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The multiple fundamental frequency detection problem and the source separation

problem from a single-channel signal containing multiple oscillatory components and

a nonstationary noise are both challenging tasks. To extract the fetal electrocardiogram

(ECG) from a single-leadmaternal abdominal ECG, we need to solve both challenges. We

propose a novel method to extract the fetal ECG from a single-lead maternal abdominal

ECG, without any additional measurement. The algorithm is composed of three

components. First, the maternal and fetal heart rates are estimated by the de-shape short

time Fourier transform (STFT), which is a recently proposed nonlinear time-frequency

analysis technique. The beat tracking technique is the second component which is

applied to accurately obtain the maternal and fetal R peaks. The third component

consists of establishing the maternal and fetal ECG waveforms by the nonlocal median.

The algorithm is tested on two real databases with the annotation provided by experts

(adfecgdb database and CinC2013 database) and a simulated database (fecgsym), and

provides the state-of-the-art results. We conclude that with the proposed algorithm,

the fetal ECG waveform and the fetal heart rate could be accurately obtained from the

single-lead maternal abdominal ECG.

Keywords: de-shape short time Fourier transform, fetal electrocardiogram, single-lead maternal abdominal

electrocardiogram, beat tracking, nonlocal median, instantaneous frequency

1. INTRODUCTION

Electrocardiograph (ECG) is inarguably the most widely applied measurement to non-invasively
study cardiac activity, since its appearance in 1901 [1]. Its waveform provides a significant amount
of clinical information. In addition, the time-varying speed of heart beating, widely understood
as the heart rate variability (HRV), has proven to be a portal to our physiological dynamical status.
While it has been widely applied in different scenarios, its application to the intra-uterus fetus is still
limited, mainly due to the lack of a direct contact measurement of the fetal ECG (fECG) signal. Like
the adult ECG signal processing, there are two main purposes in the fECG signal processing. First,
we want to non-invasively obtain the fetal heart rate, which is intimately related to the fetal distress
[2]. Second, we would like to analyze the fECG morphology for the sake of diagnosing cardiac
problems. However, the fECG morphological analysis is infrequently performed in clinics, except
for the ST analysis (STAN)monitor, which detects and alerts the potential risk for fetal hypoxia (see
e.g., [3] and the citations therein).
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There are two main types of fECG signals. The first kind of
signal is directly recorded through an electrode attached to the
fetal skin. For example, the electrode could be attached to the
scalp while the cervix dilates during delivery, which is considered
invasive. While the recorded signal is of high quality, it can
only be recorded during a specific and short period, and the
instrument is not designed for long-term monitoring purposes.
The infection risk is also not negligible. Therefore, it is not
routinely used in clinics. This is called the direct fECG signal,
which the STAN monitor depends on. The second kind of signal
is recorded from the mother’s abdomen, where the sensor is close
to the fetus so that the fECG signal is strong enough compared
to the maternal ECG. The recorded signal is called the abdominal
ECG (aECG), which is composed of the maternal cardiac activity,
called the maternal abdominal ECG (maECG), and the fetal
cardiac activity, called the indirect fECG signal (or noninvasive
fECG signal). When there is no danger of confusion, we call
the indirect fECG signal simply the fECG signal in this paper.
Excellent summaries of the available measurement techniques
and fECG history (as well as several other topics) are provided
in Jenkins [2] and Sameni and Clifford [4].

The aECG signal is non-invasive, easy-to-obtain, and suitable
for long-time monitoring purposes. However, from the signal
processing prospective, it is challenging to obtain the indirect
fECG signal from the aECG signal. For example, the fECG
signal is always “contaminated” by or mixed with the maECG,
and the signal-to-noise ratio (SNR) is generally low. These
issues challenge the estimation of the fECG and hence the
HRV analysis from the aECG signal. Furthermore, even if the
maECG signal could be successfully decoupled from the fECG
signal and perfectly denoised, interpreting the morphology of the
fECG signal is still challenging. This issue originates from the
individual variation among subjects, e.g., the uterus position and
shape, and the fetal size and presentation. Therefore, even if we
could standardize the lead system on the mother’s abdomen, the
application of the fECG waveform is still limited.

The challenge has attracted considerable attention in recent
decades, and several algorithms have been proposed. As is
summarized in Clifford et al. [5], most methods take the
following four steps to study the aECG: first, pre-process the
aECG; second, estimate the maECG; third, remove the maECG
from the aECG; fourth, post-process the remainder to obtain the
fECG and/or estimate the R peaks and hence the fIHR. In short,
the maECG is removed first so that the fECG could be analyzed
from the remainder. It is possible for the available algorithms
to be classified in different ways based on different criteria.
However, for the work presented in this paper, we summarize
the existing algorithms based on the number of needed leads,
and classify them into two categories—one that depends on more
than one ECG channel and one that depends on only one aECG
signal.

Most algorithms need multiple aECG channels and/or one
maternal thoracic ECG (mtECG) signal, or at least one aECG
channel and one mtECG; including: blind source separation
(BSS) [6–9], semi-BSS like periodic component analysis (πCA),
or πTucker decomposition, which takes the pseudo-periodic
structure into account [10–12], echo state neural network [13],

least mean square (LMS) [14], recursive least square (RLS)
[13], and blind adaptive filtering [15], Kalman filter [16–18],
channel selection approach based on features extracted by
different methods, like discrete wavelet transform [19], time-
adaptive Wiener-filter like filtering [20], principal component
regression [21], phase space embedding [22], to name but a
few. On the other hand, fewer algorithms depend on the single-
lead aECG signal; e.g., template subtraction (TS) [13, 23–26],
and its variation based on singular value decomposition (SVD)
or principal component analysis [27, 28], the time-frequency
analysis, like wavelet transform, pseudo-smooth Wigner-Ville
distribution [29–32] (in practice, three aECG channels are
averaged in [30]), and S-transform [33], sequential total variation
[34], adaptive neuro-fuzzy inference system and extended
Kalman filter [35], particle swarm optimization and extended
Kalman smoother [36] state space reconstruction via lag map
[37, 38], etc. We refer the reader to, e.g., Sameni and Clifford [4]
and Andreotti et al. [39] for a more detailed review.

The above-mentioned algorithms all have their own merits
and disadvantages; e.g., algorithms depending on multiple leads
usually provide a more accurate result, but the dependence
on multiple leads render it less applicable for screening and
monitoring purposes. On the other hand, the algorithms
depending on the single-lead aECG signal usually have lower
accuracy, although they could be applied to a wider range of
situations. To simultaneously fulfill the practical need and the
accuracy, in this paper, we propose a novel algorithm to extract
the fetal instantaneous heart rate (fIHR) and the fECG signal
from the single-lead aECG signal from a different viewpoint. The
proposed algorithm combines a recently developed nonlinear
time-frequency (TF) analysis called the de-shape short time
Fourier transform (de-shape STFT) and the nonlocal median;
the de-shape STFT extracts the maternal instantaneous heart
rate (mIHR) from the single-lead aECG, which provides the
maternal R peak information. The maECG is then extracted
from the aECG by the nonlocal median algorithm. The difference
between the aECG and estimated maECG serves as a rough fECG
estimate. The fIHR could be estimated from the rough estimate
of fECG by the de-shape STFT, and hence the fetal R peaks. The
fECG is then extracted by the nonlocal median algorithm. The
R peak information could be accurately estimated by the beat
tracking algorithm based on the dynamic programming. While
not explicitly used in the algorithm, we mention that our method
has the ability to simultaneously obtain the fIHR and mIHR, and
hence simultaneously the fECG and mECG.

The novelty and the main difference between our proposed
method and the other algorithms based on the single-lead
aECG signal are two folds. First, we use more information
from the single-lead aECG signal. Note that the traditional R
peak detection algorithms mainly count on the morphological
landmarks (fiducial points), such as the maximal points
representing the R peaks, or the maximal “energy” pattern
driven by the QRS complex in the TF domain determined
by, e.g., the wavelet transform. The mIHR and fIHR are then
obtained by interpolating the estimated R peak locations. On
the other hand, the de-shape STFT allows us to directly extract
the mIHR and fIHR from the single-lead aECG signal, and
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the fIHR from the rough fECG estimate. It is then possible
to utilize the mIHR and fIHR to guide an accurate R peak
detection. Unlike the traditional approach, we simultaneously
use the frequency information (the mIHR and fIHR), which
reflects the time-varying and nonlinear beat-to-beat relationship,
and the morphological landmark information. Second, based on
the nonlinear manifold model, we apply the nonlocal median
algorithm [40, 41] to extract the maECG and fECG signals. For
each cardiac activity candidate, we only consider those aECG
segments with a similar pattern, and use the median to estimate
the underlying cardiac activity. Compared with the traditional TS
methods [27], where the mean, or the mean together with the
first few principal components, of consecutive aECG segments
containing cardiac activities is considered to be the template of
the cardiac activity, the nonlocal median algorithm handles the
following commonly encountered issues. The fact that the QRST
complex morphology is time-varying [42] might be overlooked
in the traditional TS procedure; the mean of consecutive aECG
segments containing cardiac activities is well known to be
sensitive to outliers; the TS algorithm is sensitive to the number
of principal components and an empirical optimization is needed
[28]. The nonlocal median algorithm, on the other hand, could
bypass these limitations. In summary, the de-shape STFT is
applied to get a better mIHR and fIHR and hence maternal and
fetal R peaks, and the nonlocal median is applied to get a better
mECG and fECG.

The paper is organized as follows. In Section 2, we discuss
a phenomenological model for the aECG and the mathematical
background for the de-shape STFT and nonlocal median.
In Section 3, the single-lead fECG extraction algorithm is
introduced. The material and results are reported in Section 4.
In Section 5, the paper is summarized by a discussion, including
limitations and future works.

2. MATHEMATICAL BACKGROUND

We discuss the mathematical background in this section. Readers
who are only interested in the application of the theory and
the practical performance of the algorithm can go directly to
Section 3 and Section 4. The aECG signal contains at least
two components of interest: the component associated with
the maternal cardiac activity and the component associated
with the fetal cardiac activity. They have different time-varying
frequencies and different non-sinusoidal oscillations, and hence
a wide spectrum, so the linear signal processing techniques do
not work. While it is challenging enough to separate these two
components, the problem becomesmore challenging considering
the influence of different kinds of noise in the measurement.
Furthermore, due to the physiological nature of the ECG signal,
the non-sinusoidal oscillation is not just impulse-like but also
time-varying (see e.g., the nonlinear relationship between QT
and RR intervals [42]). As a result, it will encounter a time-
varying wave-shape function issue. In this section, we provide a
phenomenological model [43] suitable for the aECG signal and
an algorithm suitable for analyzing this kind of signal. Second,
we provide a low dimensional and nonlinear geometric model to
describe the maternal and fetal cardiac activities. Based on this

nonlinear model, the nonlocal median algorithm is introduced
to reconstruct the time-varying wave-shape function, and hence
extract the mECG and fECG from the aECG.

2.1. Adaptive Non-harmonic Model and
De-Shape STFT
We propose to apply the adaptive non-harmonic model [43] to
model the aECG signal, and apply the de-shape STFT to extract
fECG from the aECG.

2.1.1. Adaptive Non-harmonic Model
We start from introducing the adaptive non-harmonic model.
Take a small enough ǫ > 0, a non-negative sequence c =

{c(ℓ)}∞ℓ= 0, 0 < C < ∞ and N ∈ N. The set of functions
Dc,C,N

ǫ ⊂ C1(R) ∩ L∞(R) consists of functions:

x(t) =
1

2
B0(t)+

∞
∑

ℓ=1

Bℓ(t) cos(2πφℓ(t)) (1)

satisfying the following three conditions. First, the regularity
condition says that Bℓ ∈ C1(R) ∩ L∞(R) for each ℓ =

0, . . .∞ and φℓ ∈ C2(R) for each ℓ = 1, . . .∞. For all
t ∈ R, Bℓ(t) ≥ 0 for all ℓ = 0, 1, 2, . . . ,∞ and φ′

ℓ(t) >

0 for all ℓ = 1, . . . ,∞. Second, the time-varying wave-
shape condition says that for all t ∈ R,

∣

∣φ′
ℓ(t)− ℓφ′

1(t)
∣

∣ ≤

ǫφ′
1(t) for all ℓ = 1, . . . ,∞, Bℓ(t) ≤ c(ℓ)B1(t) for all ℓ =

0, 1, . . . ,N,
∑∞

ℓ=N+1 Bℓ(t) ≤ ǫ

√

1
4B0(t)

2 + 1
2

∑∞
ℓ=1 Bℓ(t)2, and

∑∞
ℓ=1 ℓBℓ(t) ≤ C

√

1
4B0(t)

2 + 1
2

∑∞
ℓ=1 Bℓ(t)2. Third, the slowly

varying condition says that for all t ∈ R, |B′ℓ(t)| ≤

ǫc(ℓ)φ′
1(t), |φ′′

ℓ (t)| ≤ ǫℓφ′
1(t), for each ℓ = 0, . . .∞, and

‖φ′
1(t)‖L∞ < ∞.
We call a function x in Dc,C,N

ǫ an adaptive non-harmonic
(ANH) function, where the adjective non-harmonic indicates
the possibly non-sinusoidal nature of the oscillation, and the
adjective adaptive indicates the time-varying nature of the
frequency, amplitude, and the non-sinusoidal oscillatory pattern.
We call B1(t) cos(2πφ1(t)) the fundamental component, B1(t)
the fundamental amplitude, φ1 the phase function, and φ′

1 the
fundamental instantaneous frequency (IF) of the signal x. By a
slight abuse of terminology, for ℓ > 1, we call Bℓ cos(2πφℓ(t)) the
ℓ-th multiple of the fundamental component, which we simply
call the ℓ-th multiple if no danger of confusion is possible, Bℓ(t)
the amplitude of the ℓ-th multiple, and φ′

ℓ the IF of the ℓ-th
multiple, although φℓ might not be an exact integral multiple
of φ1. Thus, we could view an ANH function as an oscillatory
component with the time-varying amplitude, frequency, and
wave-shape function.

A special case deserves a discussion. When βℓ := Bℓ(t)
B1(t)

are

constants for all ℓ = 0, 1, . . . ,∞ and φ′
ℓ(t) = ℓφ′

1(t) + αℓ

for some αℓ ∈ R for all ℓ = 1, . . . ,∞, (1) is reduced to the
x(t) = B1(t)s(φ1(t)), where s is a 1-periodic function with the
Fourier coefficients determined by βℓ and αℓ. In this case, clearly
the phase function φ1 is linearly related to the deformation of
the non-sinusoidal oscillation, and we say that the wave-shape
function is not time-varying. On the contrary, for an ANH
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function, the phase function φ1 might be nonlinearly related to
the deformation of the non-sinusoidal oscillation. If we further
assume that ǫ = 0, then we obtain the harmonic function.

To motivate this model, take the relationship between the RR
and QT intervals of an ECG signal as an example. The nonlinear
relationship between the QT interval and the RR interval has
been well studied—e.g., a fully nonlinear depiction [42]. Thus,
the QT interval corresponding to the ventricular response is not
linearly related to the instantaneous heart rate, and we need a
time-varying wave-shape function to model this physiological
fact. For more detailed discussion, we refer the reader to Lin et
al. [43].

In general, a signal might be composed of more than one
oscillatory component; e.g., the aECG signal is composed of the
fECG and maECG. Take a small enough 0 < ǫ < 1 and
d > 0. We consider the set Dǫ,d ⊂ C1(R) ∩ L∞(R) consisting
of superposition of ANH functions; that is,

f (t) =

K
∑

k= 1

fk(t), fk(t) =

∞
∑

ℓ= 0

Bk,ℓ(t) cos(2πφk,ℓ(t)) ∈ D
ck ,Ck,Nk
ǫ

(2)
for some finite K ∈ N, for some 0 ≤ ǫk ≤ ǫ, non-negative
sequence ck = {ck(ℓ)}

∞
ℓ= 0, 0 < Ck < ∞ and Nk ∈ N, where the

fundamental IF’s of all ANH functions satisfy the following two
conditions ifK > 1. First, the frequency separation condition says
that φ′

k,1
(t) − φ′

k− 1,1
(t) ≥ d for k = 2, . . . ,K. Second, the non-

multiple condition says that for each k = 2, . . . ,K, φ′
k,1
(t)/φ′

ℓ,1(t)
is not an integer for ℓ = 1, . . . , k − 1. We say that a signal inDǫ,d

satisfies the ANH model.

2.1.2. Model the Maternal Abdominal ECG Signal by

the ANH Model
We nowmodel a recorded aECG signal, x(t), by the ANHmodel,
whichs satisfies:

x(t) = xm(t)+ xf (t)+ n(t) , (3)

where xm(t) ∈ D
cm ,Cm,Nm
ǫ for some cm,Cm,Nm is the maECG

signal, xf (t) ∈ D
cf ,Cf ,Nf
ǫ for some cf ,Cf ,Nf is the fECG signal,

and n(t) is noise. Here, the fundamental IF of xm (respectively xf )
is the mIHR (respectively fIHR) of maECG (respectively fECG).
n(t) includes different kinds of noise, ranging from the baseline
wandering, power line interference, maternal electromyographic
signal, to uterine contraction, so in general the noise is not
stationary. We consider either smooth varying non-stationary
noise model with a smooth and slowly varying covariance
function for n(t) to capture the possible heteroscedasticity and
autocorrelation inside the noise [44, Equation 6], or a more
general piecewise locally stationary model [45, Definition 1] to
further capture the abrupt change inside the noise structure.

2.1.3. De-Shape STFT
There are several challenges in analyzing the aECG signal,
including the time-varying amplitude, time-varying frequency,
and the time-varying non-sinusoidal oscillation. To deal with this
kind of signal, under the ANH model (3), we could apply the

currently proposed algorithm, the de-shape STFT. The de-shape
STFT is a nonlinear TF analysis technique combining the well-
known STFT and the cepstrum technique commonly applied in
the signal processing field, and it is composed of the following
four steps. First, with a chosen window function h ∈ S , where S
is the Schwartz space, we have the STFT of x(t):

V(h)
x (t, ξ ) =

∫

x(τ )h(τ − t)e−i2πξ (τ−t) dτ , (4)

where t ∈ R indicates time and ξ ∈ R indicates frequency.
Second, evaluate the short time cepstral transform (STCT) in order
to obtain the fundamental period and its multiples:

C
(h,γ)
x (t, q) :=

∫

|V(h)
x (t, ξ )|γe−i2πqξ dξ , (5)

where γ > 0 is sufficiently small and q ∈ R is called the quefrency
(its unit is second or any feasible unit in the time domain). Third,
we remove all the multiples by evaluating the de-shape STFT,
which is defined on R × R

+ as:

W
(h,γ)
x (t, ξ ) := V(h)

x (t, ξ )C
(h,γ)
x (t, 1/ξ ), (6)

where ξ > 0 is interpreted as frequency. We refer the reader to
Lin et al. [43, Section 3] for a discussion of the well-definedness
of the de-shape STFT.

The main motivation of the de-shape STFT is to decouple the
IF and the non-sinusoidal wave-shape function. Due to the non-
sinusoidal oscillation, at each time t, in the STFT we could see
not only the fundamental frequency but also its multiples. The
existence of multiples, when there is more than one component,
interfere with each other and mask the true information we
are interested in. Therefore, the STCT is applied to obtain
the fundamental period information of the signal. Note that
the fundamental period and its multiples, after the inversion,
become the fundamental frequency and its divisions, and hence,

the common ingredient between C
(h,γ)
x (t, 1/ξ ) and V

(h)
x (t, ξ )

is the fundamental frequency. Thus, after a direct element-
wise product, only the fundamental frequency is preserved in

W
(h,γ)
x (t, ξ ). This approach could be viewed as a “nonlinear

masking/filtering” technique, which uses the “dual information”
of the spectrum (the cepstrum), as a mask to remove the
irrelevant information (the wave-shape function) and keep the
relevant information (the IF).

It has been shown in Lin et al. [43, Theorem 3.6] that
under the ANH model (2), the de-shape STFT could extract
the fundamental IF of each component, where all multiple
IF’s are suppressed. In other words, the time-varying wave-
shape information of maECG and fECG is decoupled from the
IF and AM of maECG and fECG in the TF representation.
The implementation of the de-shape STFT in the discrete-time
domain will be discussed in Section 3.

2.2. Nonlocal Median
Nonlocal median algorithm [40, 41] is a variation of the nonlocal
mean algorithm in the image processing, mainly for the purpose
of image denoising [46, 47]. After obtaining the fundamental IF
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of each component, we apply the nonlocal median algorithm to
recover the time-varying wave-shape function. In this study, it
allows us to extract the maECG and fECG from the aECG signal.

Without loss of generality, we assume that maECG and fECG
are both with the Rs pattern in the aECG so that we could
discuss the R peaks. The discussion holds for the S peaks if
either maECG or fECG has the rS pattern. Take the maECG
into account. Suppose the i-th cardiac activity, which could be
normal or ectopic, without any other pathological arrhythmia, in

the maECG starts at s
(i)
m ∈ R and ends at e

(i)
m ∈ R, where smeans

“start” and emeans “end,” and suppose the i-th R peak is located

at r
(i)
m ∈ (s

(i)
m , e

(i)
m ). By the physiological property of the cardiac

activity, we know that e
(i)
m < s

(i+1)
m for all i, where [e

(i)
m , s

(i+1)
m ]

are periods where the maECG is isoelectric (known as the TP
interval). Thus, the ANH function xm in Equation (3) could be
written as:

xm(t) =
∑

i∈Z

xm(t)χ[s
(i)
m ,e

(i)
m ]
(t), (7)

where χ
[s
(i)
m ,e

(i)
m ]

is an indicator function defined on [s
(i)
m , e

(i)
m ].

Note that due to the time-varying nature of the non-sinusoidal
oscillation, the amplitude of the fundamental component and
each multiple in the ANH function is nonlinearly related to the
waveform morphology. Consider:

lm := max
i
{r(i)m − s(i)m } > 0 and rm := max

i
{e(i)m − r(i)m } > 0, (8)

where l means “left” and r means “right.” Denote the i-th

abdominal cardiac activity mixture as x
(i)
m : [0, lm + rm] → R,

where:

x(i)m (t) =











x(r
(i)
m + t − lm) when t ∈ [lm − (r

(i)
m − s

(i)
m ), lm

+ (e
(i)
m − r

(i)
m )]

0 otherwise

(9)

Clearly, x
(i)
m is the i-th aECG segment containing the i-thmaternal

cardiac activities, denoted as x
(i)
m,m : [0, lm + rm] → R, where:

x(i)m,m(t) =











xm(r
(i)
m + t − lm) when t ∈ [lm − (r

(i)
m − s

(i)
m ),

lm + (e
(i)
m − r

(i)
m )]

0 otherwise

(10)
and several fetal heart beats, since normally the fetal heart rate is
higher. Denote:

Xm := {x(i)m }i∈N ⊂ C1([0, lm + rm]) (11)

to be collection of aECG segments from x(t) and

Xm,m := {x(i)m,m}i∈N ⊂ C1([0, lm + rm]) (12)

to be collection of maECG segments from the underlying
maternal cardiac activities. We thus view Xm as a “noisy”
collection of maECG segments Xm,m, and the mission is to

recover x
(i)
m,m from x

(i)
m for all i.

It is well known that electrophysiologically, the fECG and
maECG are similar, except the heart rate [4], so the above
discussion could be carried over to the fECG, xf . We could thus

define s
(i)
f
, e

(i)
f

∈ R and r
(i)
f

∈ (s
(i)
f
, e

(i)
f
) for the i-th cardiac activity

in the fECG, where the i-th cardiac activity starts at s
(i)
f

and ends

at e
(i)
f

∈ R, and the i-th R peak is located at r
(i)
f
. Again, we

know that e
(i)
f

< s
(i+ 1)
f

for all i, where [e
(i)
f
, s
(i+ 1)
f

] are periods

where the fECG is isoelectric. Similarly, we could define Xf =

{x
(i)
f
}k∈N ⊂ C1([0, lf +rf ]) andXf ,f = {x

(i)
f ,f
}i∈N ⊂ C1([0, lf +rf ]),

where lf := maxi{r
(i)
f

− s
(i)
f
} > 0, rf := maxi{e

(i)
f

− r
(i)
f
} > 0,

x
(i)
f
(t) = x(r

(i)
f
+ t− lf ) when t ∈ [lf − (r

(i)
f
− s

(i)
f
), lf + (e

(i)
f
− r

(i)
f
)]

and x
(i)
f
(t) = 0 otherwise, and x

(i)
f ,f
(t) = xf (r

(i)
f

+ t − lf ) when

t ∈ [lf − (r
(i)
f

− s
(i)
f
), lf + (e

(i)
f

− r
(i)
f
)] and x

(i)
f ,f
(t) = 0 otherwise.

Physiologically, it is well known that while the underlying
mechanism leading to the cardiac activities might be complicated
[39], phenomenologically they are similar from beat to beat.
There are two dominant parameters that quantify the similarity
between cardiac activities—the scaling and the dilation, where
the scaling reflects the respiratory activity and the dilation reflects
the nonlinear relationship between the RR interval and QT
interval. Also, the waveform representing the cardiac activity
should be bounded and with a bounded differentiation. This fact
could be summarized in the following:

Assumption 2.1. Xm,m is sampled from a random vector
Vm, where Vm has the range supported on a bounded set
inside C1([0, lm + rm]) with a low dimensional structure.
To simplify the qualitative description “low dimensional
structure,” we assume a low dimensional smooth and
compact manifold to quantify the range of Vm.

Due to the fact that the maECG amplitude and frequency are
both time-varying, under this model, two consecutive maternal
cardiac activities might be far away in the manifold.

Similarly, we have the same assumption for the fetal cardiac
activity; that is, the set Xf ,f is sampled from a random vector Vf ,

with the range supported on a bounded set inside C1([0, lf + rf ])
with a low dimensional structure. A critical assumption we need
to apply the nonlocal median algorithm is the following

Assumption 2.2. Vm and Vf are independent.

This assumption essentially says that for different x(i), while the
maternal cardiac activities are similar, the fetal cardiac activities
sit in random positions.

With the above setup and assumptions, we could now

introduce the nonlocal median algorithm. For each x
(i)
m ∈ Xm,

find its K nearest neighbors with the L2 norm, where K ∈ N is

chosen by the user. Precisely, by ranking di,j := ‖x
(i)
m − x

(j)
m ‖L2 in

the ascending order, we have the set N
(i)
m containing the first K

neighbors of x
(i)
m in Xm with the smallest L2 norm. Note that we

could also consider the correlation or other more sophisticated
metrics, but to keep the discussion simple, we focus on the L2
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norm in this paper. Then, the i-th maternal cardiac activity is
estimated by:

x̃(i)m,m(t) := median{x
(j)
m (t)| x

(j)
m ∈ N

(i)
m } (13)

for all t ∈ [0, lm + rm]. Based on Assumption 2.1, the neighbors
we find have similar maternal cardiac activities while they are
not neighbors in the temporal axis. On the other hand, it is well
known that the median is robust to outliers. Note that under
Assumption 2.2, for different x(i), the fetal cardiac activities sit in
different positions in the support of x(i), and note that the ECG
morphology associated with the ventricular activity is spiky, so
the fetal cardiac activity occupies a small portion of the interval
[0, lm + rm]. As a result, the median value will faithfully reflect
the maternal cardiac activity at t, and hence the recovery of the
maECG.

The above procedure could be applied to extract the fECG
signal from the aECG signal, if we reverse the role of the maECG
and fECG, and consider Xf from Xf ,f .

3. METHODOLOGY

In this section, we introduce our single-lead fECG
extraction algorithm, and provide the statistics used for the
evaluation.

3.1. Single-Channel Fetal ECG Extraction
Algorithm
We now introduce our algorithm to extract the fECG signal from
the aECG signal. The algorithm is summarized in the flowchart
in Figure 1. We detail the algorithm step by step below. The
algorithm is implemented in Matlab, and the code can be found
in https://sites.google.com/site/hautiengwu/.

The continuous aECG signal x(t) is sampled with the sampling
rate fs ∈ N during the interval from the 0-th second to the T-th
second, where T > 0. Denote:

x0 := [x(0), x(1/fs), . . . , x(⌊T/fs⌋)]
T ∈ R

N , (14)

where N = ⌊T/fs⌋ + 1, to be the collected aECG signal. Thus,

x0 = xm + xf + n , (15)

where xm, xf , and n are the discretized maECG signal, fECG
signal and noise.

3.1.1. Step 0: Preprocessing
The first step of the proposed algorithm, as in most other
algorithms, is signal preprocessing. For all of the analyses,
we apply the following steps. First, we remove the baseline
wandering by the median filter with the window size 100 ms. If
needed, the power-line interference is suppressed by a zero-phase
notch filter at 50 or 60 Hz. To preserve the non-stationary nature
of the signal, we do not apply any other linear filtering technique
to the signal. If the signal is sampled at a frequency lower than
1000 Hz, to enhance the R peak alignment needed in the nonlocal
median step, the signal is upsampled to 1000 Hz [48]. To simplify

the notation, we use the same notation fs and N to denote the
resulting sampling rate and the resulting number of sampling
points, and denote the resulting signal as

x ∈ R
N . (16)

3.1.2. Step 1: Run De-Shape STFT on x to Estimate

the Maternal Instantaneous Heart Rate
We apply the de-shape STFT algorithm to extract the IF
information of the maternal and fetal cardiac activities from the
preprocessed aECG signal x. We fix the frequency resolution of

the STFT by
fs
2M , where M ∈ N is the number of discretization

points in the frequency axis, and the quefrency resolution by
M
fsM′ , where M

′ ∈ N is the number of discretization points in the

quefrency axis. The numerical implementation of the de-shape
STFT algorithm is summarized in Algorithm 1 (Supplementary
Material). Denote Wx ∈ C

N,M to be the de-shape STFT of x.
The temporal complexity of evaluating the de-shape STFT is
O(N(M logM +M′ logM′)).

It has been systematically reported in Lin et al. [43] that
the fundamental frequencies of the maECG and fECG are
represented as dominant curves in the TFR. This fact allows us to
extract the salient fundamental IF information of each oscillatory
component [43]. The feature inside TFR determined by the de-
shape STFT is suitable for several IF tracking methods, including
dynamic programming (DP), dynamic Bayesian networks,
adaptive filters, and others. However, to simplify the discussion,
we apply the simple DP curve extraction algorithm to track
the peaks and estimate the IFs based on the assumption that
the maECG is stronger than the fECG. We perform DP on
Wx to extract the most dominant component. The extracted
curve, when adjusted with the frequency resolution, denoted as
ηm ∈ R

N , represents the mIHR. Precisely, suppose at time
n, the most dominant component is located at Wx(n, jn), then

ηm(n) =
jnfs
2M . The detailed DP algorithm is shown in Algorithm

2 (Supplementary Material)1.

3.1.3. Step 2: Obtain the Maternal R Peaks by Beat

Tracking and Dynamic Programming
Note that although theoretically the IHR is related to the R
peak to R peak interval (RRI) time series, in practice, there is
a discrepancy due to the time-varying nature of the wave-shape
function. To obtain the exact R peak location, we apply the beat
tracking technique, which has been well studied in music signal
analysis2.

We define the estimated maternal RRI as δm(n) : = 1/ηm(n),
which is the inverse of the mIHR. Our goal is to find an strictly

increasing sequence Bm = {bi}
Mm
i= 1 of lengthMm, whereMm ∈ N

1Optional step: simultaneously estimate the fIHR) For every time n, multiply

W(n, j) by θm, where j ∈ {ηm(n) − N1, ηm(n) − N1 + 1, . . . , ηm(n) + N1 −

1, ηm(n) + N1} and N1 ∈ N and 0 ≤ θm < 1 are chosen by the user, to suppress

the maternal cardiac activity. This procedure makes the fECG be the predominant

component in Wx. Then, performing the curve extraction on Wx again to extract

the fIHR, denoted as ηf ∈ R
N . In practice, we could choose N1 so that

N1 fs
2M = 0.1

Hz and θm = 10−4. This optional step is not carried out in this paper.
2The beat tracking problem in music refers to finding the instants of beats in music

by analyzing the accents of music signals (e.g., drum hits).
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FIGURE 1 | The flow chart of the proposed algorithm for extracting fECG from the signal lead aECG signal. The shown aECG signal is of 6 s long.

and 0 < bi ≤ N so that bi is the index of i-th maternal R peak
position and (bi − bi− 1)/fs is close to the estimated maternal
RRI at time bi/fs, δm(bi). We call Bm the maternal beat sequence.
This problem is understood as the beat tracking problem, which

is formulated as Ellis [49]:

B̃m = argmax
Bm

[

Mm
∑

i= 1

x(bi)+ λBT

Mm
∑

i= 2

P(bi, bi− 1)
]

, (17)
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where P(bi, bi− 1) := −
(

log2

(

(bi−bi− 1)/fs
δm(bi)

))2
and λBT ≥ 0 is

the penalty term determined by the user. Notice that Ellis [49]
assumes δm(n) (the inter-beat interval in the music clip; in our
case, the IHR) to be constant, which is clearly not suitable for
an oscillatory signal with time-varying frequency. To address this
issue, we modify the original formulation in Ellis [49] by allowing
a time-varying function 1/ηm(n). Note that the first term in the
objective function in Equation (17) reaches a maximum when bi
matches the R-peak location, and the second term penalizes the
discrepancy between the estimated IHR and the IHR determined
by the true RR interval, with the maximal value zero. The

resulting beat sequence B̃m = {b̃i}
Mm
i= 1 provides an estimate of

R peaks location; that is, b̃i is an estimate of the i-th R peak
location. In our experiments, setting λBT between 20 and 50 turns
out to yield a suitable tradeoff, and the result is not sensitive to
λBT. While the number of possible beat sequences in x grows
exponentially as N grows, the optimization problem (17) can be
solved effectively by the DP.

The main idea leading to the DP is that the objective function
in Equation (17) is an accumulation in time. Thus, we could
divide the problem into a set of optimization subproblems, each
of which optimizes the objective function up to a prescribed time
step, and the solution is the combination of the optima at every
time step. This is implemented by introducing two additional
vectors C ∈ R

N and D ∈ R
N , where C(n) records the maximum

of the objective function accumulated from 1 to n, where n =

1, . . . ,N, and D(n) records the estimated beat position yielding
this maximum at the time step of n − 1. D allows us to trace
previous beat positions, and this step is called the backtracking.
The whole procedure is sketched in Algorithm 2 (Supplementary
Material). More details of this method can be found in Ellis [49],
and the source code is available in http://labrosa.ee.columbia.
edu/projects/beattrack/.

To avoid the possible cardiac axis deviation problem, we

correct the polarity of the ECG signal. Denote B̃−m = {b̃−i }
M−

m
i= 1 to

be the estimated locations of R peaks of −x by the beat tracking
algorithm, where M−

m is the number of estimated R peaks. The
polarity of the ECG signal is determined to be positive if the

median value of {|x(b̃i)|}
Mm
i= 1 is greater than the median value of

{|x(b̃−i )|}
M−

m
i= 1; otherwise the polarity is negative. If the polarity of

x is negative, multiply x by −1. To simplify the notation, we use
the same notation x to denote the polarity-corrected ECG signal
and B̃m to denote B̃−m.

3.1.4. Step 3: Estimate the maECG Morphology by

the Nonlocal Median
With the maternal R peak location, we could extract xm from the
aECG signal. Based on the physiological knowledge, we choose

large enough Lm,Rm ∈ N so that [ b̃i − Lm
fs

, b̃i +Rm
fs

] is long enough

to cover the i-th maternal cardiac activity for i = 1, . . . ,Mm.
Define the aECG segments x(i) ∈ R

Lm +Rm + 1, i = 1, . . . ,Mm,
as:

x(i) :=
[

x(b̃i − Lm) . . . x(b̃i) . . . x(b̃i + Rm)
]t
, (18)

where the superscript tmeans taking the transpose. Note that the
i-th R peak is located on the (Lm + 1)-th entry of all x(i). Denote

N
(i)
m = {x(i1), . . . , x(iKm )} to be the first Km nearest neighbors of

x(i) with respect to the L2 norm, where Km ∈ N is chosen by the
user. The i-th maternal cardiac activity is thus estimated by:

x̃(i)m (l) := median{x(ij)(l)}
Km
j= 1, (19)

where l = 1, . . . , Lm + Rm + 1.
Before estimating the maECG from {x̃

(i)
m }

Mm
i= 1, we need to take

care of the possible overlapping issue. If x̃
(i)
m overlaps with its

neighboring segments x̃
(i+ 1)
m , we need to taper the overlapping

regions of both segments. See Algorithm 3 (Supplementary
Material) for the implementation of the tapering step. To simplify

the notation, we use the same notation x̃
(i)
m to denote the tapered

segment. Finally, the maECG is estimated by x̃m ∈ R
N , where:

x̃m(b̂i + j) =

Mm
∑

i= 1

x̃(i)m (j+ Lm + 1) (20)

for all i = 1, . . . ,Mm and j = −Lm, . . . ,Rm, and zero otherwise.
In practice, the result is stable whenKm ranges from 20 to 60. The
algorithm is shown in Algorithm 3 (Supplementary Material).

3.1.5. Step 4: Get the fIHR and Obtain the fECG Signal
Denote

x̃f ,0 := x− x̃m (21)

to be the rough fECG estimate. The fIHR, fetal R peaks, and
fECG could be obtained by repeating Step 1-3 on the rough fECG
estimate. Precisely, the fIHR could be obtained by running the
de-shape STFT on x̃f ,0 and another DP curve extraction onWx̃f ,0

in Step 1. Before running the DP curve extraction, we could
re-weight Wx̃f ,0 around the band associated with the mIHR ηm

by a small constant θf > 0 to reduce to the possible impact
of the remaining maECG component. Precisely, set Wx̃f ,0 (n, jn)

to be θfWx̃f ,0 (n, jn), where n = 1, . . . ,N and jn ∈ {ηm(n) −

N1, ηm(n) − N1 + 1, . . . , ηm(n) + N1 − 1, ηm(n) + N1}. In
practice, choosing θf = 1/10 could slightly improve the result.
Although the improvement is marginal, we recommend to take it
into account.

Denote ηf ∈ R
N to be the final estimated fIHR. The

fetal R peak location could be further refined by running the
beat tracking technique by the DP and the polarity correction.
Denote the final estimated fetal R peaks by a strictly increasing
sequence B̃f . The fECG signal could be reconstructed by the
nonlocal median algorithm, with Lf ,Rf ∈ N chosen based on
the physiological fact and Kf ∈ N nearest neighbors chosen by

the user. Denote the final reconstructed fECG as x̃f ∈ R
N . In

practice, we found that the result is stable when Kf ranges from
20 to 60.

3.1.6. Final Step
The final step takes the physiological constraint into account. If
the average ηf determined from the rough fECG signal is smaller
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than ηm, the final reconstructed maECG and fECG could be
exchanged to respect the physiological constraint that normally
the mIHR is slower than fIHR. When both the fetus and mother
are healthy, this step could help when the fECG is stronger than
the maECG, a case which is not commonly seen.

3.2. Evaluation Statistics
The R peak detection result is evaluated by beat-to-beat
comparisons between the detected beats and the annotation
provided by the experts. We follow the suggestion [50] and
choose a matching window of 50 ms. Denote TP, FP, TN, and FN
to be true positive, false positive, true negative, and false negative.
We report the sensitivity (SE),

SE = TP/(TP + FN), (22)

the positive predictive value (PPV),

PPV = TP/(TP + FP), (23)

and the F1 score, which is the harmonic mean of PPV and SE,

F1 = 2TP/(2TP + FN + FP). (24)

In addition, the mean absolute error (MAE) of the estimated
R peak locations is also reported. To make the evaluation
independent of the detection accuracy, we follow the suggestion
in Andreotti et al. [39] to calculate the MAE only on TP
annotations.

To evaluate the fECG morphology recovery, we consider the
correlation between the estimated fECG signal and the true fECG
signal, over the period ranging from 80 ms before the annotated
R peak and 120 ms after the annotated R peak. We again evaluate
the correlation only on TP annotations.

4. MATERIAL AND RESULT

In this section we show the performance of the proposed
algorithm. For a fair comparison, the parameters for the
algorithm are set to be the same for all signals throughout the
paper, unless otherwise stated. The window h is chosen to be the
Hamming window of length 5 s, the up-sampling rate α = 10,
the frequency resolution in STFT and de-shape STFT is set to 0.02
Hz, the quefrency resolution is set to 10ms, γ = 0.3 for the STCT,
and υ = 10−4% of the root mean square energy of the signal
under analysis for the de-shape STFT. In the beat tracking, λBT is
set to 50. In the nonlocal median, we choose Km = Kf = 40.

4.1. Material
We evaluate the proposed algorithm on three databases of aECG
signals. The first database is the simulated fECG signal database
(fecgsym) [39]. The publicly available simulator generates
simultaneously the maECG and fECG signals in 34 channels,
which model a number of realistic non-stationary physiological
phenomena that affect the morphology and dynamics of the
aECG, including different kinds of noise. A total of seven
physiological events are introduced in the simulator:

• (Baseline) the baseline abdominal mixture with a constant
fIHR and mIHR without noise or events;

• (Case 0) baseline signal contaminated by noise;
• (Case 1) Case 0 is complicated by the fetal movement noise;
• (Case 2) the fIHR and mIHR are time-varying with noise;
• (Case 3) Case 2 is complicated by the uterine contraction

noise;
• (Case 4) Case 2 is complicated by ectopic beats in both fECG

and maECG;
• (Case 5) twin pregnancy contaminated by noise.

The simulator also generates five different levels of additive noise,
ranging from 0, 3, 6, 9, to 12 dB. Each physiological event
and noise level were simulated independently five rounds to
mimic the realistic situation. A generated benchmark is available
in https://physionet.org/physiobank/database/fecgsyndb/ [51],
which contains ten subjects, five rounds, and five SNR’s for each
case. Each simulation is of 5-min long and is discretized at the
sampling rate 250 Hz. For each subject, case, round, and SNR,
there are onemaECG, fECG, two noise realizations, and one extra
uterine contraction noise in Case 3 in the database. We sum all
these time series together to get the simulated signal for analysis.
We test our algorithm on all Cases, all levels of noise, and all five
simulations, except Case 5. We consider the twin pregnancy case
as an independent project, and the result will be reported in the
other work.

The second database is the Abdominal and Direct Fetal
Electrocardiogram Database (adfecgdb), where the aECG signals
with the annotation provided by experts is publicly available
https://www.physionet.org/physiobank/database/adfecgdb/ [38,
51]. The reference fetal beat annotations are determined
from the direct fECG recorded from the fetal scalp lead.
There are five pregnant women between 38 and 40 weeks
of pregnancy in this database. Each has 4 aECG channels
and one direct fECG signal recorded from the Komporel
system (ITAM Institute, Zabrze, Poland http://www.itam.zabrze.
pl/developments-english-version-233/665-komporel). The four
abdominal leads are placed around the navel, a reference lead
is placed above the pubic symphysis, and a common mode
reference electrode with active-ground signal is placed on the left
leg. The signal is of 5 min long and is sampled at 1000 Hz with 16
bit resolution.

The third database is the 2013 PhysioNet/Computing in
Cardiology Challenge (https://physionet.org/challenge/2013/#
data-sets), abbreviated as CinC2013, which is composed of three
sets, learning (training) set A, open test set B, and hidden
test set C, where there are 447 number of records in total.
Each recording comes with four aECG channels of length 1-
min long sampled at 1,000 Hz at 16-bit resolution. To the
best of our knowledge, the lead placement is not available in
public. There are 75 recorded segments in set A. Since only
set A comes with the fetal beat annotations, we thus used set
A for an assessment of our proposed algorithm. Among 447
records, 25 records are from the adfecgdb [52], so there might
be overlapping between the CinC2013 and adfecgdb databases.
More details about these two databases can be found on the
website.
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4.2. Results of the First Database:
Simulation Fecgsym Database
In this simulated database, since we a priori know that the noise
could be as big as 0 dB, we choose a longer window of length 10
s. The other parameters are fixed for all the cases.

Following the recommended report method in Andreotti et
al. [39], Tables 1, 2 give an overview of the performance of the
proposed algorithm. In addition to reporting the 1 min result, we
also report the whole 5 min result. For the 1 min (respectively
5 min) result, for each subject, noise level, case, and round, we
find the channel and the 1-min subset out of the 5-min signal
(respectively the channel and the whole 5-min signal) that gives
the highest F1. For each noise level and case, the median and
interquartile (IQR) of those highest F1 values, and the associated
MAE of all subjects and rounds are shown in Table 1. To better
understand the performance of the proposed algorithm, the
whole gross statistics with the tenth highest F1 is reported in
Table 2.

From these two tables, we could see that as SNR decreases,
the performance decreases, which is consistent with the results of
different TS techniques reported in Andreotti et al. [39, Figure
4]. It is also clear that the overall accuracy of the proposed
algorithm is higher than those of TS techniques and adaptive
filtering techniques reported in Andreotti et al. [39, Table 3]. We

also notice that the IQR in our report is higher than those of
different TS techniques reported in Andreotti et al. [39, Table
3]. This is caused by the fact that we do not use the ground
truth maternal R peak information but estimate it from the
aECG signal3. We should notice that when SNR decreases, the
lost information could not be recovered by only one channel
signal. Clearly, in Case 3 where the signal is contaminated by the
uterine contraction noise, the results on the 5-min long signal
is much lower. This comes from the fact that the energy of the
uterine contraction is much larger than both the maECG and
fECG, and almost no information could be extracted when the
uterine contraction happens. Note that except Case 4, the MAE
outperforms the reported results in Andreotti et al. [39, Table 3].
This indicates the strength of beat tracking and nonlocal median.
In Case 4, although the MAE is larger than the other cases, it
is still on the same level of that reported in Andreotti et al.
[39, Table 3].

On the other hand, we see that as compared with the adfecgdb
database, the MAE is smaller in this simulation database. Note
that this smaller MAE is reasonable. In the real databases, we

3Note that the purpose of Andreotti et al. [39] is comparing different methods,

ranging from different BSS algorithms to single-lead TS algorithms, instead of

evaluating simply a specific TS algorithm, but in this paper we only focus on

evaluating our proposed algorithm.

TABLE 1 | Results of fetal R peaks estimation—median F1 and MAE and their IQRs for different cases and noise levels among 10 subjects and 5 rounds

from the simulated database fecgsym.

Case 0 Case 1 Case 2 Case 3 Case 4

F1 (%)

12 dB 1 min 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

5 min 99.93 (0.38) 99.92 (0.21) 100 (0.87) 72.96 (10.32) 99.85 (0.47)

9 dB 1 min 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

5 min 99.9 (0.61) 99.91 (0.29) 99.93 (0.27) 73.6 (9.44) 99.58 (3.75)

6 dB 1 min 100 (0.73) 100 (0.88) 100 (0.67) 100 (0.43) 100 (7.83)

5 min 99.89 (1.38) 99.82 (11.01) 99.91 (9.56) 73.72 (13.58) 99.31 (22.52)

3 dB 1 min 100 (71.53) 100 (0.88) 100 (69.14) 100 (6.11) 100 (19.82)

5 min 99.12 (76.49) 98.72 (6.17) 99.44 (78.63) 72.11 (28.53) 98.6 (45.75)

0 dB 1 min 95.63 (56.14) 97.99 (19.31) 97.9 (64.75) 99.61 (37) 93.76 (64.04)

5 min 88.24 (74.69) 83.46 (38.1) 81.17 (73.67) 64.25 (38.3) 85.84 (74.18)

MAE (ms)

12 dB 1 min 0.85 (1.54) 0.5 (0.77) 0.68 (1.2) 0.53 (0.52) 2.15 (1.46)

5 min 0.82 (1.82) 0.58 (0.78) 0.63 (1.59) 3.07 (1.54) 2.32 (1.63)

9 dB 1 min 1.01 (2.83) 0.75 (0.65) 0.7 (0.49) 0.51 (0.58) 3.21 (1.77)

5 min 0.96 (2.96) 0.71 (0.7) 0.77 (0.37) 3.15 (1.62) 3.2 (1.77)

6 dB 1 min 1.21 (3.04) 0.92 (2.7) 1.06 (2.16) 0.85 (1.01) 4.03 (5.56)

5 min 1.15 (3.17) 0.93 (2.48) 1 (3.11) 3.43 (1.99) 4.01 (5.52)

3 dB 1 min 2.23 (10.64) 1.43 (3.18) 1.41 (4.15) 1.11 (6.67) 5.13 (11.54)

5 min 1.9 (12.18) 1.76 (4.16) 1.38 (4.13) 3.77 (8.61) 5.07 (11.89)

0 dB 1 min 5.65 (8.06) 4.36 (8.4) 3.5 (13.46) 2.13 (11.66) 6.6 (13.47)

5 min 5.27 (7.85) 5.59 (9.47) 4.56 (10.93) 5.53 (11.47) 6.26 (13.34)

The 1 min result is reported in the following way. For each subject, noise level, case, and round, we take the channel and the 1-min subset out of the 5-min signal that leads to the

highest F1 to report the result. Then, for each noise level and each case, the median and IQR of all subjects and rounds are shown as the final result, as is suggested in Andreotti et al.

[39]. For the 5 min result, for each subject, noise level, case, and round, we take the channel that leads to the highest F1, and then for each noise level and each case, we report the

median and IQR of all subjects and rounds.
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TABLE 2 | Results of fetal R peaks estimation for the tenth best channel—median F1 and MAE and their IQRs for different cases and noise levels among

10 subjects and 5 rounds from the simulated database fecgsym.

Case 0 Case 1 Case 2 Case 3 Case 4

F1 (%)

12 dB 1 min 100 (0) 100 (0) 100 (0.36) 100 (0.4) 100 (1.74)

5 min 99.82 (9.28) 99.88 (0.35) 99.39 (14.41) 64.17 (19.45) 99.02 (16.1)

9 dB 1 min 100 (1.25) 100 (74.63) 100 (4.62) 100 (2.08) 99.2 (3.13)

5 min 99.48 (5.48) 99.53 (78.69) 99.48 (27.05) 64.61 (17.64) 97.71 (10.31)

6 dB 1 min 100 (10.37) 100 (1.64) 99.23 (64.58) 99.6 (14.44) 98.94 (12.78)

5 min 96.02 (43.21) 98.06 (6.49) 94.48 (74.91) 60.57 (21.72) 93.71 (28.81)

3 dB 1 min 97.89 (59.78) 99.18 (9.54) 99.8 (80.33) 99.7 (66.55) 94.79 (29.41)

5 min 87.54 (74.19) 95.27 (21.42) 78.4 (90.88) 60.31 (47.41) 87.48 (48.56)

0 dB 1 min 51.55 (71.07) 80.53 (80.79) 46.34 (67.88) 83.73 (68.65) 83.69 (38.35)

5 min 43.7 (69.08) 49.29 (90.35) 32.07 (49.34) 45.65 (41.85) 66.02 (57.91)

MAE (ms)

12 dB 1 min 1.09 (1.8) 0.84 (1.23) 1.29 (2.66) 1.03 (2.26) 3.87 (2.97)

5 min 1.16 (2.14) 0.75 (1.07) 1.17 (2.61) 4.41 (3.72) 3.86 (2.94)

9 dB 1 min 1.36 (5.53) 0.72 (1.5) 1.37 (5.99) 1.51 (2.31) 4.74 (3.76)

5 min 1.34 (6.02) 0.64 (1.71) 1.48 (5.58) 5.18 (3.51) 4.74 (4.15)

6 dB 1 min 2.87 (7.36) 1.36 (3.68) 4.4 (13.72) 1.36 (5.73) 6.75 (5.03)

5 min 3.17 (7.5) 2.52 (4.39) 4.33 (17.84) 5.47 (5.92) 6.74 (6.27)

3 dB 1 min 4.44 (11.48) 2.98 (4.53) 2.18 (13.44) 2.09 (19.65) 8.13 (8.8)

5 min 6 (11.63) 3.54 (5.34) 3.14 (14.91) 5.49 (15.82) 8.8 (8.56)

0 dB 1 min 11.46 (12.85) 6.18 (16.45) 14.41 (12.98) 8.01 (19.81) 9.06 (9.89)

5 min 13.29 (13.67) 6.22 (17.23) 15.57 (13.19) 12.11 (16.83) 9.04 (10.82)

The 1 min result is reported in the following way. For each subject, noise level, case, and round, we take the channel and the 1-min subset out of the 5-min signal that leads to the tenth

highest F1 to report the result. Then, for each noise level and each case, the median and IQR of all subjects and rounds are shown as the final result, as is suggested in Andreotti et al.

[39]. For the 5min result, for each subject, noise level, case, and round, we take the channel that leads to the tenth highest F1, and then for each noise level and each case, we report

the median and IQR of all subjects and rounds.

use the R peaks of the direct fECG as our ground truth, but the
direct fECG has a different projection direction compared with
the fECG recorded from the maternal abdomen. This difference
leads to the slightly larger MAE in the adfecgdb database.

For the computational time over the 5-min signal, it takes
about 12 s to finish a round in MacBook Pro (Retina, 15-inch,
Mid 2014) with Processor 2.5 GHz Intel Core i7, Memory 16 GB
1,600 MHz DDR3, OS X Yosemite (Version 10.10.5), and Matlab
R2014b without implementing the parallel computation.

The fECG morphology estimation results are shown in
Table 3 and Figure 2. The high correlation between the estimated
fECG and the ground truth indicates that the nonlocal median
algorithm leads to an estimated fECG morphology with low
distortion. Note that in this evaluation, we only evaluate the
correlation on the correctly detected fECG beats (true positive
fECG beats). This suggests that if we could accurately estimate
the fetal R peaks (the higher F1 score), then we could have an
accurate fECG reconstruction.

To look deeper into the algorithm and its performance, we
take subject 1, round 1, case 4, and channel 21 into account, and
show the result without noise in Figure 2. In this example, over
the 5-min, the F1 is 1 and the MAE is 0.78 ms. In addition to
the de-shape STFT of the maECG signal, the estimated R peaks
by the beat tracking, the decomposed maternal ECG, the rough
fECG estimate xf ,0 and its TFR, and the final fECG estimate are

shown. We see that by the de-shape STFT, the information of
non-sinusoidal oscillation; that is, the time-varying wave-shape
function, and the IHR information are decoupled, and only the
IHR information is shown in the TF representation. Note that
we could see both the mIHR and fIHR in the TFR, and as
expected, fIHR has a weaker intensity than mIHR, meaning that
the energy of fECG is smaller. The intensity level could be seen
in the colorbar. For a comparison, we could see that in the
STFT of aECG, both the mIHR and fIHR could be seen, while
the fIHR is much weaker compared with that in the de-shape
STFT. Furthermore, the multiples of the maternal fundamental
component could mask both the mIHR and fIHR information
and even interfere with each other. To show how the fECG could
be reconstructed, the estimated fECG and the ground truth fECG
signal are put side by side for a comparison. On the other hand,
we could see that the nonlocal nature of the nonlocal median
algorithm does help us to recover ECG morphology, even the
ectopic beats, and the median and IQR of the correlation of all
TP beats are 0.997 and 0.004.

To show the result when noise exists, we take another signal,
subject 3, round 1, case 4, and channel 23 into account, and with
SNR 6dB, as an example, and show the result in Figure 3. We
choose this signal as an example since it has a smaller fECG
amplitude. As can be clearly seen, even when the noise is 6
dB, the de-shape STFT still gives a reasonable TFR with the
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TABLE 3 | Results of fECG waveform estimation over the 5-min signal—median correlation and its IQR for different cases and noise levels among 10

subjects and 5 rounds from the simulated database fecgsym.

Case 0 Case 1 Case 2 Case 3 Case 4

CORRELATION

12 dB highest 0.962 (0.067) 0.977 (0.044) 0.984 (0.052) 0.983 (0.017) 0.97 (0.032)

10th highest 0.953 (0.097) 0.96 (0.047) 0.959 (0.062) 0.973 (0.052) 0.963 (0.108)

9 dB highest 0.962 (0.076) 0.968 (0.05) 0.977 (0.021) 0.978 (0.034) 0.962 (0.039)

10th highest 0.93 (0.222) 0.943 (0.753) 0.953 (0.12) 0.97 (0.075) 0.942 (0.164)

6 dB highest 0.954 (0.076) 0.958 (0.083) 0.949 (0.069) 0.977 (0.053) 0.957 (0.141)

10th highest 0.912 (0.256) 0.919 (0.108) 0.897 (0.374) 0.948 (0.118) 0.926 (0.191)

3 dB highest 0.919 (0.48) 0.94 (0.103) 0.939 (0.276) 0.965 (0.133) 0.95 (0.216)

10th highest 0.859 (0.348) 0.925 (0.29) 0.923 (0.428) 0.945 (0.47) 0.863 (0.37)

0 dB highest 0.892 (0.404) 0.894 (0.289) 0.9 (0.371) 0.942 (0.215) 0.875 (0.386)

10th highest 0.656 (0.378) 0.846 (0.518) 0.768 (0.3) 0.886 (0.345) 0.778 (0.375)

For each subject, noise level, case, and round, we take the channel that leads to the highest F1 (and the thenth highest F1 ), and then for each noise level and each case, we report the

median and IQR of all subjects and rounds.

IHR information, although there are several “speckles” in the
background, which come from the noise. In this example, since
fECG is smaller compared with the maECG, the fIHR could not
be clearly seen in the de-shape STFT of the aECG. However,
it could be seen clearly in the de-shape STFT of the rough
fECG estimate. The intensity level could be seen in the colorbar.
Also note that since the fECG is smaller and the noise is big,
and no denoise technique is combined into the algorithm, the
de-shape STFT of the rough fECG estimate has a “scattered”
background. For the morphology reconstruction, due to the
large noise, the nonlocal median failed to recover two ectopic
beats, as are indicated in the red arrows. Note that although
the nonlocal nature of the nonlocal median has the power to
handle ectopic beats, it is not designed for this purpose. To have
a better recovery of the ectopic beats, more features specifically
designed for ectopic beats should be taken into account. In this
case, the F1 is 0.996, the MAE is 3.476 ms, and the median and
IQR of correlations of all TP beats are 0.968 and 0.034. We could
see that the nonlocal median provides a convincing potential
in recovering the fECG morphology, specially when noise
exists.

We should mention that although the fecgsyn database
provides a universal comparison platform with many interesting
examples, the model at this stage is still oversimplified, and that
might explain the high accuracy of our proposed algorithm.
Many other limitations have been discussed in Andreotti et
al. [39]. A better “ground truth” should be considered for
evaluation purposes. For example, a well established sheep
model [53] could provide a gold standard test bed for the
algorithm.

4.3. Results of the Second Database:
adfecgdb Database
Table 4 shows the F1, MAE, PPV and SE of all channels and
all subjects. Notice that in the r10 record, the direct fECG
measurement was lost between 187 and 191 s and between 203
and 211 s. Therefore, these two segments were neglected in
the evaluation. To avoid the boundary effect introduced by the

window function, the first and last 0.5 s in every recording are
also not evaluated. In terms of F1, compared with the state-of-art
result reported in the field, Castillo et al. [31, Table 5], our result
is better overall. Even if compared with the methods based on
ICA [54, Table 1], our result is in general compatible. The MAE,
which is less reported in the literature, is as small as 10 ms, which
indicates the potential to carry out the fetal HRV analysis from
the single-lead aECG. However, this topic is out of the scope of
this paper.

To further explore the proposed algorithm, in Figure 4, we
show the result of STFT and de-shape STFT of the third channel
of the case r07, denoted as x11. We also show the result of STFT
and de-shape STFT of the rough fECG estimate from x11, denoted
as x11,f 0 (the signal used in the flowchart in Figure 1 is the
channel 1 of the case r01). Clearly, in the STFT of x11, we not
only see the fundamental IF of maECG around 1.2 Hz, but also
its multiples, due to the nature of non-sinusoidal oscillation of
the ECG signal. We could also see a relatively vague component
around 2 Hz in STFT, which turns out to be the fIHR. On the
other hand, after the de-shape process, in the de-shape STFT of
x11, only two dominant curves associated with the mIHR and
fIHR are left.

An example of the estimated fECG waveform, x11,f 0, is shown
in Figure 5. The R peaks are clearly well reconstructed and
match those in the direct fECG signal recorded from the fetal
scalp. By comparing the rough fECG estimate and the final
fECG estimate, we could see the effectiveness of nonlocal median.
Furthermore, some additional fiducial points could be observed,
as shown in Figure 6, which is the zoomed in of Figure 5.
Although not all critical fiducial points could be extracted, this
result indicates the potential for studying the morphology of
fECG, particularly taking into account the fact that we only
count on a single-lead aECG signal. We mention that, in
some cases, the P wave and T wave could be reconstructed.
However, in general, they are buried in the noise. Therefore,
we do not consider it to be an achievement of the proposed
algorithm. More work is needed to recover these morphological
features.
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FIGURE 2 | The result of subject 1, round 1, case 4, and channel 21 without noise from the simulated database (fecgsym). In the top subplot, all relevant

signals are shown together for a visual comparison. The clean aECG signal is shown in black (shifted up by 8 units) with the detected R peaks in round red circles on

the top row; the clean maECG is shown in light gray (shifted up by 5 units) superimposed with the estimated maECG signal in blue on the second row; the rough fetal

ECG is shown in dark gray (shifted up by 2.5 units) with the detected R peaks in round red circles on the third row; the clean fECG is shown in light gray superimposed

with the estimated fECG signal in red on the bottom row. In the middle subplot, the de-shape STFT of the maECG is shown on the left and the de-shape STFT of the

rough fECG is shown on the right. In the bottom subplot, the STFT of the maECG is shown on the left and the STFT of the rough fECG is shown on the right. Note that

the discrepancy between the clean maECG and the estimated maECG comes from the median filter, which in general is needed to remove the baseline wandering.
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FIGURE 3 | The result of subject 3, round 1, case 4, and channel 23 with the SNR 6dB from the simulated database (fecgsym). In the top subplot, all

relevant signals are shown together for a visual comparison. The clean maECG signal is shown in black (shifted up by 8 units) with the detected R peaks in round red

circles on the top row; the clean maECG is shown in light gray superimposed with the estimated maECG signal in blue (shifted up by 5 units) on the second row; the

rough fetal ECG is shown in dark gray (shifted up by 2.5 units) with the detected R peaks in round red circles on the third row; the clean fECG is shown in light gray

superimposed with the estimated fECG signal in red on the bottom row. The two red arrows indicate two ectopic beats that are not recovered by the nonlocal median

algorithm. In the middle subplot, the de-shape STFT of the maECG is shown on the left and the de-shape STFT of the rough fECG is shown on the right. In the

bottom subplot, the STFT of the maECG is shown on the left and the STFT of the rough fECG is shown on the right. Note that the discrepancy between the clean

maECG and the estimated maECG comes from the median filter, which in general is needed to remove the baseline wandering.
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TABLE 4 | F1 score, MAE, PPV, and SE of all channels and all subjects over

the whole 5 min signals in the adfecgdb database.

Subject Channel F1 (%) MAE (ms) PPV (%) SE (%)

r01 1 99.53 1.5227 99.38 99.69

2 75.21 4.4004 72.33 78.32

3 87.35 4.4046 86.41 88.30

4 78.83 4.9358 77.53 80.19

r04 1 82.15 9.0635 81.63 82.67

2 98.81 7.6447 98.73 98.89

3 97.54 7.2622 97.46 97.62

4 98.41 6.9065 98.26 98.57

r07 1 84.81 10.5816 84.20 85.42

2 98.48 8.3182 98.25 98.72

3 99.44 7.6329 99.36 99.52

4 99.28 7.3048 99.20 99.36

r08 1 97.85 2.0219 97.26 98.46

2 84.44 3.7191 82.69 86.27

3 71.42 5.3655 69.49 73.46

4 69.69 5.2397 71.92 67.59

r10 1 98.65 2.8119 98.26 99.04

2 98.49 3.5919 98.26 98.73

3 78.52 8.5177 76.28 80.89

4 95.25 4.1681 94.79 95.70

For each subject, the best result among 4 channels is marked in the boldface.

4.4. Results of the Third Database:
CinC2013 Database
In this database, since the signal is only 1-min long, we take
Km = Kf = 10 to enhance the local nature of the nonlocal
median algorithm. The result is slightly worse if Km = Kf = 40.

We now follow the suggested way in Andreotti et al. [39]
to report the summary statistics, including the mean and the
median of all subjects—for each subject, we choose the channel
with the highest F1 score as the channel for this subject. We then
report the gross statistics of the obtained F1, PPV, SE, and MAE
over 75 recorded segments. Over 75 recorded segments, themean
and standard deviation of the F1 score (respectively, PPV and SE)
are 86.37 and 22.9% (respectively 85.77 and 23.42%, and 87.5 and
22.05%), and the mean and standard deviation of MAE are 6.12
ms and 5.56 ms4. Our F1 result is compatible with the reported
results in Ghaffari et al. [19, Table 2], [34, Table 5] [8, Section
3.2, where a detected R-peak was labeled as TP if within 100 ms
of a reference R-peak], [52, Table 3], while the MAE is better.
On the other hand, over 75 recorded segments, the median and
IQR of the F1 score (respectively PPV and SE) are 98.28 and 14%
(respectively 98.25 and 14.72%, and 98.59%, and 22.05%), and the
median and IQR of MAE are 3.81 ms and 5.74 ms.

4If we follow Behar et al. [52] and remove 7 cases, including a33, a38, a47, a52,

a54, a71, and a74, then the mean and standard deviation of F1 score (respectively

PPV and SE) are 88.73 and 20.96% (respectively 88.39 and 21.08%, and 89.12% and

20.77%), and the mean and standard deviation of MAE over 75 recorded segments

are 5.88 ms and 5.14 ms.

The discrepancy between the mean and median indicates the
existence of outliers in the database. We thus took a closer look
into the database. We found that the fECG signal could be hardly
visualized in 10 recorded segments in the database, including
a27, a32, a43, a50, a59, a60, a63, a64, a68, and a75, even when
the signal is clean, and these segments are considered difficult
for our algorithm. If we remove these segments, the mean and
standard deviation of the F1 score (respectively PPV and SE)
become 94.54% and 11.63% (respectively 93.87% and 13.05%,
and 95.78%, and 8.79%), and the mean and standard deviation
of MAE become 4.35 msec and 3.04 msec; the median and IQR
of the F1 score (respectively PPV and SE) become 98.84% and
4.91% (respectively 98.53% and 6%, and 99.21%, and 4.16%), and
the mean and standard deviation of MAE become 3.35 ms and
4.33 ms.

In order to examine this problem in more detail, we show
one example, a59, which is considered difficult for our algorithm,
in Figure 7. In Figure 7, the second channel of a59 is shown as
an illustration. It is clear that the signal is quite clean, and it
is not easy to identify if the fECG exists, even with the help of
the provided annotation. Not surprisingly, the fetal R peaks are
all detected incorrectly. By a direct visual inspection, we could
see that those locations that are erratically identified as fetal R
peaks are only the residue coming from the incomplete maECG
removal. This fact could also be observed in the de-shape STFT
of the rough fECG estimate—the only “dominant component”
in the de-shape STFT coincides with that of the aECG, as is
indicated by the red arrow. We mention that the other three
channels all share the same result—the fECG is too small to even
be sensed from this relatively clean aECG signal. However, if we
take the vectocardiogram (VCG) notion into account, then it is
possible to enhance the result. Precisely, by linearly combining
different channels, we have a chance to obtain a stronger fECG
signal relative to the maECG signal, and hence the result could
be better. This idea is shown in Figure 8, where the difference
between Channel 2 and Channel 3 is analyzed. Clearly, we could
see that now the fetal R peaks could be almost perfectly recovered.
In this specific case, the F1 is 99.3% and the MAE is 0.993 ms. We
mention that if we do the same linear combination trick between
channel 1 and channel 3 (respectively channel 2 and channel 3,
channel 2 and channel 3, channel 1 and channel 2, channel 1
and channel 2, channel 2 and channel 3, channel 2 and channel
3, channel 2 and channel 3, and channel 1 and channel 2), the
F1’s of a27 (respectively a32, a43, a50, a60, a63, a64, a68, and a75)
become 79.3% (respectively 100, 100, 97.9, 84.7, 91, 98.5, 91.4,
and 86.2%). This is a naive way to handle the problem and it
works well in this preliminary analysis. However, we need at least
two channels. Since we focus on the single-lead aECG analysis,
this direction will be explored in the other work. We mention
that this idea is also considered in Andreotti et al. [18].

Finally, note that the suggested way to report the summary
statistics in Andreotti et al. [39] assumes that all leads are
available, which is not true in the case of a single-lead recording.
Therefore, while the reported summary statistics looks good,
we should interpret the reported summary statistics carefully.
To better understand the performance of the proposed method,
Tables 5, 6 show the F1, MAE, PPV, and SE of all channels
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FIGURE 4 | Upper left and upper right: the STFT and de-shape STFT of the third channel of the case r07 from the adfecgdb database; bottom left and bottom

right: the STFT and de-shape STFT of the rough fECG estimate. The red arrow indicates the fIHR, and the blue arrow indicates the mIHR.

and all recorded segments. It is obvious that the algorithm does
not always perform well. The performance is strictly connected
to an important issue regarding single-lead fECG extraction—
the electrode placement on the abdomen. Based on the ECG
theory, a change of electrode positioning leads to a change of
the recorded fECG, and hence the performance of the algorithm.
Thus, the reported summary statistics could be interpreted in
the following way—if the electrode is placed in the correct
position, the proposed algorithm could provide an accurate fECG
information. Since the database is not collected specifically for the
single-lead aECG analysis problem and the electrode placement
information is not available, a well-designed study is needed to
further confirm the performance of the proposed algorithm.

5. DISCUSSION AND FUTURE WORK

In this section, we discuss different findings of the proposed
algorithm and areas for future work.

5.1. General Technical Difficulty
In the analysis of multi-component oscillatory signals, there
are two chicken-and-egg problems of fundamental importance.
The first is the detection problem; that is, how to determine

the number of components and how to find the fundamental
frequency or equivalently the fundamental period of each
component? The second one is the separation problem; that is,
how to separate all components from a recorded signal? These
two problems coexist in many kinds of data, ranging from

physiological signals to polyphonic music signals, where each
component in the mixture contains information different from
others.

Previously, these two problems are usually discussed

separately, probably because only discussing one of them is
challenging enough. However, recently some research works
start to consider these two problems as a single one by viewing
the separation problem as an extension of the detection problem.
For example, we could simultaneously estimate the IF of each

component, and then extract the wave-shape function as well as
each component.

The methods could be classified into two classes,
iterative or joint. The iterative approach extracts the most
prominent IF/component in each iteration, until no additional
IF/component can be found. Although iterative models
are usually computationally inexpensive, they have a main
drawback: iterative models tend to accumulate errors at
each iteration step if the feature representation is not robust
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FIGURE 5 | The aECG signal of the third channel of the case r07 from the adfecgdb database is plotted in black on the top row. The rough fECG signal

estimate (shifted down by 90 units) is plotted in gray on the second row. The final fECG estimation (shifted down by 120 units) is plotted in red superimposed on the

rough fECG signal (shifted down by 120 units) plotted in gray for the comparison purpose on the third row. The direct fECG recorded from the fetal scalp (shifted down

by 240 units) is shown in blue on the bottom row.

FIGURE 6 | The small segment fECG estimation is plotted in red with the rough fECG signal plotted in gray for the comparison purpose. The data is the

third channel of the case r07 from the adfecgdb database.

enough. To handle this limitation, we could consider the “joint”
approach. Vast majority of recent approaches in multi-pitch
estimation and source separation in music now falls within
the “joint” category [55], and more and more studies on
source separation started to consider pitch information to
improve the source separation algorithms [56, 57]. Note that
although it is intuitive to utilize the IF information to handle
the detection and separation problem, this kind of approach
has been less studied until recent years, probably because the
task of finding IF is by no means easy, especially when there
are multiple components. Compared with the iterative method,
the joint methods lead to more accurate estimates but with
more involved mathematical tool and increased computational
cost.

Our proposed algorithm falls in the “iterative” category—
estimate and remove the maternal component first, and get the
fIHR and fECG from the left. We do have the accumulated
error issue when we estimate the fECG, and we count on the
median filter to alleviate this error. One natural question is to
ask if it is possible to generate a single-lead fECG algorithm
in the joint category, in order to alleviate this problem, and
the answer is positive. Precisely, the mIHR and fIHR could be
estimated simultaneously by the de-shape STFT, as is shown in
Figure 2. The estimated R peaks of each component could then
be applied to estimate the maECG and fECG by the nonlocal
median algorithm. In brief, we could consider an algorithm
falling in the joint category, which is composed of two steps: (1)
jointly estimate the mIHR and the fIHR by the de-shape STFT;
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FIGURE 7 | The result of channel 2 of a59 in the CinC2013 database. In the top subplot, all relevant signals are shown together for a visual comparison. The

clean maECG signal is shown in black (shifted up by 1600 units) with the detected maternal R peaks in round red circles and the annotated fetal R peaks in blue

diamonds on the top row; the estimated maECG signal is shown in blue (shifted up by 600 units) on the second row; the rough fetal ECG is shown in dark gray

(shifted up by 300 units) with the detected R peaks in red upper triangles and the annotated R peaks in blue diamonds on the third row; the fECG estimation is shown

in red on the bottom row. It is clear that the fetal R peaks are all detected incorrectly. In the bottom subplot, the de-shape STFT of the maECG is shown on the left and

the de-shape STFT of the rough fECG is shown on the right. The red arrow indicated the “dominant curve” in the de-shape STFT, which comes from the incomplete

removal of the maECG signal.

that is, carry out the optional step in Step 1 of the algorithm
shown in Section 3.1.2; (2) jointly approximate the maECG
and fECG signal by the nonlocal mean. However, a preliminary
study showed that without a more sophisticated curve extraction
algorithm, this approach does not outperform what we propose
in the current paper. Its potential will be explored in the future
work.

5.2. Several Theoretical and Algorithmic
Topics
We discuss more about each step in the proposed algorithm.
First, the proposed algorithm is specifically designed to handle
a nonstationary signal, which is commonly encountered in
physiology. The de-shape STFT respects the local information
hidden in a nonstationary time series, and decouples the
non-sinusoidal oscillatory pattern from the IF. The nonlocal

median takes the nonlinear relationship between the phase
and the oscillation (the nonlinear relationship between the RR
interval and QT interval) into account. Thus, the proposed
algorithm could be applied to analyze a long time series without
modification, and the direct truncation of the long time series
into pieces is not needed.

We have seen the potential of extracting more information
hidden inside the single-lead aECG signal by the ANH model
and the de-shape STFT. In the past few years, different ideas in
the TF analysis field have been proposed, regarding the model
and the algorithm. It is possible to incorporate them into the
current algorithm to achieve a better result. Some examples are:
the Blaschke decomposition and unwinding based on the analytic
signal analysis technique [58], the synchrosqueezing transform,
or the concentration of frequency and time (ConceFT) [59].
However, to simplify the discussion, we do not carry out this
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FIGURE 8 | The result of the difference between channel 2 and channel 3 of a59 in the CinC2013 database. In the top subplot, all relevant signals are shown

together for a visual comparison. The clean maECG signal is shown in black (shifted up by 55 units) with the detected maternal R peaks in round red circles and the

annotated fetal R peaks in blue diamonds on the top row; the estimated maECG signal is shown in blue (shifted up by 35 units) on the second row; the rough fetal

ECG is shown in dark gray (shifted up by 20 units) with the detected fetal R peaks in round red circles and the annotated fetal R peaks on red upper triangles on the

third row; the fECG estimation is shown in red on the bottom row. In the bottom subplot, the de-shape STFT of the maECG is shown on the left and the de-shape

STFT of the rough fECG is shown on the right. Clearly, the fetal R peaks is perfectly recovered.

combination in this paper. While de-shape STFT works well,
we cannot ignore the limitation in the curve extraction step
for the IHR estimation. Specifically, when the energy of the
fECG signal is greater then that of the maECG, then the curve
extraction algorithm could easily go astray. When the fECG has
an almost equal or larger energy than the maECG, we could see
two dominant curves, which may or may not intersect, and the
curve extraction algorithm could get confused. While we could
apply the physiological constraint to distinguish which curve
belongs to the maECG, e.g., the fIHR is, in general, faster than
mIHR, it is not universal, and will limit the method to normal
subjects. We thus need more tools to handle this issue.

The ability to obtain an accurate IHR estimation is the key
step to an accurate R peak location estimation by the beat
tracking algorithm. The technical limitation in obtaining good
IF information might explain why the intuitive and powerful
beat tracking technique has not been widely applied until now,

although it was introduced in themusic signal analysis field a long
time ago [49]. In sum, the combination of the de-shape STFT,
or any other technique providing an accurate IF estimation, is
essential. This combination could offer an alternative way to
estimate the R peaks or other fiducial points.

Furthermore, to the best of our knowledge, this work is the
first one combining the nonlocal median and the nonlinear
manifold model to analyze the biomedical time-series analysis,
and particularly reconstructing the time-varying wave-shape
function. Using the nonlinear manifold structure to analyze a
time series is certainly not a new idea [22, 37, 38]. However,
in the past, the focus was on decoupling maECG and fECG
by the locally linear projection on the sequential beats. In this
work, the nonlinear geometric structure is further explored to
apply the nonlocal median. In general, we could apply other
manifold learning techniques to further improve the algorithm.
From a data analysis viewpoint, it is well known that a manifold
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TABLE 5 | F1 score, MAE, PPV, and SE of all channels and all subjects over the whole 1 min signals in the CinC2013 database, part 1.

Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE

1 1 98.9 1.49 99.3 98.6 2 1 95.2 1.85 94.9 95.5 3 1 99.2 3.67 99.2 99.2

2 50.6 18.3 55.5 46.5 2 21.4 24.7 24.4 19.1 2 99.2 3.88 99.2 99.2

3 26.2 10.15 28.8 23.9 3 39.1 8.31 38.8 39.5 3 78.1 9.28 76.3 80

4 97.2 0.82 97.9 96.5 4 40.8 23.42 40.1 41.4 4 98.4 4.2 98.4 98.4

4 1 99.2 1.69 98.4 100 5 1 100 1.86 100 100 6 1 92.7 2.83 92.4 93

2 83.7 2.97 81.8 85.7 2 23.3 16.94 21.5 25.4 2 50.3 10.77 49.1 51.6

3 92.1 3.26 91.4 92.9 3 93.7 5.19 93.7 93.7 3 24.6 25.42 25 24.2

4 89.4 4.99 88.4 90.5 4 98.8 4 98.4 99.2 4 86.9 1.99 87.2 86.6

7 1 92.2 3.3 91.5 92.9 8 1 100 2.53 100 100 9 1 98.8 1.67 98.4 99.2

2 46.3 10.75 43.4 49.6 2 93.6 4.03 93.6 93.6 2 25.2 19.42 22.6 28.3

3 30.2 24.93 29 31.5 3 26 11.46 24.3 28 3 33.5 5.94 30.5 37

4 75.1 4.2 75.4 74.8 4 87.6 3.91 87.3 88 4 34.3 11.61 28.7 42.5

10 1 98 1.78 98.2 97.7 11 1 94.2 1.37 93.5 94.9 12 1 98.9 3.49 98.5 99.3

2 20.7 19.52 26.9 16.9 2 27.7 23.28 26.3 29.2 2 99.3 3.73 99.3 99.3

3 21.4 20.53 27.5 17.4 3 31.3 13.62 27.3 36.5 3 76.5 12.58 74.6 78.5

4 93.8 1.53 94.7 93 4 28.8 25.06 31.9 26.3 4 99.3 4.71 99.3 99.3

13 1 77.9 9.43 77 78.9 14 1 98.8 4.41 98.3 99.2 15 1 98.9 2.39 98.5 99.2

2 100 7.9 100 100 2 96.7 5.5 95.9 97.5 2 88.1 3.63 86.1 90.1

3 100 8.19 100 100 3 79.4 10.59 77.2 81.7 3 93.6 3.8 92.5 94.7

4 100 7.11 100 100 4 95.4 5.65 95 95.8 4 79.6 4.4 77.5 81.7

16 1 86.7 2.58 86 87.4 17 1 97.7 3.34 97.7 97.7 18 1 76.9 3.81 75.7 78.2

2 24.5 25.38 26.4 22.8 2 90 5.45 89.3 90.7 2 31.2 27.28 27.1 36.7

3 31.9 17.8 31.5 32.3 3 96.1 6.66 96.1 96.1 3 18 36.04 21.3 15.6

4 33.2 23.3 31.9 34.6 4 71.9 4.61 72.4 71.3 4 17.3 35.45 20.4 15

19 1 78.7 10.18 78.4 79 20 1 78.1 8.24 79.7 76.6 21 1 98.6 2.22 98.6 98.6

2 99.2 7.47 99.2 99.2 2 99.6 8.36 99.2 100 2 65.5 21.12 64.8 66.2

3 100 7.64 100 100 3 92.5 7.05 92.9 92.2 3 22.3 9.59 24.6 20.4

4 100 6.37 100 100 4 97.3 7.22 96.9 97.7 4 97.2 2.36 97.2 97.2

22 1 100 2.09 100 100 23 1 75.9 11.25 76.2 75.6 24 1 93.3 9.71 93.3 93.3

2 89.4 4.52 89.4 89.4 2 100 7.64 100 100 2 100 9.04 100 100

3 99.2 4.42 99.2 99.2 3 100 6.9 100 100 3 97.5 9.07 97.5 97.5

4 99.2 3.63 99.2 99.2 4 100 6.85 100 100 4 99.2 9.31 99.2 99.2

25 1 82.9 8.62 82.3 83.6 26 1 24.2 21.68 25.4 23.1 27 1 28.9 19.18 25.3 33.6

2 98.8 6.92 98.4 99.2 2 90 4.71 89.6 90.3 2 27.6 16.74 24.3 32.1

3 98.8 6.36 98.4 99.2 3 82.2 5.69 81.6 82.8 3 30.3 17.07 26.6 35.1

4 98.8 6.65 98.4 99.2 4 95.9 3.98 95.6 96.3 4 29.8 16 26.3 34.4

28 1 99.4 2.37 98.8 100 29 1 23.4 24.25 21.6 25.4 30 1 97.5 6.01 97.1 97.8

2 98.2 2.52 97.6 98.8 2 89.8 7.12 88.5 91.3 2 89.5 19.02 89.1 89.8

3 99.4 3.1 98.8 100 3 87.5 5.75 86.2 88.9 3 90.9 19.7 90.6 91.2

4 99.4 2.93 98.8 100 4 58 12.59 57.4 58.7 4 55.7 20.67 55.9 55.5

31 1 19 22.15 18.6 19.4 32 1 40.4 18.5 39.2 41.6 33 1 72.3 11.69 70.3 74.5

2 99.3 5.55 99.3 99.3 2 42.7 18.58 41.3 44.3 2 94.6 3.73 93 96.4

3 98.5 6.23 98.5 98.5 3 31.3 27.02 30.4 32.2 3 90 1.71 88.1 92

4 97.8 7.41 97.8 97.8 4 29.9 22.55 31.8 28.2 4 92.1 2.63 90.2 94.2

(Continued)
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TABLE 5 | Continued

Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE

34 1 29.3 24.71 29.2 29.5 35 1 99.7 6.41 99.4 100 36 1 100 3.76 100 100

2 95.4 5.94 94.7 96.1 2 99.1 6.9 98.8 99.4 2 100 3.13 100 100

3 95.4 6.19 94.7 96.1 3 99.7 6.02 99.4 100 3 100 3.08 100 100

4 83.5 10.3 82.6 84.5 4 99.7 6.17 99.4 100 4 99.7 3.49 100 99.4

37 1 98.9 1.78 98.6 99.3 38 1 24.4 23.88 28.7 21.3 39 1 100 1.59 100 100

2 99.6 1.72 99.3 100 2 32.6 26.74 30.7 34.8 2 100 1.43 100 100

3 20 20.66 19.1 21 3 35.1 13.22 32.6 38.1 3 17.5 21.55 18.5 16.7

4 99.6 3.2 99.3 100 4 39 14.23 36.5 41.9 4 99.6 1.79 99.2 100

Sbj, Subject; Ch, Channel; the unit for F1, PPV and SE is %; the unit for MAE is ms.

structure might still be too restrictive to be the best model for
this dataset. However, it could be low dimensional and nonlinear
with nontrivial topology, and could serve as a good model to
understand different algorithms. Thus, finding a more flexible
model to include more physiological facts is a critical issue in
future studies. While the L1 norm is associated with the nonlocal
median algorithm, to enhance the sparsity feature, it is possible
to consider the Lp quasi-norm, where 0 < p < 1, which has been
applied in the nonlocal patch regression for image denoising [60].

When there is more than one channel, it could be beneficial
to combine results from different channels, or to integrate the
proposed algorithm with existing multiple-lead algorithms. The
benefit of doing so has been shown in Figure 8. Another direct
benefit of using multiple-lead algorithms is guiding the mIHR
estimation by the curve extraction, when the fECG has a stronger
energy than the maECG. In practice, we can combine other
kinds of signals, like the contact photoplethysmogram signal
commonly equipped in modern wearable devices, to guide the
mIHR estimation. The result of this kind of combination and
the analysis of multiple channel signals will be reported in future
work.

5.3. Several Clinical Topics
In clinics, the fECG signal could provide at least two
different kinds of physiological information—the HRV and the
electrophysiological dynamics. For the HRV analysis, the most
important ingredient is having an accurate R peak detection
algorithm. One of the main strength of the propose algorithm
is providing the state-of-the-art MAE in the field. For example,
in the real database, the averaged MAE is about 5 ms, which
is roughly equivalent to the R peak information from an fECG
signal sampled at about 200Hz, and its clinical value does deserve
a further evaluation. However, note that when we evaluate the
MAE, we focus only on the TP beats, which means that we
could only get a good HRV analysis when F1 is high enough.
See Figure 9 for an illustration of the relationship between the
HRV analysis and the F1. This figure is generated in the following
way. For each case in CinC2013 (75 in total), we evaluate the
root mean square error (RMSE) to quantify how accurate we
could recover the fIHR for the HRV analysis. Based on the Task
Force [61], we get the fIHR’s from the estimated fetal R peaks
and from the annotated fetal R peaks, and RMSE between these

two fIHR is evaluated. Note that we take all estimated fetal R
peaks to simulate the real scenario. We could see that when F1
is slightly worse than 95%, the RMSE is as high as 0.1 beats/s.
This preliminary result emphasizes the importance of getting an
accurate F1. An extensive study of this important topic will be
reported in the future work.

For the fECG morphology reconstruction, although the
result is convincing, note that we could not infer too much
electrophysiological information from the single-lead fECG
signal, even if the reconstruction is perfect. Indeed, due to
the variation of relative cardiac axes between the mother and
fetus, the projection direction of fECG is in general unknown,
even if the abdominal lead system on the abdominal surface is
standardized. To explore this direction, we need to design or
choose the optimal single abdominal lead location under the
complicated time-varying dynamics, which is adaptive to the
mother, or we may take multiple leads and proceed with an
adaptive way to reconstruct the VCG signal.

Uterine contraction is in general a difficult problem and big
challenge in the fECG signal analysis, since it behaves like a huge
noise in the aECG signal. In general, to handle such a huge
noise, some a priori knowledge of the noise is needed. While
the current method could provide a reasonable result in Case 3
of the simulated database, it does not have the ability to handle
the uterine contraction, and that is why we always get an F1 less
then 80% in the 5 min result. While it is out of the scope of this
paper, we mention that one possible approach is to incorporate
the physiological behaviors underlying cardiac signals, a realistic
model of an individual fetus’ ECG, or the statistical behavior of
the noise associated with the uterine contraction to improve the
result [62–64].

It is not a reasonable assumption that the mother or the fetus
are both healthy in the real life. Sometimes we might encounter
subjects with a problematic heart. In Case 4 of the simulated
database, the situation when the fetus and mother both have
frequent ectopic beats, like ventricular pre-contraction (VPC),
is considered. We see that the nonlocal median algorithm gives
us a reasonable cardiac activity estimation. Indeed, the distance
between an ectopic beat and a normal beat is in general larger
than the distance between two ectopic beats and two normal
betas. Therefore, the nonlocal nature of the nonlocal median
algorithm could accurately estimate the cardiac activity, since
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TABLE 6 | F1 score, MAE, PPV, and SE of all channels and all subjects over the whole 1 min signals in the CinC2013 database, part 2.

Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE

40 1 27.5 28.7 29.8 25.5 41 1 99.2 4.42 99.2 99.2 42 1 24.8 25.37 23.8 25.9

2 97.2 4.3 97.2 97.2 2 99.6 2.37 99.3 100 2 99.7 1.57 99.3 100

3 17.3 25.5 20.2 15.2 3 100 2.53 100 100 3 23.7 24.39 27 21.1

4 100 2.25 100 100 4 98.1 3.07 97.8 98.5 4 99.7 1.7 99.3 100

43 1 50.5 16.05 50 51 44 1 99.7 6.78 100 99.4 45 1 14.8 21 15.2 14.5

2 30.4 24.06 29.8 31 2 89.3 6.58 89.9 88.8 2 98.9 6.51 98.6 99.3

3 35.6 19.66 37.1 34.2 3 99.7 6.54 100 99.4 3 99.6 6.57 99.3 100

4 33.3 19.75 33.1 33.5 4 99.7 6.96 100 99.4 4 98.2 7.18 97.8 98.6

46 1 92.7 6.22 91.6 93.8 47 1 23.8 25.84 26.1 22 48 1 27 26.55 25.2 29

2 94.6 4.61 93.8 95.3 2 74.5 4.4 72.5 76.6 2 85.3 3.78 84.3 86.3

3 51.9 11.7 50 53.9 3 82.9 5.09 81.5 84.4 3 96.2 2.26 95.5 96.9

4 31.2 6.67 35 28.1 4 85.3 3.34 84.1 86.5 4 80 4.81 79.1 80.9

49 1 97.2 10.15 97.2 97.2 50 1 27.3 16.29 29.9 25.2 51 1 83.6 7.56 82.1 85.2

2 98.3 1.77 97.9 98.6 2 37 12.45 38.9 35.3 2 92.4 6.83 90.7 94.1

3 97.6 1.65 97.3 97.9 3 37.5 15.17 37.7 37.4 3 92.7 7.9 91.4 94.1

4 95.9 3.8 95.2 96.6 4 23.5 28.32 24.8 22.3 4 94.2 13.1 92.8 95.6

52 1 83.9 5.07 81.8 86.2 53 1 24.4 24.84 29.8 20.7 54 1 10.9 27.25 6.5 34.3

2 78.4 6.14 76.1 80.8 2 98 2.52 98 98 2 38.8 1.74 24.8 88.6

3 77.3 5.52 74.8 80 3 20.7 25.75 23.1 18.7 3 38.8 0.71 24.8 88.6

4 77.6 4.91 75.4 80 4 99.7 1.32 99.3 100 4 38.8 0.65 24.8 88.6

55 1 21.9 20.41 23.2 20.7 56 1 21 29.2 23.1 19.2 57 1 77.1 12.58 76.4 77.9

2 98.6 8.08 98.6 98.6 2 78.8 6.23 77.6 80 2 73.2 11.65 72 74.5

3 97.9 7.45 97.9 97.9 3 25.7 27.72 22.4 30 3 72.4 10.3 71.6 73.1

4 97.1 7 97.1 97.1 4 25.1 14.46 23.5 26.9 4 63.5 10.34 62.8 64.1

58 1 100 3.35 100 100 59 1 32.1 17.87 33.6 30.7 60 1 22.1 28.3 27.6 18.5

2 18.9 28.3 21.1 17.2 2 30.5 15.12 34.5 27.3 2 24.4 23.7 30 20.5

3 100 2.17 100 100 3 23 31.19 25.8 20.7 3 20.4 23.52 25.3 17.1

4 99.6 2.43 99.3 100 4 25.8 16.6 28.9 23.3 4 43.9 15.97 42.6 45.2

61 1 39.7 22.02 39.3 40.1 62 1 28 22.87 24.9 31.9 63 1 20.7 7.68 23.4 18.5

2 96.4 2.12 95 97.8 2 98.6 2.42 98.6 98.6 2 30.6 6.81 34.6 27.4

3 25.5 25.23 25.5 25.5 3 99.3 1.99 99.3 99.3 3 44.4 8.39 47.9 41.5

4 97.8 2.1 96.5 99.3 4 97.9 2.14 97.9 97.9 4 24.2 24.32 29.2 20.7

64 1 57 11.24 57.7 56.4 65 1 27.1 26.72 26.4 27.9 66 1 20.5 23 19.9 21.3

2 59.1 10.03 59.5 58.6 2 100 1.34 100 100 2 99.6 2.06 99.2 100

3 51.3 6.88 52.3 50.4 3 24.2 24.73 24.8 23.6 3 99.6 1.56 99.2 100

4 57 8.14 56.2 57.9 4 100 1.45 100 100 4 99.6 2.06 99.2 100

67 1 93.4 2.49 92.2 94.7 68 1 28 26.9 26.1 30.1 69 1 97.9 1.51 97.9 97.9

2 93.7 1.39 92.8 94.7 2 31.6 25.19 32.3 30.9 2 99.3 0.78 99.3 99.3

3 95.4 1.7 94.2 96.7 3 24.5 26.97 24.8 24.3 3 100 1.46 100 100

4 95.4 1.65 94.2 96.7 4 23.3 22.66 21.2 25.7 4 97.9 1.22 97.9 97.9

70 1 100 9.57 100 100 71 1 20.1 26.46 21.7 18.8 72 1 100 5.44 100 100

2 99.3 9.18 99.3 99.3 2 18.9 22.58 20.6 17.4 2 100 5.45 100 100

3 99.3 10 99.3 99.3 3 17 28.32 20 14.8 3 100 6.01 100 100

4 100 10.15 100 100 4 12.5 26.31 15.1 10.7 4 99.7 5.85 100 99.4

(Continued)
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TABLE 6 | Continued

Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE Sbj Ch F1 MAE PPV SE

73 1 97.8 6.27 97.1 98.5 74 1 82.1 4.65 80.4 83.9 75 1 28.4 11.59 25.9 31.3

2 82.3 20.37 81.4 83.2 2 76.4 6.25 74.8 78.1 2 35.1 10.31 31.9 38.9

3 33.7 21.06 31.3 36.5 3 52.3 10.24 50.7 54 3 24.8 24.68 29.5 21.4

4 32.6 19.12 34.7 30.7 4 59.2 11.49 57.1 61.3 4 32.8 10.71 29.6 36.6

Sbj, Subject; Ch, Channel; the unit for F1, PPV and SE is %; the unit for MAE is ms.

VPC and normal beats are clustered into two groups. Note that
if VPC is polymorphic and/or the VPC number is small, the
problem becomes more challenging and a different approach
is needed. Another important issue is when the maECG and
the fECG are close in the absolute amplitude. In this case, the
algorithmmight be confused and outputs erroneous maECG and
fECG. If both fetus and mother are healthy, we could count on
the heart rate relationship to correct the output (the final step of
the algorithm is based on this assumption). However, in general
it is not true; for example, the fetal heart rate might be as low
as 80 beat per minute during umbilical cord occlusions and the
maternal heart rate might be as high as over 100 beat per minute
during the labor process. Without more information, it is in
general a challenging issue for any single-lead fECG extraction
algorithm.

This is true in general case, but . So this is problematic as a
default setting). One way around is to add a temporal criterion
for how long such swappable condition is allowed to persist and
monitor it prior to deciding to swap; if FHR deceleration is
identified, no swap would be proposed;

The twin pregnancy problem was relatively rarely discussed,
except in Niknazar et al. [17] and Taylor et al. [65]. In Case 5
of the simulated database, although we do not specifically study
in this paper, we mention that the proposed algorithm has the
potential to handle even multiple pregnancy problem. Indeed,
the mIHR and fIHR’s of different fetuses could be simultaneously
revealed in the de-shape STFT. However, it is still challenging to
utilize this single channel information at this stage, since there
is no a priori information about the relationship between the
IHR’s and signal strengths of those fetuses. This limits the curve
extraction step in the de-shape STFT, as the IHR’s and energy
of two fetus might be similar. Thus, although we could see all
the fIHR’s, to extract the fIHR from the TF representation based
on the current curve extraction algorithm is challenging, and we
need a more sophisticated curve extraction algorithm to do it.
The study of the above-mentioned clinical topics will be explored
in the future work.

5.4. Several Practical Topics
In this study, we do not carry out any optimization to choose
the best parameters. We just choose them in an ad hoc fashion,
and our pilot study showed that the algorithm is generally stable
to the choice of parameters. However, some of the parameters
are critical due to physical limitation. For example, due to
the inevitable uncertainty principle of the STFT, in general the
window should be long enough to capture enough spectrum

FIGURE 9 | The RMSE and F1 of the 75 subjects in the CinC2013

database is plotted.

information. However, it should not be too long or the local
information could bemissed. In practice, we found that a window
that could cover about 5-10 oscillations is a good choice. On the
other hand, when the signal is noisy, we could get more stable
results if the window is longer. Therefore, we choose a 10 s long
window for the very noisy simulated signal, and a 5 s window for
the less noisy real databases. Since our current result is based on
such an ad hoc choice of parameters, the result could be improved
by running a systematic parameter optimization for a specific
mission.

The proposed fECG extraction algorithm is just one among
many successful algorithms. Each algorithm has its own strengths
and weaknesses, and it is generally believed that there might not
exist a single algorithm that could handle all different situations
and different signals. Thus, it would be of great interest to
consider the possibility of combining the proposed algorithm
with other methods, like the combination proposed in Behar
et al. [52]. More practically, while in real life, the noise could
be highly nonstationary, we may want to combine the notion
of a signal quality index (SQI) to help guide us in selecting
the “good” signal for analysis [13, 66, 67]. In general, if there
is too much noise and it bypasses the information limitation,
then there is no hope to recover anything. However, if the
noise is not that big, then some denoising techniques could
certainly help. In this work, to simplify the discussion, we do not
consider any denoising technique before running de-shape STFT
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or beat tracking. However, it could be of great help if we could
incorporate a good de-noise scheme into the algorithm. All these
interesting practical issues will be explored in the near future.

Last but not the least, while the strength of the proposed
algorithm is confirmed on two real databases, these databases are
not big enough and not designed specifically for our algorithm.
An important and relevant issue regarding the single channel
fECG extraction is represented by where the electrode placement
on the abdomen, and a small change of electrode positioning
might cause a drastic change of the recorded fECG, and hence
strongly affect the success of any single channel fECG extraction
algorithm. However, since the dataset is not collected by us, this
very sensitive element cannot be taken in consideration in this
study. A well controlled larger scale clinical study is needed to
further confirm the usefulness of the proposed algorithm.

6. CONCLUSION

In this paper, we propose a novel fECG extraction algorithm
depending mainly on a single-lead aECG based on a nonlinear
TF analysis technique, de-shape STFT, and the nonlocal median.
In addition to providing the theoretical model and mathematical
guarantee, the algorithm is tested on two real databases and

one simulated database. The main novelty in our algorithm
is an extensive utilization of hidden information inside the
aECG signal, that is, both the frequency and energy information
and the nonlinear relationship between consecutive cardiac
activities.
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