimation in R is also possible within the
glmer function from lme4.

The detailed R-code on how to implement these three
likelihood-based methods for a binary multilevel probit-model,
can be found in the Supplementary Material (see Appendix -
Likelihood-based methods). To check the R-implementation of
AGQ against other software, we use the NLMIXED procedure
within SAS R© [26].

3.1.2. Estimation Through Bayesian Methods
A second strategy that tackles the intractability of the GLMM
likelihood function, pursues a Bayesian approach where Markov
Chain Monte Carlo (MCMC) methods are used to obtain
a posterior distribution of the parameters. MCMC methods
simulate the likelihood rather than computing it, by calculating
the sample average of independently simulated realizations of the
integrand. As such, MCMC is thought to provide a more robust
approach to marginalizing the random effects [18, 38].

In R, the MCMCglmm function from the package MCMCglmm
[39] is available for such an approach. Technically, latent
variables are updated in block by means of the Metropolis-
Hastings algorithm [40–42], while the fixed parameters are Gibbs
sampled within such a single block [43].

MCMC methods are known to be computationally intensive
and sometimes have a hard time in reaching convergence.
To this end, hybrid models based on an Integrated Nested
Laplace Approximation (INLA) of the posterior marginals for
latent Gaussian models [44] were proposed. In short, the INLA
approach provides fast Bayesian inference by using accurate
Laplace approximations for the marginal posterior density of
the hyperparameter τ , and for the full conditional posterior
marginal densities of the fixed and random effects. The final
posterior marginals of the model parameters can then be
computed through numerical integration, where the integration
points are defaultly obtained by estimating the curvature of the
approximation for the marginal posterior of the hyperparameter
density [44]. Not surprisingly, these hybrids have shown a steep
decline in the computational burden of MCMC algorithms, while
at the same time converging more easily. In R, such an approach
is implemented in the function inla from the package R-inla.

The detailed R-code of both implementations, as well as
their prior specifications, can be found in the Supplementary
Material (see Appendix - Bayesian methods). To check the
R -based MCMC-implementation against other software, we

rely on the he JAGS program [28] through the use of the
R-package rjags [45]. It has been suggested by Betancourt
and Girolami [46] that a non-centered parameterization of
the hierarchal model works best when data are sparse, while
a centered parameterization prevails when the data strongly
identifies the parameters. However, we observed quite similar
results stemming from the two parameterizations in our settings
(results not shown).

3.2. Structural Equation Models
Although at first sight GLMM and SEM may seem like two
completely different modeling frameworks, it is now well
established that SEM can also be relied on to model balanced
multilevel data structures. For an excellent overview of SEM,
we refer the interested reader to Skrondal and Rabe-Hesketh
[47]. In order to account for clustered observations, SEM lets its
latent factors represent the random effects from their respective
multilevel models [48, 49]. This results in a “conventional” SEM
which is analytically equivalent to the corresponding multilevel
model, under a broad set of conditions [4]; we illustrate this for
model (2).

SEM consists of two modeling parts: a measurement model
and a structural part [47]. The former defines unobserved
variables in terms of observed variables measured with error,
so that the latent variables can be interpreted as the “true”
underlying variables (which might be correlated). The structural
model on the other hand, links the different latent variables
together. When focusing on random intercept models (read: with
only one latent variable) with an explanatory variable in clusters
of size two, both modeling-parts can be written as:

yj = ν + 3ηj + Kxj + ǫj

ηj = ζj (5)

where yj represents the responses within cluster j, ν = (ν ν) the
vector of intercepts, ηj a latent variable with its matrix of factor
loadings 3 = (1 1)T , xj = (x1j x2j)T represents the explanatory
variable, with K its matrix of regression coefficients, and ǫj =
(ǫ1j ǫ2j)T the vector of normally distributed measurement errors.
In the structural part of the model, ζj represents a random
disturbance term∼ N(0, τ ). Note that in accordance to Equation
(2), we assume the effect of x to be fixed within- as well as between
clusters. Because of this, K reduces to

(

k 0
0 k

)

. Alternatively, we
can write the above equations in reduced form, resulting in:

yj = ν + Kxj + 3ζj + ǫj

= ν + Kxj + ζj + ǫj (6)

where ζj = (ζj ζj)T .
Traditionally, estimation methods in SEM are based on

the assumption that the observed responses are measured
on a continuous scale. In order to reconcile SEM with
binary outcomes, the Latent Response Variable approach was
introduced, where a dichotomous Y is considered a crude
approximation of an underlying continuous variable Y∗. Y∗ is
not directly observed (hence a latent response variable), and is
written in terms of a linear predictor. When we separate the two
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observations within each cluster to eliminate matrix notations,
we obtain:

{

y∗1j = ν + kx1j + ζj + ǫ1j

y∗2j = ν + kx2j + ζj + ǫ2j
(7)

where ǫ1j and ǫ2j are i.d.d. residuals of the latent response
variables ∼ N(0, θ) . Because Y∗ exhibits an arbitrary mean and
variance, a link betweenY andY∗ needs to be established through
variance constraints. Since the variance of Y∗ conditional on xij
is τ + θ , there are two possible ways to constrain this variance
[50]. First, Generalized Linear Models standardly fix the residual
variance θ to one. In contrast to this theta parameterization,
identification can also be achieved by standardizing the latent
variable Y∗ itself: the delta parameterization fixes the the sum of
τ and θ to one. This parameterization is traditionally used in the
SEM-literature.

The relationship between the binary and latent continuous
variable is then: Y = 1 ⇐⇒ Y∗ > κ . Fixing the threshold κ at
0 (for model identifiability, either the threshold or the intercept
in Equation (7) needs to be constrained), and assuming that
Y∗
ij ∼ N(0, 1) (i.e., making use of the delta parametrization so

that ζj ∼ N(0, τδ) and ǫij ∼ N(0, 1− τδ)), it follows that:

E[Yij|xij, ζj] = P(ν + kxij + ζj + ǫij > 0|xij, ζj)
= P(ǫij < ν + kxij + ζj|xij, ζj)

= P(
ǫij√
1− τδ

<
ν + kxij + ζj√

1− τδ

|xij, ζj)

= 8(
ν√

1− τδ

+
kxij√
1− τδ

+
ζj√

1− τδ

) (8)

which reduces to the random intercept probit-model from

Equation (3), where ν√
1−τδ

, k√
1−τδ

and
ζj√
1−τδ

are equivalent to

β0, β1, and bj, respectively.

3.2.1. Estimation in SEM
Within the SEM-framework, there are two common estimation
approaches for modeling binary outcomes: maximum likelihood
(ML) estimation and weighted least squares (WLS) [47]. In
contrast to WLS, ML estimation for binary outcomes is not
widely available in SEM software. Being a “full information”
method, ML is more regularly employed in item response theory
[51]. In contrast, as WLS-based methods adopt a multiple-step
estimation procedure in which only first- and second-order
information from the data is used, they are referred to as a
“limited information” approach (see [52] for a review). In SEM,
WLS is employed to differentially weigh the residuals resulting
from the observed vs. themodel-implied sample statistics by their
full asymptotic covariance matrixW.

Since WLS requires extremely large samples for accurate
estimation of the weight matrix W, more contemporary
approaches were developed to improve small sample
performance. One such version entails diagonally weighted
least squares (DWLS), which utilizes a diagonal weight matrix
instead of a full one [53, 54] (note that statistical inference in
DWLS still relies on the full weight matrix, even when a diagonal
matrix is used during estimation). Following Muthén et al. [54],

who have shown DWLS to be statistically and computationally
efficient in large samples, more recent studies have proven
that DWLS is also more stable than WLS in small samples
[51, 55, 56]. Note that WLS and DWLS estimation is limited
to probit-regression models and therefore exclude logit-models
from our current review study.

SEM relying on DWLS can be implemented through the sem-
function from the package lavaan [57]. The detailed R-code of
this implementation can be found in the Supplementary Material
(see Appendix - SEM methods). To check the lavaan package
against other implementations, we will verify our results with
DWLS estimation in MPLUS R© software [27] through the use of
the R-package MplusAutomation [58].

4. ANALYSIS OF THE EXAMPLE

We illustrate the above six approaches by applying them to our
example. To assess the impact of cluster size, we consider the fit
of model (1) when solely looking at the pre- and post-test (i.e.,
cluster size two) vs. all three time points together (i.e., cluster
size three). The estimated parameters for the fixed effects (and
their standard errors), alongside the estimated random intercept
variance for each of the estimation approaches are summarized
in Table 1.

We observe that for both cluster sizes all methods perform
rather similar in their estimation of β0, except for a higher
estimate produced by MCMC. The estimates for β1 show more
variation, especially within clusters of size two (again with an
outlying MCMC-estimate). For the random intercept variance
τ , we see that the MCMC estimate is somewhat larger than
the others, while the estimates from the Laplace approximation
and the hybrid approach are at the lower end of this spectrum.
In terms of computing times, most approaches performed
equivalently, with the Laplace approximation providing the
fastest analysis, closely followed by AGQ, SEM and PQL.
The MCMC approach took about ten times as long as the
aforementioned approaches, while the hybrid approach only
increased the computing time threefold.

Now the question becomes: which of these estimation
methods is most reliable here? In order to find out, we conduct
an extensive simulation study in the next section.

TABLE 1 | The estimates (and (robust) standard errors) from the six

approaches for the intercept β0, the slope parameter β1 and the random

intercept variance τ .

Parameter β0 β1 τ

Cluster size 2 3 2 3 2 3

Laplace −0.51 (0.22) −0.44 (0.21) 0.87 (0.42) 1.09 (0.38) 0.21 0.48

AGQ −0.54 (0.24) −0.44 (0.22) 0.92 (0.44) 1.11 (0.38) 0.43 0.65

PQL −0.51 (0.20) −0.42 (0.19) 0.88 (0.36) 1.05 (0.31) 0.47 0.62

MCMC −0.72 (0.34) −0.52 (0.30) 1.20 (0.50) 1.36 (0.43) 1.95 1.79

Hybrid −0.56 (0.24) −0.45 (0.23) 0.95 (0.43) 1.14 (0.37) 0.07 0.45

SEM −0.52 (0.30) −0.41 (0.27) 0.75 (0.53) 0.91 (0.47) 0.45 0.83

Each estimate is displayed twice: once for the pre-and post-test only (cluster size two),

and once including all three measures (cluster size three).
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5. SIMULATION STUDY

In our simulation study we compare the performance of the
six above-described estimation methods in different settings. For
this, random binary outcome variables from small clusters are
generated under a random intercept probit-regression model (see
Supplemantary Material - Data Generating Mechanism). More
specifically, we assume an underlying latent variableY∗

ij , such that
Yij = 1 if Y∗

ij > 0:

P(Yij = 1|xij, bj) = P(Y∗
ij > 0|xij, bj) (9)

= P(β0 + β1xij + bj + ǫij > 0),

bj ∼ N(0, τ ) and ǫij ∼ N(0, 1) (10)

First of all, we consider different cluster sizes: we will look
at clusters of size two, three and five. Second, we also
consider a different numbers of clusters. Since, Loeys et al. [59]
reported that sample sizes in studies using the Actor-Partner-
Interdependence-Model [60] within dyads typically ranged from
30 to 300 pairs, we consider sample sizes n of 25, 50, 100, and
300. Third, we also examine different intracluster correlations
(icc) for the latent response variable. As the latent iccl is defined
as the proportion of between-group vs. total variance in Y∗

(iccl = Var (bj)
Var (Y∗

ij )
= τ

τ + 1 ), a latent iccl of 0.10, 0.30, and 0.50

corresponds to a random intercept variance of 0.11, 0.43, and
1.00, respectively. Fourth, we consider rare as well as more
abundant outcomes, with an overall event rate of 10 and 50%,
respectively. Since the marginal expected value of the outcome
E(Y) equals 8( β0√

1.25+ τ
), an outcome prevalence of 50% implies

that β0 must be set to zero. Equivalently, when fixing β0 to
−1.50, −1.66, and −1.92 for a random intercept variance τ =
0.11, 0.43, and 1, respectively, an outcome prevalence of 10% is
obtained2. In all simulations, β1 is fixed to 1. Finally, four types
of covariates are compared: we consider a predictor that only
varies between clusters, vs. one that varies within clusters; and a
Gaussian distributed predictor ∼ N(0, 0.25), vs. a zero-centered
Bernoulli x with success rate 0.5.

In total, 2000 simulations are generated for the 3 × 4 ×
3 × 2 × 4 combinations of clusters size (3), sample size (4),
intracluster correlation (3), outcome prevalence (2) and type
of predictor (4). The above-introduced methods are compared
over these 288 settings in terms of convergence, relative bias,
mean squared error (MSE) and coverage. The relative bias is
defined as the averaged difference between the estimated (e.g., β̂)
and true parameter values (e.g., β), divided by the latter (so

that the relative bias = β−β̂
β

); as such, a relative bias enclosing

2Note that the observed icco is dependent on the intercept β0, the random
intercept variance τ , and the latent iccl through the following formula [61]: icco =
82(

β0√
(τ+1) (1+2τ )

,
β0√
τ+1

, iccl)−81(
β0√
τ+1

)2

81(
β0√
τ+1

) (1−81(
β0√
τ+1

))
. In this equation,81 represents the cumulative

standard normal distribution, and 82 the cumulative bivariate standard normal
distribution with correlation iccl . Since the outcome prevalence dictates the value
of the intercept, each combination of iccl and E(Y) provides different icco’s; for
rare outcomes, the observed icco are 0.06, 0.25, and 0.51, while for E(Y) = 0.5
they are 0.06, 0.19, and 0.33 (corresponding to latent iccl ’s of 0.10, 0.30, and 0.50,
respectively). As such, the observed icco’s range from small to large, according to
Hox [62]’s recommendations.

zero will indicate an accurate estimator. A relative bias measure
was chosen over an absolute one, as the accuracy of some
procedures tends to depend on the magnitude of the parameter
values [63]. The MSE is estimated by summing the empirical
variance and the squared bias of the estimates, simultaneously
assessing bias and efficiency: the lower the MSE, the more
accurate and precise the estimator. The coverage is defined as
the proportion of the 95%-confidence intervals that encompass
their true parameter value, where coverage rates nearing 95%
represent nominal coverages of the intervals. For the likelihood-
based and SEM approaches, Wald confidence intervals are used,
while the Bayesian approaches rely on the quantile-based 95%
posterior credible intervals. Note that coverage rates for τ are not
provided, as not all estimation procedures provide this interval.
Lastly, in order to conclude model convergence, several criteria
must be met: first, whenever fixed effect estimates exceed an
absolute value of ten, or the random effect estimate exceeds 25,
the fit is classified as “no convergence.” We decided on this as
parameters in a probit-regression exceeding an absolute value of
five are extremely unlikely for the given covariate distribution
and effect sizes. Secondly, convergence has also failed when
a model fit does not yield estimators or standard errors. In
addition, for MCMCglmm we specified that both chains must
reach convergence as assessed by Geweke diagnostics; only when
this statistic is smaller than two, convergence is concluded. To
ensure a fair comparison between methods, we only present
results for simulation runs in which all six methods converged.

6. RESULTS

Below, we discuss the results of the simulation study for clusters
of size two with a Gaussian predictor in detail.

6.1. Convergence
Generally, convergence improves as the number of clusters and
the outcome prevalence increase, and as the iccl decreases (see
Figure 2). In contrast, convergence is rather unaffected by the
level of the predictor, except for PQL which tends to show
more convergence difficulties for a within-cluster x. The Laplace
approximation also shows a slight decline in convergence for
rare outcomes combined with a within-cluster predictor. Note
that for 300 clusters most approaches reach 100% convergence,
except for MCMC (as in Ten Have and Localio [21]) and at times
the Laplace approximation. For rare outcomes in small samples
(n = 25), however, the hybrid approach and SEM (see e.g.,
[51, 64]) often perform worse than MCMC. Overall, AGQ shows
least difficulty in reaching convergence.

6.2. Relative Bias
First, for the fixed effect estimators we typically observe that the
relative bias decreases as the number of clusters increases (see
Figure 3). The Laplace approximation and PQL contradict this,
however: for rare outcomes the relative bias tends to increase
with n. Second, we see that an increase in the iccl tends to
shift the relative bias downwards. This implies an improvement
in the performance of MCMC (in contrast to Ten Have and
Localio [21]), but not of most othermethods [65–68]. As such, we
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FIGURE 2 | Model convergence of the six approaches, for different

measurement levels of X (within- or between clusters), outcome

prevalence (0.1 and 0.5), iccl (0.1, 0.3, and 0.5), and sample size (25, 50,

100, and 300).

observe thatMCMCperforms worse thanmost methods, but that
this difference attenuates as the iccl increases. Third, the relative
bias is generally smaller for a 0.5 outcome prevalence, compared
to rare events; this is most clear for the hybrid approach, but
is also visible in AQG (see [69]). For an outcome prevalence
of 0.5, the bias in the β0-estimators even becomes negligible
for all methods. For β1, however, the MCMC method actually
performs worse in small samples when E(Y) = 0.5, compared
to 0.1. Fourth, different measurement levels of the predictor do
not much sway the bias, except for PQL; this method reveals
slightly more bias for low event rates when the predictor is
measured within- rather than between-clusters. Overall, SEM
provides the least biased estimators for the fixed effects, closely
followed by AGQ.

For the variance of the random effect, better estimators are
typically found in larger samples (see left part of Figure 4, also
see Hox [68]). Similar to the fixed effect estimators, the Laplace
approximation and PQL pose an exception to this rule, by
inverting this relation for rare outcomes (see [70]). As such,
the conclusions of Capanu et al. [20], stating that the hybrid
approach outperforms the Laplace approximation by reducing
bias in τ , do hold here, but only for large n. We also observe
that as the iccl decreases, bias in the estimates for τ increases
in all methods. Finally, a slightly negative bias in the AGQ- and
SEM-estimates for τ is observed when the outcome is rare and n

small [2]. This negative bias, however, attenuates as the number
of clusters is increased [70]. Overall, SEM yields the least biased
estimators for the random intercept variance when the outcome
prevalence is rare, while AGQ performs best when E(Y) = 0.5.

6.3. MSE
For both β0 and β1, the MSE is often higher for rare outcomes,
compared to a 0.5 prevalence (see Figure 5). Additionally, the
MSE drops as the sample size grows, and as the iccl decreases. The
Laplace estimator for β0 again contradicts these trends: for rare
events, the MSE increases with sample size and iccl. As before,
the measurement level of x does not much alter performance,
except in PQL where a within-cluster predictor slightly increases
the MSE. For both fixed effects, MCMC often yields the highest
MSE when the prevalence equals 0.5, while the hybrid approach
regularly performs worst for a prevalence of 0.1. In general, the
Laplace approximation yields the lowest MSE when E(Y) = 0.5,
but performs much worse when the outcome is rare. Overall,
AGQ (closely followed by SEM) performs best in terms of MSE.

For the random intercept variance τ , we observe a decrease in
MSE as the sample size increases, and as the iccl decreases (see
right part of Figure 4). The latter conclusion does not hold for
MCMC as here the MSE tends to decrease with rising iccl. Again,
PQL performs slightly worse for a within-cluster predictor. In
general, the Laplace approximation yields the lowest MSE for
0.5 prevalences, but performs worst when the outcome is rare.
Overall, AGQ performs best in terms of MSE, better than SEM,
especially in smaller samples.

6.4. Coverage
For both fixed effect estimators, coverage of their 95% confidence
intervals is typically better when the outcome prevalence is 0.5
(see Figure 6). Also, an increasing iccl usually worsens coverage,
except for MCMC (where coverage improves with increasing icc
[21]). The impact of the iccl on coverage has also been observed
by Zhang et al. [63], who found nominal coverages for AGQ and
the Laplace approximation for low random intercept variances
(i.e., low icc), but more liberal ones as τ increases (i.e., high icc).
Generally, SEM and AGQ provide the best coverage rates [70],
with SEM taking the upper hand for the coverage of β0, and AGQ
for β1 with a low to medium icc.

6.5. Summary of the Other Simulation
Settings
Until now, we only discussed the results of the simulation study
for clusters of size two with a Gaussian predictor. The results for
other settings are available in the SupplementaryMaterial and are
briefly discussed in the next paragraphs.

When looking at a binary predictor instead of a Gaussian one,
our conclusions remain more or less the same. One exception
is that most methods experience a steep decline in convergence
for smaller sample sizes, when the predictor is binary compared
to continous. This is most apparent in SEM, where lower
convergence rates are due to empty cell combinations of outcome
and predictor. In SEM, this produces a warning, which we
interpreted as an error (as in MPLUS), since such runs yield
unreliable results.
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FIGURE 3 | Relative bias in β0 (left) and β1 (right) for the six approaches, for different measurement levels of X (within- or between clusters), outcome

prevalence (0.1 and 0.5), iccl (0.1, 0.3, and 0.5), and sample size (25, 50, 100, and 300). These results stem from simulation runs where all methods converged.

As the cluster size increases from two to three or five, we
observe a general increase in performance in all methods except
SEM. This approach now no longer yields the lowest bias, with
AGQ gradually taking over. As such, increasing cluster size favors
AGQ in terms of precision, as well as in terms of relative bias.

6.6. MPLUS, JAGS, and SAS
MPLUS and lavaan performed quite similarly throughout our
settings, although there were some minor differences (results
shown in the Supplementary Material). While MPLUS version
7 slightly dominates in terms of convergence and coverage,
lavaan takes the upper hand for the relative bias and the MSE.
These differences are trivial, however, and most likely due to
lavaan incorporating a slightly higher number of iterations in
reaching convergence.

When comparing JAGS to MCMCglmm, we observe some
important differences in performance; for most settings, JAGS
4.1.0. outperforms MCMCglmm, except when a small n is
combined with a medium to large iccl (see Supplementary
Material). Note that although JAGS performs slightly better in
most settings, its computing times are also significantly higher.

In contrast to Zhang et al. [63], who found a
superior performance of SAS NLMIXED compared to R’s
glmer-function, we found that glmer performed equally well

or even slightly better in terms of convergence rates, relative
bias, and coverage (using SAS version 9.4). When the outcome
prevalence is 0.5 and for some rare events settings, glmer also
provided a slightly lower MSE.

7. DISCUSSION

In this paper, we provided an overview of several R-
packages based on different estimation techniques, as to fit
random-intercept probit regression models. More specifically, we
focused on techniques capable of modeling binary outcomes in
small clusters. Additionally, we presented an extensive simulation
study in which we assessed the impact of various data features on
a number of performance criteria. In summary, we found that
some of our results confirmed findings from previous studies,
while others have (to the best of our knowledge) not been
observed before:

Interestingly, both SEM and AGQ performed considerably
well for paired data. Though both approaches disclosed
some sensitivity to sample size, they manifested remarkable
robustness when varying the icc, the event rate, and the
measurement level of the predictor. As such, these methods
can be considered the most stable over all settings in terms
of relative bias, for the fixed effect regression coefficients as
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FIGURE 4 | Relative bias (left) and MSE (right) of τ for the six approaches, for different measurement levels of X (within- or between clusters),

outcome prevalences (0.1 and 0.5), iccl (0.1, 0.3, and 0.5), and sample sizes (25, 50, 100, and 300). These results stem from simulation runs where all

methods converged.

well as the random intercept variance. While AGQ performs
slightly better than SEM in terms of convergence and MSE,
SEM performs slightly better when considering the relative
bias. As SEM relies on robust standard errors, it yields
higher MSE’s, but also provides robustness against model
misspecification (which was not investigated here). For the
coverage, we observed that SEM performs slightly better for
β0, while AGQ tentatively gains the upper hand for β1. As the
cluster size increases, however, AGQ takes over and becomes
most reliable in terms of bias and precision.
Since the Laplace approximation is known to be precise
only for normally distributed data or for non-normal
data in large clusters [30], we observed an expected
poor performance of this approximation in our settings
[23]. PQL also exhibits an inferior performance for low
icc’s and a low outcome prevalence, while additionally
revealing disconcerting performance issues for a within-
cluster measured predictor. Finally, the two Bayesian

approaches performed below par in terms of most criteria
considered.

Let us once again consider our motivating example with a within-
cluster measured predictor, a sample size of 37, an outcome
prevalence of 0.4, and a medium to large latent icc. When we

apply our conclusions to these settings, we can state that SEMwill
yield the most trustworthy estimates when the cluster size is two,
while AGQwill take over as a measurement is added. MCMCwill
yield the most biased estimates in both cases (as can be clearly
seen in Table 1).

Several limitations can still be ascribed to this paper. First,
we restricted our comparisons to estimation techniques available
in R-packages. As such, several improvements regarding the
estimation methods discussed, could not be explored. For
example, while the glmmPQL function employed in this paper
is based on Breslow and Clayton [11]’s PQL version, a second-
order Taylor expansion [71] might provide a more precise linear
approximation (this is referred to as PQL-2, in contrast to the
first order version PQL-1). Be that as it may, not all the evidence
speaks in favor of PQL-2: even though it yields less bias than PQL-
1 when analyzing binary outcomes, Rodriguez [72] found that the
estimates for both fixed and random effects were still attenuated
for PQL-2. Furthermore, PQL-2 was found to be less efficient and
somewhat less likely to converge [72]. Second, certain choices
were made with respect to several estimation techniques, such as
the number of quadrature points used in the AGQ-procedure.
However, acting upon the recommendation of 8 nodes for each
random effect [17], we argue that surpassing the ten quadrature
points considered, would carry but little impact in our random

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 October 2016 | Volume 2 | Article 18

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Josephy et al. Probit Regression in Small Clusters

FIGURE 5 | MSE of β0 (left) and β1 (right) for the six approaches, for different measurement levels of X (within- or between clusters), outcome

prevalences (0.1 and 0.5), different iccl (0.1, 0.3, and 0.5), and sample sizes (25, 50, 100, and 300). These results stem from simulation runs where all methods

converged.

intercept model. Also, the repercussions of our choices on
prior specification in the Bayesian framework deserves a more
thorough examination, as different priors may lead to somewhat
different findings. Third, the performance results presented here
may not be intrinsic to their respective estimation techniques,
but instead due to decisions made during implementation.
As we demonstrated for MCMCglmm when comparing it to
JAGS, its disappointing performance is most likely due to a
suboptimal implementation, and not an inherent treat of the
MCMC estimation procedure. Fourth, some scholars [73] have
recommended the evaluation of different estimation methods
and their dependence on different data features, by applying
ANOVA-models rather than graphical summaries. Treating the
different settings (sample size, icc, level of the predictor, the
event rate, and their two-way interactions) as factors, did not
provide us much insight since almost all variables (as well as
their interactions) were found to be highly significant. Fifth,
in our simulation study we only considered complete data; in
the presence of missing data, however, DWLS estimation in
SEM will exclude clusters with one or more missing outcomes,
resulting in a complete case analysis. This exclusion stands in
contrast to maximum likelihood and Bayesian approaches from
the GLMM-framework, as they consider all available outcomes
when there is missingness present. Consequently, the GLMM-
framework will not introduce any (additional) bias under the

missing at random assumption, while DWLS-estimation requires
the more stringent assumption of data missing completely at
random. Sixth, we do not focus on measurement imprecision in
this study and assume that all observed variables are measured
without error. Of course, as Westfall and Yarkoni [74] recently
pointed out, this rather optimistic view might pose inferential
invalidity when this assumption fails. In light of this, it is
important to note that SEM can deal with such measurement
error, in contrast to GLMM-based approaches.

With the results, as well as the limitations of the current paper
inmind, some potential angles for future researchmight be worth
considering. As we explicitly focused on conditional models, we
deliberately excluded marginal approaches such as Generalized
Estimating Equations (GEE), because such a comparison is
impeded by the fact that marginal and conditional effects differ
for binary outcomes. Whereas, multilevel models allow for the
separation of variability at different levels by modeling the
cluster-specific expectation in terms of the explanatory variables,
GEE only focuses on the respective marginal expectations.
Previous research [75] has revealed excellent small sample
performance of GEE in terms of bias, when analyzing binary
data in clusters of size two. Also, it might we worth considering
a pairwise maximum likelihood (PML) approach, as PML
estimators have the desired properties of being normally
distributed, asymptotically unbiased and consistent [76]. This
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FIGURE 6 | Coverage of β0 (left) and β1 (right) for the six approaches, for different measurement levels of X (within- or between clusters), outcome

prevalences (0.1 and 0.5), iccl (0.1, 0.3, and 0.5), and sample sizes (25, 50, 100, and 300). These results stem from simulation runs where all methods

converged.

estimation method breaks up the likelihood into little pieces
and consequently maximizes a composite likelihood of weighted
events. PML in R is currently unable to cope with predictors,
but this will most likely be possible in the near future. And
finally, as pointed out by one of the reviewers, Hamiltonian
Monte Carlo (used in Stan software, Carpenter et al. [77]) may
be a more efficient sampler compared to a Metropolis-Hastings
(i.e., MCMCglmm) or a Gibbs sampler (i.e., JAGS). To this end,
exploring the performance of the Stan software might prove
worthwhile when further focusing on Bayesian analysis.
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