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Regularization by the Linear
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Kernels
Sergei V. Pereverzyev* and Pavlo Tkachenko
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The choice of the kernel is known to be a challenging and central problem of kernel

based supervised learning. Recent applications and significant amount of literature have

shown that using multiple kernels (the so-called Multiple Kernel Learning (MKL)) instead

of a single one can enhance the interpretability of the learned function and improve

performances. However, a comparison of existing MKL-algorithms shows that though

there may not be large differences in terms of accuracy, there is difference between

MKL-algorithms in complexity as given by the training time, for example. In this paper

we present a promising approach for training the MKL-machine by the linear functional

strategy, which is either faster or more accurate than previously known ones.

Keywords: linear functional strategy, Multiple Kernel Learning, regularization, supervised learning, kernel learning

1. INTRODUCTION

In this paper we are concerned with the so-called “supervised learning” or “learning from examples”
problem, which refer to the task of predicting an output, say v ∈ V ⊂ R, of a system under study
from a previously unseen input u ∈ U ⊂ R

d on the basis of the set of training examples, that is a
set of input-output pairs zi = (ui, vi), i = 1, 2, . . . ,m, observed in the same system.

A kernel based algorithm consists in learning a function x : U → R in some Reproducing
Kernel Hilbert Space (RKHS) X = XK generated by a suitable Mercer (continuous, symmetric and
positive semidefinite) kernel K : U × U → R that assigns to each input u ∈ U an output x(u).
The prediction error is measured by the value of a chosen loss function l(v, x(u)), say square-loss
l(v, x(u)) = (v− x(u))2.

In the context of kernel based supervised learning a regularization is a compromise between the
attempt to fit given data z =

{

zi = (ui, vi)
}m

i= 1
⊂ U × V and the desire to reduce the complexity

of a data fitter x ∈ XK . For example, a Tikhonov-type kernel based learning algorithm in its rather
general form defines a predictor x(u) = xz(u) = x(K; u) ∈ XK as the minimizer of the sum:

Tα,z(x;K) =
1

m

m
∑

i= 1

l(vi, x(ui))+ α ‖x‖2XK
, (1)

where the complexity is measured by the norm ‖·‖XK
in RKHS generated by a kernel K, and the

above-mentioned compromise is governed by the value of the regularization parameter α.
As it has been mentioned in Michelli and Pontil [1], a challenging and central problem of kernel

based learning is the choice of the kernel K itself. Recent applications (see [2, 3]) have shown that
using multiple kernels instead of a single one can enhance the interpretability of the predictor
x(u) = x(K; u) and improve performances. In such cases, a convenient approach is to consider
that the kernel K is actually a combination of predefined basis kernels:
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K =

p
∑

j= 1

djKj, (2)

where each basis kernel Kj may either use the full set of variables

(u1, u2, . . . , ud) describing the input u = (u1, u2, . . . , ud) ∈ R
d

or subsets of variables stemming from different data sources.
Defining both the minimizer x(K; u) of Tα,z(x;K) and the
weights Equation (2), dj, j = 1, 2, . . . , p, in a single optimization
problem is known as the Multiple Kernel Learning (MKL).

A generalized representer theorem by Schölkopf et al. [4]
tells us that a large class of optimization problems Equation
(1) with RKHS have solutions expressed as kernel expansions
in terms of the training data z. More precisely, for each K =
Kj, j = 1, 2, . . . , p, the minimizer x(Kj; u) belongs to the
finite-dimensional linear subspace spanned by the functions
Kj(u, ui), i = 1, 2, . . . ,m. Therefore, MKL-predictor xz(u) can
be written as:

xz(u) =

m
∑

i= 1

p
∑

j= 1

bi,jKj(ui, u). (3)

There is a significant amount of work in the MKL-literature.
For example, the survey [5] reviews a total of 96 references.
A comparison of existing MKL-algorithms performed in that
survey shows that through there may not be large differences in
terms of accuracy, there is difference betweenMKL-algorithms in
complexity as given by the training time, for example.

Similar accuracies of different MKL-algorithms can be, at least
partially, explained by the fact that all minimizers xj(Kj; ·) of
Equation (1) for K = Kj, j = 1, 2, . . . , p belong to the direct
sum XK+ of RKHS XKj , j = 1, 2, . . . , p, and a classical result
[6] says that XK+ is a RKHS generated by the kernel K+ =
K1 + K2 + . . .+ Kp.

The differences in training time originate from different
optimization algorithms used for learning the weights dj, j =
1, 2, . . . , p. The so-called one-step methods calculate both the
combination weights dj, j = 1, 2, . . . , p and the parameters of
the minimizer x(K; u) in a single run. However, these methods
use optimization approaches, such as semi-definite programming
(SDP) [7], second order conic programming (SOCP) [8], or
quadratically constrained quadratic programming (QCQP) [9],
which have high computational complexity especially for large
number of samples.

Two-step, or wrapper methods address the MKL-problem by
iteratively solving a single learning problem, such as Equation
(1), for a fixed combination of basis kernels, and then update
the kernel weights. Such methods run usually much faster than
the one-step methods and therefore there is a rich variety of
them. Just to mention some of them we refer to Semi-Infinite
Linear Program (SILP) approach [10], SimpleMKL method [11]
performing a reduced gradient descent on the kernel weights,
LevelMKL algorithm [12], HessianMKL [13], replacing the
gradient descent in SimpleMKL by the Newton update, and some
others [1, 14].

The time complexity of these two-step methods depends on
the number of iterations of an algorithm until the stopping

criterion is fulfilled. In this context our idea is to use the so-called
Linear Functional Strategy (LFS) [15], originally proposed for
single-kernel ranking learning, allowing to find the coefficients
of the linear combination in one step by using the given training
set. In this paper we extend this idea to the MKL setting, namely
we analyze the linear functional strategy for combining the
xj(Kj; u) ∈ XKj into a new predictor.

The paper is organized as follows: in the next section we
present the main theoretical results. Then, we compare the
proposed method with two other MKL-learning approaches,
namely SimpleMKL and SpicyMKL [16]. Finally, we discuss some
open questions and further research directions.

2. MAIN RESULTS

If we accept the basic statistical learning assumptions, namely
that the inputs u and the outputs v are assumed to be related
by a conditional probability distribution ρ(v|u) of v given u,
and the input u is also assumed to be random and governed by
an unknown marginal probability ρU on U so that there is an
unknown probability distribution ρ(u, v) = ρU(u)ρ(v|u) on the
sample spaceU×V from which the data forming the training set
are drawn independently, then the “ideal predictor” x† is assumed
to belong to the space X = L2(U, ρU) of square integrable
functions with respect to ρU and can be defined as the element
minimizing the expected prediction risk:

E(f ) =

∫

U×V

(

x(u)− v
)2
dρ(u, v).

Moreover, in such set-up x† can be written explicitly in the form:

x†(u) =

∫

V
vdρ(v|u), u ∈ U.

As one can see from the above formula, x† cannot be used in
practice, since the conditional probability ρ(v|u) is not assumed
to be known.

Our idea is to construct a MKL-predictor Equation (3) in the
form:

xz(u) =

p
∑

j= 1

cjxj(Kj; u), (4)

where cj are the unknown coefficients. It is clear that the best
choice of the coefficient vector c = c̄ should minimize the
distance:

∥

∥

∥

∥

∥

∥

x† −

p
∑

j= 1

cjxj(Kj; u)

∥

∥

∥

∥

∥

∥

2

X

, (5)

and it is easy to see that such c̄ solves the following linear system
of equations:

Gc̄ = g (6)

with the Gram matrix G =
(

〈

xl(Kl; ·), xj(Kj; ·)
〉

L2(U,ρU )

)p

l,j= 1

and the right-hand-side vector g =
(

〈

x†, xl(Kl; ·)
〉

L2(U,ρU )

)p

l= 1
.
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Clearly, the right-hand side g is inaccessible due to the
involvement of the unknown predictor x†. Furthermore, the
components of the matrix G are not accessible, since the measure
ρU is also unknown.

To simplify further discussion, we assume that x† ∈ XK+ ,
which is not a big restriction if at least one of Kj is the so-called
universal kernel [17], and consider the inclusion operator I+ of
XK+ into L2(U, ρU) and the sampling operator Sz : XK+ → R

m

defined by Szx = (x(u1), x(u2), . . . , x(um)) ∈ R
m. Then under

rather general assumptions (see 18) with high probability 1 − η

we have:

∥

∥I∗+I+ − S∗zSz
∥

∥

XK+→XK+
≤ c1m

−1/2 log
1

η
,
∥

∥

∥S∗zSzx
† − S∗zv

∥

∥

∥

XK+

≤ c2m
−1/2 log

1

η
, (7)

where S∗z : R
m → XK+ , I

∗
+ : L2(U, ρU) → XK+ are adjoints of

Sz and I+; v = (v1, v2, . . . , vm) is the vector of the outputs used
for training; c1, c2 are certain multipliers which do not depend on
m, η.

With the use of Equation (7) we can approximate the
components of the vector g and the Gram matrix G as:

〈

x†, xl(Kl; ·)
〉

L2(U,ρU )
=

〈

I+x
†, I+xl(Kl; ·)

〉

L2(U,ρU )
=

〈

I∗+I+x
†, xl(Kl; ·)

〉

XK+

=

〈

S∗zSzx
†, xl(Kl; ·)

〉

XK+

+ O(m−1/2 log
1

η
) =

〈

S∗zv, xl(Kl; ·)
〉

XK+

+ O(m−1/2 log
1

η
) =

〈

v, Szxl(Kl; ·)
〉

Rm + O(m−1/2 log
1

η
)

= m−1
m
∑

i= 1

vixl(Kl; ui)+ O(m−1/2 log
1

η
), (8)

〈

xl(Kl; ·), xj(Kj; ·)
〉

L2(U,ρU )
= m−1

m
∑

i= 1

xl(Kl; ui)xj(Kj; ui)+ O(m−1/2 log
1

η
). (9)

In view of these relations, we state the main result of this section
through the following theorem:

Theorem 1. Let V ⊂ [−b, b], x† ∈ XK+ and Kj(u, u) ≤ c, u ∈
U, j = 1, 2, . . . , p. Consider

G̃ =
1

m

(

m
∑

i= 1

xl(Kl; ui)xj(Kj; ui)

)p

j,l= 1

,

g̃ =
1

m

(

m
∑

i= 1

vixj(Kj; ui)

)p

j= 1

,

and assume that G̃ is invertible. Then for MKL-approximant:

xz(u) =

p
∑

j= 1

c̃jxj(Kj; u), c̃ = (c̃j)
p
j= 1 = G̃−1g̃. (10)

with confidence 1− η it holds:

∥

∥

∥x† − xz

∥

∥

∥

L2(U,ρU )
= min

cj

∥

∥

∥

∥

∥

∥

x† −

p
∑

j= 1

cjxj(Kj; u)

∥

∥

∥

∥

∥

∥

L2(U,ρU )

+ O(m−1/2 log(1/η)),

where a coefficient implicit in O-symbol does not depend on m.

Proof. Formulas (8, 9) tells us that with confidence 1 − η it
holds:

∥

∥G− G̃
∥

∥

Rp→Rp = O(m−1/2 log
1

η
),
∥

∥g − g̃
∥

∥

Rp

= O(m−1/2 log
1

η
). (11)

If G̃−1 exists then in view of (11) it is natural to assume that for
sufficiently largem with confidence 1− η we have:

∥

∥G− G̃
∥

∥

Rp→Rp <
1

∥

∥G̃−1
∥

∥

Rp→Rp

. (12)

This assumption allows the application of the well-known Banach
theorem on inverse operators (see 19, V. 4.5), which tells
that:

∥

∥G−1
∥

∥

Rp→Rp ≤

∥

∥G̃−1
∥

∥

Rp→Rp

1−
∥

∥G̃−1
∥

∥

Rp→Rp

∥

∥G− G̃
∥

∥

Rp→Rp

= O(1).

(13)
Consider the vectors c̄ = G−1g, c̃ = G̃−1g̃. Then from (11) to
(13) it follows that:

‖c̄− c̃‖Rp = O(m−1/2 log
1

η
), (14)

and

∥

∥

∥x† − xz

∥

∥

∥

L2(U,ρU )
≤ min

cj

∥

∥

∥

∥

∥

∥

x† −

p
∑

j= 1

cjxj(Kj; u)

∥

∥

∥

∥

∥

∥

L2(U,ρU )

(15)

+ p ‖c̄− c̃‖Rp max
j

∥

∥xj(Kj; u)
∥

∥

L2(U,ρU )

Moreover, since xj(Kj; ·) is the minimizer of Equation (1) for
K = Kj and l(v, x(u)) = (v− x(u))2, from Proposition 4.1 [20] it
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follows that
∥

∥xj(Kj; ·)
∥

∥

L2(U,ρU )
are uniformly bounded such that

for α from the range of interest, i.e., for α ≥ m−1, we have
∥

∥xj(Kj; ·)
∥

∥

L2(U,ρU )
≤ d

∥

∥x†
∥

∥

L2(U,ρU )
, where d = O

(

log 1
η

)

and

does not depend onm, j.
Then the statement of the theorem follows from (14) to (15).

Remark 1. In Theorem 1 the Gram matrix G̃ is supposed to be
well-conditioned. In principle, one may control this by excluding
those members of the family {xj(Kj; u), j = 1, 2, . . . , p} that are
close to be linear dependent of others. A preconditioning method
for such a control has been discussed, for example, in Chen et al.
[21] (see Remark 3.1 there).

Theorem 1 tells us that the effectively constructed linear
combination of the candidates xj(Kj; ·), j = 1, 2, . . . , p, is almost
as accurate as the best linear aggregator of them.

A simple algorithmic sketch of such almost the best aggregator
is provided below:

Algorithm of the Linear Functional Strategy for MKL

Input: Dataset z = {(ui, vi)}
m
i= 1,

Set of basis kernels K1, K2, . . . ,Kp,
Regularization parameter α

Output: Multiple Kernel Solution xz
1: for j = 1 to p do
2: calculate the kernel matrix Kj =

(Kj(ui, ul))
m
i,l= 1

.

3: calculate xj(Kj; ·) as the minimizer of
Equation (1); xj(Kj; ·) =

∑m
i= 1 ciK(xi, ·)

with c = {ci}
m
i= 1 =

(

αmI + Kj

)−1
v.

4: end for

5: for j = 1 to p do
6: g̃j ← m−1

∑m
i= 1 vixj(Kj; ui)

7: end for

8: for j = 1 to p do
9: for l = 1 to p do

10: G̃j,l ← m−1
∑m

i= 1 xj(Kj; ui)xl(Kl; ui)

11: end for

12: end for

13: c̃ ← G̃−1g̃, where c̃ := (cj)
p
j= 1, g̃ := (g̃j)

p
j= 1,

G̃ := (G̃j,l)
p

j,l= 1
.

14: return xz ←
∑p

j= 1 c̃jxj(Kj; ·)

In the next Section we present some numerical experiments
illustrating the performance of the proposed algorithm. We will
denote the MKL-predictor Equations (4), (10) constructed via
linear functional strategy (LFS) in the above mentioned way by
MKL-LFS.

3. NUMERICAL ILLUSTRATIONS

It is interesting to compare MKL-LFS with the other two
MKL-algorithms, named SimpleMKL and SpicyMKL, that have

been proposed respectively in Rakotomamonjy et al. [11] and
Suzuki and Tomioka [16]. We choose the first one, SimpleMKL,
for comparison, because the experimental results reported in
Rakotomamonjy et al. [11] show that this algorithm converges
rapidly and that its efficiency compares favorably to other MKL
algorithms. It is also important that a SimpleMKL toolbox
based on Matlab code is available at http://www.mloss.org and,
therefore, we are able to put MKL-LFS and SimpleMKL side
by side. Moreover, the second competitor, SpicyMKL, uses
SimpleMKL on the set-up stage.

The second algorithm, SpicyMKL, has been chosen because it
is reported to be the fastest one among all other algorithms, and
in particular, much faster than SimpleMKL.

To perform the comparison of SimpleMKL and SpicyMKL
with MKL-LFS, we use the same experimental set-up as in
Rakotomamonjy et al. [11]. More precisely, the performance
evaluation is made on five data sets from the UC Irvine Machine
Learning Repository: Liver, Wpbc, Ionosphere, Pima, Sonar. For
each data set, the compared algorithms were run 20 times with
train and test sets selected differently for each run by SimpleMKL
toolbox (70% of the data set for training and 30% for testing the
performance).

The SpicyMKL algorithm has been tuned in order to run its
fastest version, namely with the logistic regression loss and elastic
net regularization. The tuning parameters were taken the same as
suggested in Suzuki and Tomioka [16].

The candidate kernels Kj, j = 1, 2, . . . , p are the Gaussian
kernels with 10 different bandwidths, on all variables u =
(u1, u2, . . . , ud) and in each single variable uj, j = 1, 2, . . . , d;
these kernels are accompanied by the polynomial kernels of

TABLE 1 | Average performance measures for SimpleMKL, SpicyMKL, and

MKL-LFS.

Algorithm Accuracy (%) Time (s)

DATA SET LIVER; p = 91

SimpleMKL 65.53 ± 2.2 3.06 ± 0.2

SpicyMKL 60.53 ± 5.9 0.27 ± 0.07

MKL-LFS 69.90 ± 2.8 0.17 ± 0.01

DATA SET PIMA; p = 117

SimpleMKL 76.28 ± 2.1 24.77 ± 3.6

SpicyMKL 67.22 ± 3.9 3.63 ± 0.6

MKL-LFS 75.95 ± 2.4 0.62 ± 0.07

DATA SET IONOSPEHRE; p = 442

SimpleMKL 91.93 ± 2.4 30.05 ± 0.05

SpicyMKL 86.18 ± 3.2 1.66 ± 0.2

MKL-LFS 90.28 ± 2.3 2.53 ± 0.2

DATA SET WPBC; p = 442

SimpleMKL 77.79 ± 1.0 8.08 ± 0.33

SpicyMKL 69.92 ± 5.0 0.39 ± 0.08

MKL-LFS 76.92 ± 3.0 2.35 ± 0.2

DATA SET SONAR; p = 793

SimpleMKL 79.44 ± 4.3 33.41 ± 1.2

SpicyMKL 77.8 ± 4.8 0.69 ± 0.13

MKL-LFS 79.13 ± 5.6 8.05 ± 0.7
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degree 1–3, again on all and on each single variable. So, the
number p of kernel candidates depends on the dimension d of
the input variable u = (u1, u2, . . . , ud). For each of the considered
data sets the value p is indicated in Table 1.

The table also reports the average values of the training time
and the accuracy over 20 runs of the compared algorithms.

Since the above mentioned five data sets are associated with
the classification learning task (i.e., vi = ±1), the algorithms
accuracy is measured by the percentage of the correctly classified
examples (i.e., when sign(x(u)) = sign(v)) from the part of the
data set that has not been used for training.

Table 1 shows that SimpleMKL and MKL-LFS are nearly
identical in the performance accuracy, while SpicyMKL is less
effective against this criterion. If we look at the computation
time reported in Table 1, clearly, on all data sets MKL-LFS is
much fasted than SimpleMKL. On the other hand, SpicyMKL
is faster than two other algorithms on the sets, where the
number of kernels is large, but the size of the training set is
moderate. The same feature was observed in Suzuki and Tomioka
[16]: the algorithm SpicaMKL is efficient when the number of
unknown variables is much larger than the number of samples.
It should be noted that the MKL-LFS does not suffer from this
restriction.

4. DISCUSSION

For the purpose of comparing we follow [11] and put SimpleMKL
and MKL-LFS side by side for a fixed value of the so-called

hyperparameter C = 100, that corresponds to α = 1/2C = 0.005

in Equation (1). Moreover, for SpicyMKL two regularization
parameters need to be selected (in our tests they are fixed as
proposed in [16]). At the same time, we expect that the accuracy
of MKL-LFS may be improved by combining in Equation (4) the
minimizers xj(Kj; ·) of Equation (1) corresponding to different
α = α(Kj), which are properly chosen for each K = Kj, j =
1, 2, . . . , p. We will derive such an algorithm in the near future
end expect that the speed gain observed in Table 1 for MKL-LFS
allows us to implement such a posteriori choice of α effectively in
time.

Moreover, our method, in principle, is not restricted to
Tikhonov-type regularizations only, which is known to be
affected by saturation [22]. One may potentially use any of
the regularization methods, such as Landweber iteration, for
example, for computing the predictors xj(Kj, ·). In view of this,
we plan to develop in the near future the MKL algorithm
based on the so-called general regularization framework for
learning [20].
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