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Discrete combinatorial optimization problems in the real world are typically defined via

an ensemble of potentially high dimensional measurements pertaining to all subjects

of a system under study. We point out that such a data ensemble in fact embeds

with system’s information content that is not directly used in defining the combinatorial

optimization problems. Can machine learning algorithms extract such information

content and make combinatorial optimizing tasks more efficient? Would such algorithmic

computations bring new perspectives into this classic topic of Applied Mathematics

and Theoretical Computer Science? We show that answers to both questions are

positive. One key reason is due to permutation invariance. That is, the data ensemble of

subjects’ measurement vectors is permutation invariant when it is represented through a

subject-vs.-measurement matrix. An unsupervised machine learning algorithm, called

Data Mechanics (DM), is applied to find optimal permutations on row and column

axes such that the permuted matrix reveals coupled deterministic and stochastic

structures as the system’s information content. The deterministic structures are shown

to facilitate geometry-based divide-and-conquer scheme that helps optimizing task,

while stochastic structures are used to generate an ensemble of mimicries retaining

the deterministic structures, and then reveal the robustness pertaining to the original

version of optimal solution. Two simulated systems, Assignment problem and Traveling

Salesman problem, are considered. Beyond demonstrating computational advantages

and intrinsic robustness in the two systems, we propose brand new robust optimal

solutions. We believe such robust versions of optimal solutions are potentially more

realistic and practical in real world settings.

Keywords: data mechanics, assignment problem, traveling salesman problem, robustness, network mimicking

1. INTRODUCTION

Discrete combinatorial optimization is a topic in Applied Mathematics and Computer
Science. This topic consists of finding an optimal combination upon all involved subjects
within a study system. When a real world system is under study, each of its subject is
characterized by a vector of measurements. This ensemble of measurement vectors is used to
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define a discrete combinatorial optimization problem of interest.
Among many of these problems, two well-known discrete
combinatorial optimization problems are: Assignment problem
(AP) and Traveling Salesman problem (TSP). A generic
Assignment Problem [1–3] is defined on a n× n bipartite matrix
representing a system consisting of n subjects, each of which is
characterized by a n-dim vector of cost of performing n different
tasks. While Traveling Salesman problem is defined generically
on a symmetric distance matrix between all “cities.” An optimal
salesman’s route, a closed single loop of a group of cities in a form
of a polygon, is sought to minimize its perimeter [4–8].

A datamatrix, on which combinatorial optimization problems
are defined, is taken to be deterministic, as is its optimal solution.
It is worth pointing out that this deterministic viewpoint of
the data matrix is an extreme concept well taken in classic
Applied Mathematics and Computer Science literature. Since
greedy exhaustive search schemes are usually not feasible when
the size of system is big, many algorithms have been precisely
developed and thoroughly studied in terms of mathematical
efficiency and computational complexity. Recently in Random
Matrix theory of Mathematics and theoretical statistical physics
[9–11], a data matrix is a realization of a random matrix. In
other words, the idea of data matrix is simply given up for a
pure array of random variables. Such a random matrix could be
either an unitary matrix [9], the product with its own transpose
matrix being equal to the identity matrix, or simply consisting
of completely independent random variables. Likewise Random
Assignment problem [12–14] and randomly generated cities for
TSP [15, 16], or random graph theory [17, 18] are considered and
studied.

The random matrix theory now has become an important
topic in mathematics, statistics and physics. In the new kind of
statistical mechanics based on the theory, the realization of the
system is not relevant [19]. That is, the concept of ensemble of
system’smicrostates is no longer essential, since the distributional
mechanism being responsible for generating the data matrix is
assumed known. Any specific features observed on a data matrix
becomes stochastic noise, and what is essential is the averaging
patterns resulting from the distributional assumptions. Thus,
such a complete random concept of a data matrix is regarded
as another extreme viewpoint. Most often it is adopted primarily
for theoretic developments, rather than for practical and realistic
utilities.

In real world systems, measurements contained in data
matrices are likely prone to intrinsic variations, or even errors.
Hence it is advantageous to take an observed data matrix as a
system’s microstate at the time point of study. In the Assignment
problem, a microstate can be represented by arranging subjects
and tasks along the row and column axes, respectively. Certainly
such a microstate is invariant with respect to row and column
permutations. When similar subjects and similar tasks are
grouped together, then there would be block patterns revealed
upon the matrix lattice. It is clear that such block patterns
have nothing to do with the definition of Assignment problem,
neither with its algorithmic optimal solution. But don’t such
block patterns evidently depict certain global information about
the system of concern?

Likewise in TSP, a symmetric distance matrix represents a
microstate of a system under study. Supposed that all involving
cities are embedded upon a geographic geometry, that is, some
cities are closer to some other cities, but farther away from others.
When a permutation embeds with such geometric information,
again it would help reveal block patterns within the distance
matrix. Such block patterns would not change the Traveling
Salesman Problem, nor would it affect its optimal solution.
Nonetheless shouldn’t such system’s global information provide
extra and different aspects regarding to TSP?

In this paper we consider and discuss discrete combinatorial
optimization problems from a perspective of system information
content. Specifically we attempt to address the following
question: Can machine learning algorithms extract system’s
global information content and make combinatorial optimizing
tasks more efficient? Here “system information content” refers to
patterns pertaining to system’s lowest energy macroscopic state,
which is in contrast with the system’s ensemble of microscopic
states. The principle of statistical physics confirms that any
microscopic state has to conform to the system’s macroscopic
state. Though this macrostate’s implicit nature prevents it from
playing any role in defining a specific discrete combinatorial
optimization problem, nonetheless many of its information
patterns are indeed computable via machine learning algorithms.
We demonstrate that the system’s information content is relevant
and critical.

The machine learning paradigm employed here to build the
block patterns on a matrix lattice is called Data Mechanics (DM),
developed in a series of papers [20–23]. Such block patterns are
indeedmultiscale in the sense of being framed by twoUltrametric
trees on row and column axes, respectively. Such multiscale
block patterns constitute the deterministic structures, while
uniform randomness within each core block jointly constitutes
the stochastic structures. The coupling of these two kinds of
structures are termed coupling geometry. This concept of a data
matrix is right in the middle of the two extreme viewpoints:
being complete deterministic, on one hand, and being complete
random, on the other hand. In fact such a concept is coherent
with information content of a physical system [24], and at the
same time is a 2D extension of Kolmogorov complexity [25, 26].
The chief merit of such a coupling geometry is its capability of
mimicking the observed data matrix, while retaining the same
deterministic and stochastic structures on each copy of mimicry.
Hence a mimicry is a microstate, while the coupling geometry
prescribes the system’s macrostate. An ensemble of microstates
would allow us to evaluate practicality and robustness of an
optimal solution. In fact these two properties become visible
through the block patterns. Further such an ensemble makes
possible to address a natural question: Can a non-robust optimal
solution be modified and improved?

Further it is intuitive and obvious that algorithmic computing
can be made more efficient by adopting the block patterns
in these two systems. The theme underpinning computing
algorithms developed here is “divide-and-conquer.” Although
this type of data-driven approach is new in combinatorial
optimization, a similar idea has been used recently in machine
learning for solving continuous optimization problems. In those
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problems, the objective function can be written as a summation
of loss defined on each training sample, and a family of divide-
and-conquer algorithms have been proposed for speeding up the
optimization procedure. The main idea of these algorithms is
to divide the problem into smaller subproblems by clustering
the data, so that each subproblem can be solved independently
and efficiently. Among them, Hsieh et al. [27] discussed the
divide-and-conquer for kernel Support Vector Machines (SVM),
Hsieh et al. [28] applied it to graphical model estimation, Si et
al. [29] applied a community detection algorithm to speed up
singular value decomposition of sparse graphs, and Mackey et al.
[30] used the algorithm for matrix decomposition. Although our
paper is totally different from these works, it is interesting to see
that the data-driven paradigm is not only important for discrete
optimization but also useful in continuous optimization, and we
expect the similar idea can be used in many other problems.

At the end of this section we make a final remark regarding
algorithmic computations on mimicking. At this stage there
are algorithms available in literature that can effectively carry
out block-wise uniformity by subject to sequences of row and
column sums (or degrees) for binary matrices [31]. For weighted
matrices, generative algorithms, such as those proposed in Chen
et al. [32] and Barvinok [33], achieve constraints of row and
column sums sequences. We must note that these algorithms
critically fail to satisfy algorithmic sufficiency criteria. which refer
to constraints of two sequences of row and column empirical
distributions. An algorithm designed to achieve this criteria
is recently developed and published in Fushing et al. [23].
This newly developed algorithm would be given after laying
out principle ideas of DM for completeness and convenience
purpose.

2. DATA MECHANICS

Let an observedm×nmatrix be denoted asMa
0 with superscript

a ∈ {AP,TSP}. The two data matrices are square ones, i.e.,
m = n. The one for AP is asymmetric, so it is a bipartite network.
The one for TSP is symmetric, so it is an undirected network.
Further let Um and Vn be the permutation groups on the row
and column axes, respectively. A permutation on row axis in
Um is denoted as σ = (σ (1), σ (2), ...σ (m)), while a member of
Vn is denoted as π = (π(1),π(2), ...π(m)). Data Mechanics for
computing a coupling geometry on Ma

0 consists of a series of
computational algorithms. For detailed technical developments,
readers are referred to original references [22, 23]. Here we give
a briefly review starting from its core device, called Data Cloud
Geometry [20, 21].

2.1. Data Cloud Geometry (DCG) Algorithm
1 [Goal:] The goal of DCG algorithmic computing is to build a
Ultrametric tree based on a distance matrix, which is either a
data matrix by itself as in TSP, or derived from pairwise row
or column vectors of Ma

0 via an empirical measure. Denote a
generic distance matrix as D = [dij].

2 [Temperature regulated similarity matrix:] Covert Da into a
temperature regulated similarity matrix via heat kernel S[T] =
[e−dij/T]. A small T would enlarge the differences among {dij},

while large T would ignore that. Here T is a scaling parameter
for aggregating nodes into core clusters or conglomerate ones.
This scaling device functions like the resolution tuning in
microscope for viewing distinct structures under different
resolutions.

3 [Regulated Markovian random walks:] A similarity matrix
S[T] is further converted into a transition probability matrix
to govern a Markov random walk within a node-space. In
order to effectively and fully explore the whole node-space,
our regulated Markov random walk is specially designed
by removing a node from the node-space whenever it has
accumulated visits up to a pre-selected threshold. As such
a random walk going along the discrete time axis, less and
less nodes remain in its exploration domain. Therefore, our
regulated random walks will not be trapped in a locality of the
node-space.

4 [Node-removal time series and its profile:] From the start of
a regulated random walk, the recurrent time of node removal
is recorded. By plotting this recurrent time series with respect
to the chronic order of moved nodes, a profile of spikes
is typically observed. A spike indicates the fact that such a
random walk enters a new cluster formed with respect to T.
That is, an exploration of a regulated random walk indeed
extracts the most important geometric information: nodes
removed between two spikes are in the same cluster. Thus,
an exploration of a regulated random walk would give rise to
a symmetric binary relational matrix of which node is sharing
with which in a cluster.

5 [Ensemble matrix:] By repeatedly performing such data-driven
explorations via the regulated random walk on a node-space
for many times, we pool all binary relational matrices into an
ensemble matrix E[T], which then becomes the cluster-sharing
probability matrix with respect to the temperature T for all
involving nodes in the node-space.

6 [Determining key temperatures:] The visible characteristic
feature of E[T] is a series of blocks located along the diagonal.
Supposedly each block should be identified as a cluster, and
accordingly corresponds to a non-zero eigenvalue of E[T].
Thus, we plot the eigenvalues of E[T] from largest to smallest
to check whether a temperature T gives rise to a clear pattern
of non-zero vs. zero. If yes, then we decide how many clusters
are realized. By performing this key temperature selection
manually over a range of potential temperatures. Each key
temperature is selected with a distinct number of clusters. So
a series of decreasing numbers is resulted.

7 [Synthesizing an Ultrametric tree:] For a key temperature T
and a decided number of clusters, we can recover the cluster
memberships by applying one of many available clustering
methodologies, such as spectral clustering algorithm and
others, on E[T]. We then synthesize the serial configurations
of cluster memberships into an Ultrametric tree. Denote such
a tree as T a

ree.

The DCG algorithmic computations of Ultrametric tree T a
ree

demonstrates the fact that there exists multiscale structural
information contained within a distance matrix D = [dij]. In
contrast, patterns resulted from popular principle component
analysis (PCA), factor analysis and Multidimensional scaling
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(MDS) method are likely not well tuned with respect to any key
temperature, so potentially “out of focus,” on one hand. On the
other hand, the popular hierarchical clustering (HC) algorithm
based on the same distance matrix D = [dij] would produce a
(HC)tree having too many levels.

For a rectangular data matrix, or a bipartite network, it
involves two node-spaces X and Y , which are respectively
arranged on column and row axes. Hence two DCG Ultrametric
trees can be built upon each of the two axes. These Ultrametric
trees are to be tightly coupled together in order to successfully
reveal the interacting relational patterns between X and Y

embedded with in the data matrix Ma
0. The Data Mechanics

algorithm is developed to achieve this goal.

2.2. Data Mechanics
1 [Goal:] To build two coupled DCG Ultrametric trees in order
to achieve the discovery of interacting relational patterns
between X and Y .

2 [Iterative computing-I:] Begining with an empirical distance
measure, we derive a distance matrix on a node-space, say Y .

Then we compute an initial DCG Ultrametric tree T
a(0)
ree (Y).

Next we construct an distance measure on node-space X

by adapting in the tree T
a(0)
ree (Y). Specially this distance

should accommodate discrepancies from component-wise as
well as multiple cluster-wise aspects. That is, this adaptive
distance measure is constructed in such a fashion that several
clustering compositions on different tree levels are taken into

consideration. Then a DCG Ultrametric tree T
a(1)
ree (X ) on

node-space X is built.
3 [Iterative computing-II:]Then we update the initial distance

measure on Y with respect to tree T
a(1)
ree (X ), and then

build a revised DCG Ultrametric tree T
a(1)
ree (Y). Repeat such

an iterative computing scheme until both DCG trees are

stabilized. Denote both trees as T
a(∗)
ree (X ) and T

a(∗)
ree (Y),

respectively.

4 Let permutation π∗ ∈ Vn be conforming to T
a(∗)
ree (X ) and

permutation σ ∗ ∈ Um to T
a(∗)
ree (Y). The permuted matrix

σ ∗Ma
0π

∗ would reveal multiscale block patterns due to similar
rows and columns are iteratively grouped together. In fact this
permutation pair (σ ∗,π∗) is close to the optimal one which
achieves the minimum total variation on the m × n matrix
lattice with a 4-node-neighborhood system.

5 [Deterministic structures:] The block patterns embedded in

σ ∗Ma
0π

∗, which are jointly framed by T
a(∗)
ree (X ) and T

a(∗)
ree (Y),

is taken as the deterministic structures embedded within the
original bipartite network data represented by matrixMa

0.

The distance adaptation is the key step for building the
coupling relationships between the two DCG Ultrametric trees

T
a(∗)
ree (X ) and T

a(∗)
ree (Y). This is the reason why the interacting

relational patterns between node-spacesX and Y can be revealed
as multiscale block patterns through the permuted matrix
σ ∗Ma

0π
∗. In contrast, such pattern information would be missed

through applications of Singular value decomposition (SVD)
analysis or Support Vector Machines (SVM).

Next consider a mimicking block being framed by one core

cluster of X on the bottom level of T
a(∗)
ree (X ) and one core cluster

ofY on the bottom level of T
a(∗)
ree (Y). It is clear that the block-wise

uniformity is subject to constraints of its two sequences of row
and column empirical distributions on a weighted matrix setting.
Such constraints are equivalent to the two sequences of row and
column sums in a binary setting [34].

2.3. Bipartite Network Mimicking and Its
State Ensemble
1 [Goal:] To discover the inherent randomness within each block

framed by two DCG Ultrametric trees T
a(∗)
ree (X ) and T

a(∗)
ree (Y),

and then build the state ensemble, denoted as �a.
2 [Categorizing Ma

0:] Construct a HC tree and an empirical
distribution based on the pooled set of entries ofMa

0 and fit an
optimal gapped piecewise-linear function onto this empirical
distribution function. Make digital categories according to the
possibly gapped histogram, and then digitally categorize the
entire matrix Ma

0. Denote this matrix of categorical entries as

M̂a
0. The multiscale block patterns in σ ∗M̂a

0π
∗ would become

even more evident because the categorizing procedure is also a
de-noise procedure.

3 [Mimicking a block via binary slicing procedure:] The
uniformity of a block is conceptually captured by constraining
with respect to row and column sequences of empirical
distributions. To embrace such uniformity, we first slice the
entire block into a sequence of binary matrices by thresholding
according to the distinct digital categories. Simulate each slice
of the binary matrix individually, and then add them all up to
form a simulated categorical block.

4 [Mimicking the entire matrix and building �a:] A mimicry of
σ ∗Ma

0π
∗ is obtained by pitching up all simulated categorical

blocks, and then generate a real value matrix via the Uniform
random mechanism pertaining to the gapped histogram,
derived in Step 2, for each entry’s category accordingly and
separately. Compute many copies of such mimicries and
collectively call the collection the state ensemble �a.

The binary slicing algorithm employed in Step 3 for generating
a relative uniform block works reasonably well. Though it does
not completely satisfy constraints of row and column sequences
of empirical distributions, it comes very close. Therefore, the
state ensemble �a constructed here is the legitimate foundation
for scientific inferences. In contrast, any generative algorithms
developed for achieving the constraints of row and column
sequences of sums is indeed lack of capability on matrix
mimicking. A mimicking algorithm for binary directed networks
is proposed and reported in a separate work [35].

3. APPLICATIONS

3.1. Assignment Problem
Consider a problem of assigning 40 tasks to 40 agents with
a simulated cost matrix MAP

0 . The design of this cost matrix
reflects four levels of agent-task interactions ormatching statuses:
Excellent, Good, Average and Bad. That is, marginally there are
four difficulty levels of tasks pertaining to an agent, and four skill
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levels of agents pertaining to a task. Specifically both 40 agents
and 40 tasks are divided into eight core clusters of size five, and
accordingly form eight “Excellent” relational 5× 5 blocks located
along the main diagonal. These eight blocks then couple with
another eight “Easy” relational 5 × 5 blocks into four 10 × 10
blocks along the diagonal. These four blocks further coupled with
another four “Average” relational 10× 10 blocks into two 20× 20
blocks also along the diagonal. The two off-diagonal 20 × 20
blocks are for “Bad” relational task-agent interaction.

By design these four scales, or levels of task-agent interacting
block patterns constitute the deterministic structures embraced
by MAP

0 . That is, such deterministic structures specify marginal
dependence on row and column via their Ultrametric trees,
respectively, and task-agent dyadic dependence via multiscale
blocks. From this dependence perspective an observed data
matrix indeed embraces system characteristics. It also becomes
clear that any statistical modeling upon matrix data, which is
meant to coherently accommodate such complicate dependence
based relational constraints, is a rather difficult undertaking, if
not impossible.

Beyond the necessity of deterministic structural constraints,
the system’s true randomness is designed to equip with block-
by-block uniformity and within-block stochasticity with possible
complicate dependence constructs as well. That is, all costs within
each relational block belonging to anyone of the four scales are
collectively generated via an uniform stochastic mechanism. A
general version can be in a form of discrete coupling measure
mechanism [36], while the simplest version is the independently
identically distributed (i.i.d.) mechanism. The discrete coupling
measure mechanism is supposed to be better embracing general
dependence patterns, but it is yet neither well known, nor well
studied. On the other hand the i.i.d setting obviously captures the
uniformity, but fail to bear with dependence of any realistic form
within a block.

For illustrating purpose and simplicity, here we employ the
block-wise uniformity under i.i.d setting of Poisson random
variables with increasing intensity parameter values λ = 1, 3, 5,
or 7 along the four matching statuses from Excellent to Bad.
A generated cost matrix, say MAP

0 , is given in Figure 1A. It
is evident that each block contains rather distinct degree of
variation due to Poisson randomness. In order to accommodate
such a volatile variation, the following distance is used in Data
Mechanics computations: let x, y ∈ Z40 be two nonnegative
integer vectors,

d2(x, y) =

40∑

i= 1

(xi − yi)
2

(xi + yi)/2
.

With such a distance measure as the initial empirical distance
measure applied upon cost matrix MAP

0 , our Data Mechanics
algorithmic computations consequently and reliably recover
the deterministic structures by design on MAP

0 . And our
block generative mechanism subject to constraints of row and
column sequences of empirical distributions seems capable of
nonparametrically capturing its inherent randomness without
the prior knowledge of the original i.i.d. setting. We reiterate
that there is no intention for recovering Poisson distributions

in this Data Mechanics computational efforts. A state ensemble
�AP mimicking MAP

0 is also generated. Then the corresponding
optimal assignment ensemble B∗

AP is constructed and collectively
synthesized into a matrix ϒ[B∗

AP] via agents’ assignments across
all members of B∗

AP, as shown in Figure 1B.
It is evident that the size of B∗

AP is much smaller than a given
size of state ensemble, i.e., |B∗

AP| << |�AP|. And it is seen that
most of assignments are within the“excellent” scale of task-agent
interaction. Thus, a series of 8 more or less block squares are
clearly observed along the main diagonal of matrix ϒ[B∗

AP]. But
due to large variations inherited from Poisson randomness, some
agents are indeed have larger collections of potential assignments
than others. Since each optimal assignment in ensemble B∗

AP is
equipped with a Boltzmann potential via ϒ[B∗

AP], the maximum
potential assignment is naturally expected to be more systemic
robust than the idiosyncratic optimal assignment based on the
original cost matrix MAP

0 . This is one difference that a system
approach can make.

3.2. Traveling Salesman Problem and
Simulated Annealing
Next we consider another well known discrete combinatorial
optimization problem, traveling salesman problem (TSP). We
consider simulated data via a design employed in the well known
Simulated Annealing paper [16]. The whole set of involving city
consists of 9 separately simulated collections. Each collection
has 45 “cities” uniformly generated from a unit square. These
9 unit squares are arranged in 3 × 3 array on R2. Upon these
405(= 45 × 9) cities, the observed data is the 405 × 405
distance matrix, MTSP

0 . Unlike the above Assignment Problem,
a computed Ultrametric tree is computed for both row and
column axes via Data Mechanics. This ultrametric tree obviously
provides only an unperfect approximation of Euclidean geometry
of 405 points on R2. However, its level of 9 clusters gives rise
to a checkable “Guided Divide-and-Conquer (GDC)” feature:
the maximum distance of all cities to their individual nearest

neighbor cities is much smaller than the minimum distances

among the 9 squares. Even though the naive greedy algorithm
is not valid here, we develop the following divide-and-conquer
scheme to show another significant merit of a system approach.

The significant merit is made possible based on “parallel
computing” advantage offered by the GDC feature via the
algorithm below:

GDC-1 Check the GDC feature on each levels of Ultrametric
DCG-tree, and choose the level having largest number
of clusters, say K. Upon such a coarse scale, we derive an
K×K distance matrix by treating K clusters as K super-
cities, and solve the corresponding optimal solution of
TSP problem.

GDC-2 Along the optimal route through these K super-cities,
find its entering- and leaving-city for each cluster.

GDC-3 Resolve an shortest route starting from the entering-city,
and traveling over all other cities contained within the
cluster and ending at the leaving-city.

GDC-4 Link the K optimal paths into one loop as the candidate
optimal TSP solution.
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FIGURE 1 | Cost matrix (A) and Overall view of the ensemble of 100 optimal assignment solutions (B).

The division found in the GDC-1 step is crucially responsible for
drastic reduction on computing complexity. And in GDC-3 step,
this is exactly a much simpler permutation problem than TSP
because of the tie-down constraint. Typically it can be resolved
by applying Simulated Annealing algorithm. As illustrated, the
Ultrametric tree in our coupling geometry based on MTSP

0 also
satisfies the Guided Divide-and-Conquer feature on its 9-cluster
level.

Again by applying the Data Mechanics, we build a state
ensemble �TSP of the city-system and repeatedly applying the
GDC algorithm to build an ensemble B∗

TSP of optimal TSP
solutions from each member of �TSP. A view of successive cities
connectivity through each optimal TSP solutions in ensemble
B∗
TSP is collectively represented by a matrix ϒ[B∗

TSP], as shown
in Figure 2A with its nine squares along the diagonal. That is,
ϒ[B∗

TSP] reveals an aspect of rather restrictive local-connectivity
in the geometry of B∗

TSP.
One chief merit of ensemble B∗

TSP is that we can choose the
optimal route in B∗

AP in the sense of achieving the minimum
length upon MTSP

0 . In our experiment with 1000 mimicries
per cluster, this optimal route in B∗

AP, by augmenting nine
optimal sub-route from nine clusters, achieves a total length
11.51291 in comparison with the nearly true optimal route
achieving 11.41388. These two versions of optimal route are
indeed hardly distinguishable by raw eye sight, as shown in
Figure 2B for the former version. Here the true optimal route
is found by performing 1000 times of Simulated Annealing
algorithm on each of the nine original clusters found on MTSP

0 .
This comparison reveals a fact that the state ensemble does
provide a viable approximation with a computational edge. The
state ensemble of �TSP is also useful for deriving a new route
when several cities are set to be skipped. An approximately
optimal routes can be easily derived by “bridging-over” those
skipped cities among all members of B∗

TSP. Such a practical value
of state ensemble of TSP is evenmore evident when the collection

of cities is indeed very large. Since the possibility of obtaining the
exact TSP solution becomes much smaller given a fixed budget
of computing efforts. The concept of state ensemble offers other
advantages as follows.

Another natural choice of TSP solution is the maximum
Boltzmann potential route among B∗

TSP based on the potentials
recorded in ϒ[B∗

TSP]. This choice is likely more robust

when distance measurements in matrix MTSP
0 are subject

to measurement errors. The reason is that some averaging
mechanism has been implicitly built into ϒ[B∗

TSP]. One
further merit of state ensemble is going against the folklore
practice in general optimization algorithms, including Simulated
Annealing and Genetical Algorithm. Researchers typically adopt
an common remedial practice by blindly starting an optimization
algorithm from as many different initial locations as possible, and
then choose the best route. Through the sharp contrasting view
of geometry revealed in Figure 2A, we are almost certain that
this practice surely would incur huge waste in computing because
their random trajectories mount to wander too widely and stray
too far away from any reasonable solution routes with large
probabilities.

4. DISCUSSION

We demonstrate a machine learning algorithm, Data Mechanics,
that can compute a geometry coupling deterministic multiscale
blocks patterns with stochastic block-wise uniform randomness
on a data matrix. When a discrete combinatorial optimization
problem is defined upon a data matrix representing a system
at one point in time, such a coupling geometry allows
us to go beyond the classic idiosyncratic optimal solution.
The ensemble of optimal solutions from the ensemble of
system’s microstates make possible for us to look into
robustness/sensitivity issue, and at the same time to propose
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FIGURE 2 | An overall view of the ensemble of 1000 optimal TSP solutions (A) and the optimal TSP solution (B).

robust modifications via the concept of maximum Boltzmann
potential.

The Assignment Problem illustrates the pertinent interacting
patterns on a product node spaces of subjects and tasks,
while the Traveling Salesman Problem brings out the intrinsic
geographic geometry among all “cities.” Such data-driven pattern
information turns out to be essential for resolving discrete
mathematical and computer science problems not only from the
algorithmic computing perspective, but also from the perspective
of having meaningful real world systemic explanations. Indeed
such considerations might be necessary when the system under
study is complex.

From a technical aspect, it is noted that there is still a
large room for improvements upon how to mimic real-value

or categorical matrices. In fact, even for a large binary matrix,
the current available algorithms still fall short of providing
reasonable results. From this aspect, the DataMechanics provides
an imperative advantage by discovering a coupling geometry on
a big matrix, so that the mimicking task can be divided-and-
conquered.
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