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In this paper, we show that sparse signals f representable as a linear combination of

a finite number N of spikes at arbitrary real locations or as a finite linear combination

of B-splines of order m with arbitrary real knots can be almost surely recovered from

O(N2) intensity measurements
∣∣F [f ] (ω)

∣∣2 up to trivial ambiguities. The constructive

proof consists of two steps, where in the first step Prony’s method is applied to recover

all parameters of the autocorrelation function and in the second step the parameters of

f are derived. Moreover, we present an algorithm to evaluate f from its Fourier intensities

and illustrate it at different numerical examples.
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1. INTRODUCTION

Phase retrieval problems occur in many scientific fields, particularly in optics and communications.
They have a long history with rich literature regarding uniqueness of solutions and existence
of reliable algorithms for signal reconstruction, see e.g., [1] and references therein. Usually,
the challenge in solving one-dimensional phase retrieval problems is to overcome the strong
ambiguousness by determining appropriate further information on the solution signal. Previous
literature on characterization of ambiguities of the phase retrieval problem with given Fourier
intensities is often concerned with the discrete problem, where a signal x in R

N or C
N has to be

recovered. For an overview on the occurring trivial and non-trivial ambiguities in the discrete
setting we refer to our survey [2]. The behavior of the solution set under additional constraints
has been studied for instance in Beinert and Plonka [2, 3], Beinert [4, 5].

1.1. Contribution of This Paper
In this paper, we consider the continuous one-dimensional sparse phase retrieval problem to
reconstruct a complex-valued signal from the modulus of its Fourier transform. Applications of
this problem occur in electron microscopy, wave front sensing, laser optics [6, 7] as well as in X-ray
crystallography and speckle imaging [8]. For the posed problem, we will show that for sparse signals
the given Fourier intensities are already sufficient for an almost sure unique recovery, and we will
give a construction algorithm to recover f .

We assume that the sparse signal is either of the form

f (t) =

N∑

j=1

c
(0)
j δ(t − Tj) (1.1)

or, form > 0,
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f (t) =

N∑

j=1

c
(m)
j Bj,m(t) (1.2)

with c
(m)
j ∈ C, Tj ∈ R for j = 1, . . . ,N, where δ denotes the Delta

distribution, and Bj,m is the B-spline of orderm being determined
by the (real) knots Tj < Tj+1 < . . . < Tj+m. We want to

recover these signals from the Fourier intensities |̂f (ω)|2 and will
show that only O(N2) samples are needed to recover f , i.e., all

coefficients c
(m)
j , j = 1, . . . ,N and knots Tj, j = 1, . . . ,N + m,

almost surely up to trivial ambiguities. The proposed procedure
is constructive and consists in two steps. In a first step, we employ
Prony’s method to determine the coefficients and frequencies of

the exponential sum
∣∣F

[
f
]
(ω)

∣∣2. These frequencies are of the
form Tj − Tk with j, k ∈ {1, . . . ,N +m}. If these knot differences
Tj − Tk are pairwise different for j 6= k, then we can use this
information in a second reconstruction step to compute the knots
Tj and the coefficients cj, and thus the desired signal.

1.2. Related Work on Sparse Phase
Retrieval
While the general phase retrieval problem has been extensively
studied for a long time, the special case of sparse phase retrieval
grew to a strongly emerging field of research only recently,
particularly often connected with ideas from compressed sensing.
Most of the papers consider a discrete setting, where the
N-dimensional real or complex k-sparse vector x has to be
reconstructed from measurements of the more general form
|〈aj, x〉|

2 with vectors aj forming the rows of a measurement
matrix A ∈ C

M×N . The needed number M of measurements
depends on the sparsity k.

If A presents rows of a Fourier matrix, this setting is close
to the sparse phase retrieval problem considered in optics, see
e.g., [9]. Here the problem is first rewritten as (non-convex)
rank minimization problem, then a tight convex relaxation is
applied and the optimization problem is solved by a re-weighted
l1-minimization method. The related approach in Eldar et al.
[10] employs the magnitudes of the short-time Fourier transform
and applies the occurring redundancy for unique recovery of the
desired signal. A corresponding reconstruction algorithm is then
based on an adaptation of the GESPAR algorithm in Shechtman
et al. [11].

In Li and Voroninski [12], the measurement matrixA is taken
with random rows and the PhaseLift approach [13] leads to a
convex optimization problem that recovers the sparse solution
with high probability. Employing a thresholded gradient descent
algorithm to a non-convex empirical risk minimization problem
that is derived from the phase retrieval problem, Cai et al. [14]
have established the minimax optimal rates of convergence for
noisy sparse phase retrieval under sub-exponential noise.

Other papers rely on the compressed sensing approach to
construct special frame vectors aj to ensure uniqueness of the
phase retrieval problem with high probability, where the number
of needed vectors isO(k), see e.g., [15–17].

We would like to emphasize that all approaches employing
general or random measurement matrices in phase retrieval are

quite different in nature from our phase retrieval problem based
on Fourier intensity measurements. In this paper, we want to
stick on considering Fourier intensity measurements because of
their particular relevance in practice.

Early attempts to exploit sparsity of a discrete signal for
unique recovery using Fourier intensities go back to unpublished
manuscripts by Yagle [18, 19], where a variation of Prony’s
method is applied in a non-iterative algorithm to sparse
signal and image reconstruction. Unfortunately, the algorithm
proposed there not always determines the signal support
correctly.

The continuous one-dimensional phase retrieval problem has
been rarely discussed in the literature, see [5, 8, 20–22]. In
the preprint [8], the authors also considered the recovery of
sparse continuous signals of the form (1.1). However, in that
paper the sparse phase retrieval problem is in turn transferred
into a turnpike problem that is computationally expensive to
solve. Moreover there exist cases, where a unique solution
cannot be found, see [23]. Our method circumvents this
problem by proposing an iterative procedure to fix the signal
support (resp. the knots of the signal represented as a B-
spline function) where the corresponding signal coefficients are
evaluated simultaneously.

1.3. Organization of This Paper
In Section 2, we shortly recall the mathematical formulation of
the considered sparse phase retrieval problem and the notion
of trivial ambiguities of the phase retrieval problem that always
occur.

Section 3 is devoted to the special case of phase retrieval
for signals of the form (1.1). Using Prony’s method, we give a
constructive proof for the unique recovery of the N-sparse signal
f up to trivial ambiguities using 3/2N(N−1)+1 Fourier intensity
measurements. Here we have to assume that the knot differences
Tj − Tk are pairwise different.

In Section 4, the ansatz is generalized to the unique recovery
of spline functions of the form (1.2) where we need to employ
3/2(N + m)(N + m − 1) + 1 Fourier intensity measurements.
In Section 5, we present an explicit algorithm for the considered
sparse phase retrieval problem and illustrate it at different
examples.

2. TRIVIAL AMBIGUITIES OF THE PHASE
RETRIEVAL PROBLEM

We wish to recover an unknown complex-valued signal f : R →

C of the form (1.1) or (1.2) with compact support from its Fourier
intensity |F[f ] | given by

∣∣F
[
f
]
(ω)

∣∣ :=
∣∣∣̂ f (ω)

∣∣∣ :=
∣∣∣
∫ ∞

−∞

f (t) e−iωt dt
∣∣∣ (ω ∈ R). (2.1)

For the spike function in (1.1), we interpret the Fourier integral
in (2.1) in a distributional sense, i.e., F[δ(· − Tj)](ω) = e−iωTj .
Unfortunately, the recovery of the signal f is complicated because
of the well-known ambiguousness of the phase retrieval problem.
Transferring [2, Proposition 2.1] to our setting, we can recover f
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only up to the following ambiguities, which immediately follow
from the properties of the Fourier transform.

Proposition 2.1. Let f be a signal of the form (1.1) or a non-
uniform spline function of the form (1.2). Then

(i) the rotated signal eiα f for α ∈ R,

(ii) the time shifted signal f (· − t0) for t0 ∈ R,

(iii) and the conjugated and reflected signal f (−·)

have the same Fourier intensity |F[f ] |.

Although the ambiguities in Proposition 2.1 always occur, they
are of minor interest because of their close relation to the original
signal. For this reason, we call ambiguities caused by rotation,
time shift, conjugation and reflection, or by combinations of
these trivial. In the following, we will show that for the considered
sparse signals the remaining non-trivial ambiguities only occur in
rare cases.

3. PHASE RETRIEVAL FOR
DISTRIBUTIONS WITH DISCRETE
SUPPORT

Initially, we restrict ourselves to the recovery of signals f of the

form (1.1) with complex-valued coefficients c
(0)
j , spike locations

T1 < · · · < TN , and Fourier transform.

f̂ (ω) =

N∑

j=1

c
(0)
j e−iωTj (ω ∈ R).

The known squared Fourier intensity |F[f ] |2 can be represented
by

∣∣∣̂ f (ω)

∣∣∣
2
=

N∑

j=1

N∑

k=1

c
(0)
j c

(0)
k

e−iω(Tj−Tk). (3.1)

Thus, in order to recover f being determined by the coefficients

c
(0)
j ∈ C and the knots Tj ∈ R, j = 1, . . . ,N, we will first recover

the differences of the frequencies Tj − Tk and the corresponding

products of coefficients c
(0)
j c

(0)
k

in (3.1) and then derive the desired

parameters of f in a second step.

3.1. First Step: Parameter Recovery by
Prony’s Method
Let us assume that the knot differences Tj − Tk in (3.1) are
pairwise different for j 6= k. The squared Fourier intensity can
then be written in the form

P(ω) :=
∣∣∣̂ f (ω)

∣∣∣
2
=

N(N−1)/2∑

ℓ=−N(N−1)/2

γℓ e
−iωτℓ

= γ0 +

N(N−1)/2∑

ℓ=1

(
γℓ e

−iωτℓ + γ ℓ e
iωτℓ

)
, (3.2)

where we assume that the frequencies τℓ, ℓ =

−N(N−1)/2, . . . , N(N−1)/2 are ordered by size. Obviously, the
frequency differences τℓ satisfy τ−ℓ = −τℓ. Further, each
τℓ > 0 corresponds to a difference Tj − Tk for some j > k,
and the related coefficient γℓ then equals to c

(0)
j c

(0)
k
. For the zero

frequency τ0 = 0, we have γ0 :=
∑N

j=1|c
(0)
j |2.

In the first step, we want to recover all frequencies τℓ and
the corresponding coefficients γℓ, ℓ = 0, . . . , N(N−1)/2 of P(ω).
However, at this stage, the bijective mapping between ℓ > 0
and (j, k) with j > k such that τℓ = Tj − Tk will be still
unknown and needs to be found in a second reconstruction step.
In order to recover the frequency differences τℓ and the unknown
coefficients γℓ from the exponential sum (3.2) we employ Prony’s
method [24, 25].

Let h > 0 be chosen such that hτℓ < π for all ℓ =

1, . . . , N(N−1)/2. Using the intensity values P(hk) = |F[f ]
(
hk

)
|2,

k = 0, . . . , 2N(N − 1) + 1, the unknown parameters γℓ and
τℓ in (3.2) can be determined by exploiting the algebraic Prony
polynomial Λ(z) defined by

Λ(z) :=

N(N−1)/2∏

ℓ=−N(N−1)/2

(
z − e−ihτℓ

)
=

N(N−1)+1∑

k=0

λk z
k, (3.3)

where λk denote the coefficients in the monomial representation
of Λ(z). Obviously, Λ(z) is always a monic polynomial, which
means that λN(N−1)+1 = 1.

Using the definition of the Prony polynomial Λ(z) in (3.3), we
observe that

N(N−1)+1∑

k= 0

λk P
(
h
(
k+m

))
=

N(N−1)+1∑

k=0

N(N−1)/2∑

ℓ=−N(N−1)/2

λkγℓ e
−ih(k+m)τℓ

=

N(N−1)/2∑

ℓ=−N(N−1)/2

γℓ e
−ihmτℓ 3

(
e−ihτℓ

)
= 0

form = 0, . . . ,N(N − 1). Consequently, the vector of remaining
coefficients λ := (λ0, . . . , λN(N−1))

T of the Prony polynomial
Λ(z) can be determined by solving the system of linear equations

Hλ = −h (3.4)

with H := (P(h(k + m)))
N(N−1)
m,k=0

and h := (P(h(N(N − 1) + 1 +

m)))
N(N−1)
m=0 . Since the Hankel matrixH can be written as

H = V
T diag

(
γ−N(N−1)/2, . . . , γN(N−1)/2

)
V

with the Vandermonde matrix V := (e−hkτℓ )
N(N−1)/2,N(N−1)+1
ℓ=−N(N−1)/2,k=0

,

the system of linear equations (3.4) possesses a unique solution
if and only if the unimodular values e−ihτℓ differ pairwise for
ℓ = −N(N−1)/2, . . . , N(N−1)/2. This assumption has been ensured
by choosing an h such that hτℓ ∈ (−π,π), since the τℓ had been
supposed to be pairwise different.

Knowing the coefficients λk of Λ(z), we can determine
the unknown frequencies τℓ by evaluating the roots of
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the Prony polynomial (3.3). The coefficients γℓ can now
be computed by solving the over-determined equation
system

N(N−1)/2∑

ℓ=−N(N−1)/2

γℓ e
−ihkτℓ = P

(
hk

)
(k = 0, . . . , 2N(N − 1)+ 1)

(3.5)
with a Vandermonde-type system matrix.

The procedure summarized above is Prony’s method,
adapted to the non-negative exponential sum P(ω) in (3.2).
In the numerical experiments in Section 5, we will apply the
approximate Prony method (APM) in Potts and Tasche [26].
APM is based on the above considerations but it is numerically
more stable and exploits the special properties γ−ℓ = γ ℓ and
τ−ℓ = −τℓ for ℓ = 0, . . . , N(N−1)/2.

Let us now investigate the question, howmany intensity values
are at least necessary for the recovery of P(ω) in (3.2). Counting
the number of unknowns of P(ω) in (3.2), we only need to recover
the 3/2N(N − 1) + 1 real values γ0 and Re γℓ, Im γℓ, τℓ, for
ℓ = 1, . . . N(N−1)/2. We will show now that using the special
structure of the real polynomial P(ω) in (3.2) and of the Prony
polynomial Λ(z) in (3.3), we indeed need only 3/2N(N − 1) + 1
exact equidistant real measurements P(kh), k = 0, . . . , 3/2N(N −

1) to recover all parameters determining P(ω). This can be seen
as follows.

Reconsidering Λ(z) in (3.3) with τ0 = 0 and τℓ = −τ−ℓ, we
obtain

Λ(z) = (z − 1)

N(N−1)/2∏

ℓ=1

(
z − eihτℓ

) (
z − e−ihτℓ

)

= (z − 1)

N(N−1)/2∏

ℓ=1

(
z2 − 2z cos(hτℓ)+ 1

)
=

N(N−1)+1∑

k=0

λk z
k,

where all occurring coefficients λk are real. Moreover, since

z−
(N(N−1)+1)/2Λ(z) = (z

1/2 − z−
1/2)

N(N−1)/2∏

ℓ=1

(
z − 2 cos(hτℓ)+ z−1

)

is antisymmetric, it follows that

λN(N−1)+1−k = −λk (k = 0, . . . , N(N−1)/2),

and particularly λN(N−1)+1 = −λ0 = 1. In order to determine
the unknown coefficients λk, k = 1, . . . , N(N−1)/2 of

Λ(z) =

N(N−1)/2∑

k=0

λk

(
zk − zN(N−1)+1−k

)
,

we employ (3.2) and observe that form = 0, . . . , N(N−1)/2 − 1,

N(N−1)/2∑

k=0

λk
[
P(h(k+m))− P(h(N(N − 1)+ 1+m− k))

]

=

N(N−1)/2∑

k=0

λk




N(N−1)/2∑

ℓ=1

γℓ

(
e−ih(k+m)τℓ − e−ih(N(N−1)+1+m−k)τℓ

)

+

N(N−1)/2∑

ℓ=1

γ ℓ

(
eih(k+m)τℓ − eih(N(N−1)+1+m−k)τℓ

)



=

N(N−1)/2∑

ℓ=1

γℓ e
−ihmτℓ

N(N−1)/2∑

k=0

λk

(
e−ihkτℓ − e−ih(N(N−1)+1−k)τℓ

)

+

N(N−1)/2∑

ℓ=1

γ ℓ e
ihmτℓ

N(N−1)/2∑

k=0

λk

(
eihkτℓ − eih(N(N−1)+1−k)τℓ

)

=

N(N−1)/2∑

ℓ=1

γℓ e
−ihmτℓΛ(e−ihτℓ )+

N(N−1)/2∑

ℓ=1

γ ℓ e
ihmτℓλ(eihτℓ ) = 0.

Therefore, the vector of unknown coefficients λ :=

(λ1, . . . , λN(N−1)/2)
T can be evaluated from the system

N(N−1)/2∑

k=1

λk
[
P(h(k+m))− P(h(N(N − 1)+ 1+m− k))

]

=
[
P(hm)− P(h(N(N − 1)+ 1+m))

]

(m = 0, . . . , N(N−1)/2 − 1).

The frequency differences τℓ are then extracted from the zeros of
Λ(z), and the coefficients γℓ, ℓ = 0, . . . , N(N−1)/2, are computed
as in (3.5) but with k = 0, . . . , 3/2N(N − 1).

3.2. Second Step: Unique Signal Recovery
Having determined the frequency differences τℓ as well as the
corresponding coefficients γℓ of (3.2), we want to reconstruct the

parameters Tj and c
(0)
j , j = 1, . . . ,N, of f in (1.1) in a second step.

Theorem 3.1. Let f be a signal of the form (1.1), whose knot
differences Tj − Tk differ pairwise for j, k ∈ {1, . . . ,N} with j 6= k,
and whose coefficients satisfy |c

(0)
1 | 6= |c

(0)
N |. Further, let h be a

step size such that h(Tj − Tk) ∈ (−π,π) for all j, k. Then f can
be uniquely recovered from its Fourier intensities |F[f ](hℓ) | with
ℓ = 0, . . . , 3/2N(N − 1) up to trivial ambiguities.

Proof. Applying Prony’s method to the given data |F[f ](hℓ) |,
we can compute the frequency differences τℓ and the related
coefficients γℓ of the squared Fourier intensity (3.2). We denote

by T := {τℓ}
N(N−1)/2

ℓ=1 the list of obtained positive frequencies
ordered by size. Now, we need to recover the mapping ℓ → (j, k)
such that τℓ = Tj−Tk, where we can assume that j > k for ℓ > 0.

Obviously, the maximal distance τN(N−1)/2 is now equal to the
length TN − T1 of the unknown f in (1.1). Due to the trivial
shift ambiguity, we can assume without loss of generality that
T1 = 0 and TN = τN(N−1)/2. Further, the second largest distance
τ(N(N−1)/2)−1 corresponds either to TN−1 − T1 or to TN − T2.
Due to the trivial reflection and conjugation ambiguity, we can
assume that TN−1 = TN−1 − T1 = τ(N(N−1)/2)−1. By definition,
there exists a τℓ∗ > 0 in our sequence of parameters T such that
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τℓ∗ + τ(N(N−1)/2)−1 = τN(N−1)/2, and τℓ∗ is hence equal to the knot
difference TN − TN−1. Thus, we obtain

c
(0)
N c

(0)
1 = γN(N−1)/2, c

(0)
N−1c

(0)
1 = γ(N(N−1)/2)−1, and

c
(0)
N c

(0)
N−1 = γℓ∗ .

These equations lead us to

c
(0)
N =

γN(N−1)/2

c
(0)
1

, c
(0)
N−1 =

γ(N(N−1)/2)−1

c
(0)
1

,

and thus to
∣∣∣c(0)1

∣∣∣
2
=

γN(N−1)/2γ(N(N−1)/2)−1

γℓ∗
.

Since f can only be recovered up to a global rotation, we can

assume that c
(0)
1 is real and non-negative, which allows us to

determine the coefficients c
(0)
1 , c

(0)
N , and c

(0)
N−1 in a unique way.

Having fixed TN = TN − T1 = τN(N−1)/2 and TN−1 =

TN−1−T1 = τ(N(N−1)/2)−1 we notice that the third largest distance
τ(N(N−1)/2)−2 is either equal to TN−T2 or to TN−2−T1 = TN−2. As
before, there exists a frequency τℓ∗ such that τ(N(N−1)/2)−2 + τℓ∗ =

τN(N−1)/2.
Case 1: If τ(N(N−1)/2)−2 = TN − T2, then we have

τℓ∗ = τN(N−1)/2 − τ(N(N−1)/2)−2 = (TN − T1)− (TN − T2)

= T2 − T1

with the related coefficient γℓ∗ = c
(0)
2 c

(0)
1 . Moreover, we have

γ(N(N−1)/2)−2 = c
(0)
N c

(0)
2 such that

c
(0)
2 =

γℓ∗

c
(0)
1

=
γ (N(N−1)/2)−2

c
(0)
N

. (3.6)

Case 2: If τ(N(N−1)/2)−2 = TN−2 − T1, then we have

τℓ∗ = τN(N−1)/2 − τ(N(N−1)/2)−2 = (TN − T1)− (TN−2 − T1)

= TN − TN−2

with the related coefficient γℓ∗ = c
(0)
N c

(0)
N−2 and γ(N(N−1)/2)−2 =

c
(0)
N−2c

(0)
1 . Thus,

c
(0)
N−2 =

γ ℓ∗

c
(0)
N

=
γ(N(N−1)/2)−2

c
(0)
1

. (3.7)

However, only one of the two equalities in (3.6) and (3.7) can be

true, since if both were true then γℓ∗c
(0)
N = c

(0)
1 γ (N(N−1)/2)−2 and

c
(0)
1 γ ℓ∗ = c

(0)
N γ(N(N−1)/2)−2 lead to

∣∣∣∣∣
c
(0)
N

c
(0)
1

∣∣∣∣∣ =
∣∣∣∣
γ(N(N−1)/2)−2

γℓ∗

∣∣∣∣ =
∣∣∣∣∣
c
(0)
1

c
(0)
N

∣∣∣∣∣

contradicting the assumption that |c0N | 6= |c01|. Consequently,
either the equation in (3.6) or the equation in (3.7) holds

true and we can either determine T2 with c
(0)
2 or TN−2 with

c
(0)
N−2. Removing all frequency differences τℓ from the sequence
of distances T that correspond to the differences Tj − Tk of
the recovered knots, we can repeat this approach to find the
remaining coefficients and knots of f inductively. �

If we identify the space of complex-valued signals of the
form (1.1) with the real space R

3N , the condition that two knot
differences Tj1−Tk1 and Tj2−Tk2 are equal for fixed indices j1, j2,
k1, and k2 defines a hyperplane with Lebesgue measure zero. An
analogous observation follows for the condition |c

(0)
1 | = |c

(0)
N |.

The signals excluded in Theorem 3.1 hence form a negligible null
set.

Corollary 3.2. Almost all signals f in (1.1) can be uniquely
recovered from their Fourier intensities

∣∣F[f ]
∣∣ up to trivial

ambiguities.

Remark 3.3. 1. Since the proof of Theorem 3.1 is constructive,
it can be used to recover an unknown signal (1.1) analytically and
numerically. If the numberN of spikes is known beforehand then
the assumption of Theorem 3.1 can be simply checked during
the computation. If the assumption regarding pairwise different
distances Tj − Tk is not satisfied, then the application of Prony’s
method in the first step yields less than N(N − 1) + 1 pairwise
distinct frequency differences τℓ. The second assumption |c0N | 6=

|c01| can be verified in the second step, where c
(0)
1 , c

(0)
N−1, and c

(0)
N

are evaluated.
2. A similar phase retrieval problem had been transferred

to a turnpike problem in Ranieri et al. [8]. The turnpike
problem deals with the recovery of the knots Tj from an
unlabeled set of distances. Although this problem is solvable
under certain conditions, a backtracing algorithm can have
exponential complexity in the worst case, see [27].

4. RETRIEVAL OF SPLINE FUNCTIONS
WITH ARBITRARY KNOTS

In this section, we generalize our findings to spline functions of
order m ≥ 1. Let us recall that the B-splines Bj,m in (1.2) being
generated by the knot sequence T1 < · · · < TN+m are recursively
defined by

Bj,m(t) :=
t−Tj

Tj+m−1−Tj
Bj,m−1(t) +

Tj+m−t

Tj+m−Tj+1
Bj+1,m−1(t)

with

Bj,1(t) := 1[Tj ,Tj+1)(t) :=

{
1 t ∈ [Tj,Tj+1),

0 else,

see for instance [28, p. 131]. Further, we notice that for 0 ≤ k ≤

m− 2 the kth derivative of the spline f in (1.2) is given by

dk

dtk
f (t) =

N+k∑

j=1

c
(m−k)
j Bj,m−k(t), (4.1)

where the coefficients c
(m−k)
j are recursively defined by
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c
(m−k)
j :=

(
m− k

) c
(m−k+1)
j − c

(m−k+1)
j−1

Tj+m−k − Tj
(j = 1, . . . ,N + k),

with the convention that c
(m−k+1)
0 = c

(m−k+1)
N+k

= 0, see [28,
p. 139]. For k = m − 1, Equation (4.1) coincides with a step
function, i.e., with the right derivative of the linear spline f (m−2).
Further, in a distributional manner, the mth derivative of f is
given by

dm

dtm
f (t) =

N+m∑

j=1

c
(0)
j δ(t − Tj) (4.2)

with the coefficients

c
(0)
1 := c

(1)
1 , c

(0)
N+m := −c

(1)
N+m−1, c

(0)
j := c

(1)
j − c

(1)
j−1

(j = 2, . . . ,N +m− 1),

and the Dirac delta distribution δ.
Applying the Fourier transform to (4.2), we now obtain

f̂ (m)(ω) = (iω)m f̂ (ω) =

N+m∑

j=1

c
(0)
j e−iωTj . (4.3)

and thus

ω2m
∣∣∣̂ f (ω)

∣∣∣
2
=

N+m∑

j=1

N+m∑

k=1

c
(0)
j c

(0)
k

e−iω(Tj−Tk). (4.4)

Since the exponential sum on the right-hand side of (4.4) has
exactly the same structure as the exponential sum in (3.2), we can
immediately generalize Theorem 3.1by considering

P(ω) := ω2m
∣∣∣̂ f (ω)

∣∣∣
2
=

(N+m)(N+m−1)/2∑

ℓ=−(N+m)(N+m−1)/2

γℓ e
−iωτℓ . (4.5)

Theorem 4.1. Let f be a spline function of the form (1.2)
of order m, whose knot distances Tj − Tk differ pairwise
for j, k ∈ {1, . . . ,N + m} with j 6= k, and whose
coefficients satisfy |c

(0)
1 | 6= |c

(0)
N+m |. Further, let h be a step size

such that h(Tj − Tk) ∈ (−π,π) for all j, k. Then f can
be uniquely recovered from its Fourier intensities |F[f ](hℓ) |
with ℓ = 0, . . . , 3/2(N + m)(N + m − 1) up to trivial
ambiguities.

Proof. The statement can be established by proceeding in the
samemanner as in Section 3. First we apply Prony’s method to the
given samples (hℓ)2m|F[f ](hℓ) |2 with ℓ = 0, . . . , 3/2(N+m)(N+

m − 1) in order to determine the coefficients and frequencies of

P(ω) in (4.5). In a second step, the values c
(0)
j and Tj in (4.3) can

be determined analytically as discussed in Theorem 3.1. Reversing
the definition of c

(m−k)
j , we can finally compute the unknown

coefficients c
(m)
j by

c
(1)
j = c

(0)
j + c

(1)
j−1 (j = 1, . . . ,N +m− 1)

and

c
(m−k+1)
j =

Tj+m−k−Tj
m−k

c
(m−k)
j + c

(m−k+1)
j−1

(j = 1, . . . ,N + k− 1)

with c
(1)
0 := 0 and c

(m−k+1)
0 := 0, which finishes the proof. �

Corollary 4.2. Almost all spline functions f of order m in (1.2)
can be uniquely recovered from their Fourier intensities

∣∣F[f ]
∣∣ up

to trivial ambiguities.

5. NUMERICAL EXPERIMENTS

Since the proofs of Theorem 3.1 and Theorem 4.1 are
constructive, they can be straightforwardly transferred to
numerical algorithms to recover a spline function from its
Fourier intensity. However, Prony’s classical method introduced
in subsection 3.1 is numerically unstable with respect to inexact
measurements and to frequencies lying close together. For this
reason, there are numerous approaches to improve the classical
method. In order to verify Theorem 3.1 and Theorem 4.1
numerically, we apply the so-called approximate Prony method
(APM) proposed by Potts and Tasche [26, Algorithm 4.7] for
recovery of parameters of an exponential sum of the form

P(ω) =

M∑

ℓ=−M

γℓ e
−iωτℓ (5.1)

with τℓ = −τ−ℓ and γℓ = γ−ℓ. The algorithm can be
summarized as follows, where the exact number 2M + 1 of the
occurring frequencies in (5.1) needs not be known beforehand.

Algorithm 5.1 Approximate Prony method [26]

Input: upper bound L ∈ N of the number 2M+1 of exponentials;
measurements P(hk) with k = 0, . . . , 2M̆ and M̆ ≥ L; accuracies
ε1, ε2, and ε3.

1. Compute a right singular vector λ
(1)

:= (λ
(1)
k
)L
k=0

corresponding to the smallest singular value of the
rectangular Hankel matrixH := (P(h(k+m)))2N−L,L

k,m=0
.

2. Evaluate the roots z
(1)
j = r

(1)
j e

iω
(1)
j of the polynomial

3(1)(z) :=
∑L

k=0 λ
(1)
k

zk with ω
(1)
j ∈ [0,π) and

|r
(1)
j − 1 | ≤ ε1.

3. Compute a right singular vector λ
(2)

:= (λ
(2)
k
)L
k=0

corresponding to the second smallest singular value of the
rectangular Hankel matrixH := (P(h(k+m)))2N−L,L

k,m=0
.

4. Evaluate the roots z
(2)
j = r

(2)
j e

iω
(2)
j of the polynomial

3(2)(z) :=
∑L

k=0 λ
(2)
k

zk with ω
(2)
j ∈ [0,π) and

|r
(2)
j − 1 | ≤ ε1.

5. Determine all frequencies of the form ωℓ := 1/2 (ω
(1)
j +ω

(2)
k
)

if there exist indices j and k with |ω
(1)
j − ω

(2)
k

| ≤ ε2, and
denote the number of found frequencies by M̃.
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6. Compute the coefficients γℓ as least squares solution of the
over-determined system of linear equations

M̃∑

ℓ=−M̃

γℓ e
ihkτℓ = P(hk) (k = 0, . . . , 2M̆)

with τℓ = −τ−ℓ = ωℓ/h by using the diagonal
preconditioner

D := diag
(
1−|k |

M̃+1

)M̃
k=−M̃

.

7. Delete all pairs (τℓ, γℓ) with |γℓ | ≤ ε3.

8. Repeat step 6 with respect to the remaining frequencies τℓ.

Output: coefficients γℓ and frequencies τℓ.

A second adaption of the proof of Theorem 4.1 concerns

the reconstruction of the coefficients c
(m)
j from the recovered

coefficients c
(0)
j . In order to describe the relation between

the coefficients as system of linear equations, we define the
rectangular matrices C

(m−k) ∈ R
(N+k−1)×(N+k) for k =

0, . . . ,m− 1 elementwise by

C
(m−k)
jℓ :=





m−k
Tj+m−k−Tj

ℓ = j,

k−m
Tj+m−k−Tj

ℓ = j− 1,

0 else,

and

C
(0)
jℓ :=





1 ℓ = j,

−1 ℓ = j− 1,

0 else.

Then, the recursion between the coefficients c
(m−k+1)
j and c

(m−k)
j

can be stated as

C
(m−k)

c
(m−k+1) = c

(m−k),

where we use the coefficient vectors c
(m−k)

:= (c
(m−k)
j )N+k

j=1 .

Instead of computing the coefficients stepwise from left to right,
we can determine the coefficients c

(m)
j by solving the over-

determined system of linear equations

C
(0) · · ·C(m−1)

c
(m) = c

(0). (5.2)

With these modifications, we recover a spline function of order
m from its Fourier intensity by the following algorithm.

Algorithm 5.2 Phase retrieval

Input: Fourier intensities |F[f ](hk) | with k = 0, . . . , 2M̆, step
size h > 0, order m ≥ 0 of the spline function, upper bound L of
the number N +m of knots with L(L− 1) < M̆, accuracy ε.

1. Compute the squared Fourier intensity of themth derivative
of the spline at the given points by

|F[f (m)](hk) |2 = (hk)2m|F[f ](hk) |2 (k = 0, . . . , 2M̆).

2. Apply the approximate Prony method (Algorithm
5.1) to determine the knot distances τℓ with
ℓ = −(N+m)(N+m−1)/2, . . . , (N+m)(N+m−1)/2 in increasing
order and the corresponding coefficients γℓ.

3. Update the reconstructed distances and coefficients by

τℓ :=
τℓ − τ−ℓ

2
and γℓ :=

γℓ + γ−ℓ

2

for ℓ = 0, . . . , (N+m)(N+m−1)/2.

4. Set T1 := 0, TN+m := τ(N+m)(N+m−1)/2, and TN+m−1 :=

τ((N+m)(N+m−1)/2)−1; find the index ℓ∗ with |τℓ∗ − TN+m +

TM+m−1 | ≤ ε; and compute the corresponding coefficients
by

c
(0)
1 :=

∣∣∣∣
γ(N+m)(N+m−1)/2 γ ((N+m)(N+m−1)/2)−1)

γℓ∗

∣∣∣∣
1
2

as well as

c
(0)
N+m :=

γ(N+m)(N+m−1)/2

c
(0)
1

and c
(0)
N :=

γ((N+m)(N+m−1)/2)−1

c
(0)
1

.

Initialize the lists of recovered knots and coefficients by

T := [T1,TN+m,TN+m−1] and

C(0)
:= [c

(0)
1 , c

(0)
N+m, c

(0)
N+m−1],

and remove the used knot distances from the set T : =

{τℓ}
(N+m)(N+m−1)/2

ℓ=0 .

5. For the maximal remaining distance τk∗ in T , determine the
index ℓ∗ with |τk∗ + τℓ∗ − TM+n | ≤ ε.

(a) If |τk∗ − τℓ∗ | ≤ ε, the knot distance corresponds to
the centre of the interval [T1,TM+n]. Thus append T
by TN+m/2 and C(0) by γk∗/c(0)1 .

(b) Otherwise, compute the values d(r) := γk∗/c(0)1 and
d(l) := γℓ∗/c(0)1 . If

∣∣∣c(0)N+m d
(r)

− γℓ∗

∣∣∣ <

∣∣∣c(0)N+m d
(l)
− γk∗

∣∣∣ ,

then assume that (3.7) with d(r), γk∗ , c
(0)
N+m instead of

c
(0)
N−2, γ(N(N−1)/2)−2, c

(0)
N holds true and append T by

1/2 (τk∗+TN+m−τℓ∗ ) andC
(0) by d(r), else assume that

(3.6) with d(l), γk∗ , c
(0)
N+m instead of c

(0)
2 , γ(N(N−1)/2)−2,

c
(0)
N holds true and append T by 1/2 (τℓ∗ +TN+m−τk∗ )

and C(0) by d(l).

Remove all distances between the new knot and the already
recovered knots from T and repeat step 5 until the set T is
empty.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 April 2017 | Volume 3 | Article 5

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Beinert and Plonka Sparse Phase Retrieval by Prony’s Method

6. Determine the coefficients c
(m)
j by solving the over-

determined equation system (5.2).

Output: knots Tj and coefficients c
(m)
j of the signal (1.1) (m = 0)

or the spline function in (1.2) (m > 0).

Example 5.1. In the first numerical example, we consider a
spike function as in (1.1) with 15 spikes. More precisely, the
locations Tj and the coefficients c

(0)
j of the true spike function

f are given in Table 1. In order to recover f from the Fourier
intensity measurements |F[f ](hℓ) | with ℓ = 0, . . . , 1000, we
apply Algorithm 2 with the accuracies ε := 10−3, ε1 := 10−5,
ε2 := 10−7, and ε3 := 10−10. In order to ensure that h(Tj −

Tk) ∈ (−π,π) as assumed in Theorem 3.1, we chose h :=
0.95 (T15−T1)/π. The results of the phase retrieval algorithm and
the absolute errors of the knots and coefficients of the recovered
spike function are shown in Figure 1. Although the approximate
Prony method has to recover 211 knot differences, the knots and
coefficients of f are reconstructed very accurately. ◦

Example 5.2. In the second example, we consider the piecewise
quadratic spline function f of order m = 3 as in (1.2) with
N = 7 coefficients and N + m = 10 knots as given in Table 2.
To recover f from its Fourier intensity measurements |F[f ](hℓ) |
with ℓ = 0, . . . , 400 and with h = 0.95 (T10−T1)/π, we again
apply Algorithm 2. As accuracies for the phase retrieval algorithm
and the approximate Prony method, we choose ε := 10−3,
ε1 := 10−5, ε2 := 10−10, and ε3 := 10−10. In Figure 2,
the recovered function is compared with the true signal. Again,
the reconstructed knots and coefficients have only very small
absolute errors. ◦

6. SUMMARY AND DISCUSSION

In this paper, we have presented a novel approach to recover a
sparse continuous-time signal f from finitely many samples of its
Fourier intensity |F[f ] |.

While the general phase retrieval problem is highly
ambiguous, the assumed sparsity of the unknown signal

TABLE 1 | Knots Tj and coefficients c
(0)
j

of the spike function in Example 5.1.

j Tj c
(0)
j

j Tj c
(0)
j

j Tj c
(0)
j

1 −53.5895 4.910 + 0.000i 6 −28.1475 0.278 + 0.598i 11 1.3755 2.887 + 3.828i

2 −50.2765 −0.165 + 0.814i 7 −22.6005 −1.450 + 3.246i 12 20.0945 −1.423 + 0.397i

3 −49.3765 −2.368 − 1.314i 8 −19.6495 0.508 + 0.243i 13 33.4525 0.023 − 2.039i

4 −42.6915 −0.293 + 0.541i 9 −6.1705 0.073 − 0.528i 14 34.8415 −2.997 + 3.767i

5 −28.3915 −1.841 + 2.589i 10 −3.8985 3.135 + 0.339i 15 53.5895 −0.064 − 0.368i

FIGURE 1 | Results of Algorithm 5.2 for the spike function in Example 5.1. (A) Real part of the recovered and true spike function. (B) Imaginary part of the

recovered and true spike function. (C) Absolute error of the recovered knots. (D) Absolute error of the recovered coefficients.
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TABLE 2 | Knots Tj and coefficients c
(3)
j

of the spline function in Example 5.2.

j Tj c
(3)
j

j Tj c
(3)
j

j Tj c
(3)
j

1 −17.022 5.342 + 0.000i 5 −7.745 3.597 − 0.334i 8 2.309 —

2 −13.921 −3.569 + 0.132i 6 −4.313 0.554 − 2.251i 9 9.318 —

3 −9.536 0.440 − 1.413i 7 −0.336 −4.072 + 1.433i 10 17.022 —

4 −8.301 −4.685 − 0.499i

FIGURE 2 | Results of Algorithm 5.2 for the spline function in Example 5.2. (A) Real part of the recovered and true spline function. (B) Imaginary part of the

recovered and true spline function. (C) Absolute error of the recovered knots. (D) Absolute error of the recovered coefficients.

surmounts this problem and guarantees uniqueness of the phase
retrieval problem up to trivial ambiguities. In many applications,
the sparsity assumption arises in a natural manner. For instance,
the positions of stars in astronomy [29] or the positions of atoms
in a molecule in crystallography [30] correspond to a sparse
spike functions.

Here, we have assumed that f is a finite linear combination
of spikes or B-splines with arbitrary knots. The new approach
consists of two steps, where we have applied Prony’s method
in a first step to determine the knot differences from the
exponential sum |F[f ] |2. Based on this information, we have
derived a method to recover the unknown knots and coefficients
of f step by step. The significant benefit over the previous
approach in Ranieri et al. [8] is the exploitation of the
coefficients of |F[f ] |2, which allows the simultaneous recovery
of the knots and coefficients of the true signal f always with
polynomial complexity. Our method works for all signals whose
knot differences are pairwise distinct. Therefore, almost every
structured function of the form (1.1) or (1.2) can be uniquely
recovered from its Fourier intensity up to trivial ambiguities. In

the numerical examples, we show that our methods behaves well
in the noise-free setting. Our work is a first step to phase retrieval
of spline functions and raises several theoretical and numerical
questions.

The considered phase retrieval problem employs Fourier
transform intensities. For spike functions, the proposed method
can be easily extended to measurements from a canonical
linear transform like the Fresnel or the fractional Fourier
transform, since these transforms merely correspond to a non-
linear modulation of the coefficients, cf. [31]. The phase retrieval
problem of spline functions in Section 4 is essentially based
on formula (4.3) on the representation of function derivatives
in Fourier domain. This property does not generally hold for
canonical linear transforms.

The sensitivity of our reconstruction algorithmwith respect to
noisy measurements depends on the approximate Pronymethod.
In fact, the desired frequency differences possess a very special
structure and have to satisfy certain side conditions. For example,
the sum of two frequency differences Tj − Tk and Tℓ − Tj is
again a frequency difference Tℓ − Tk. For strongly disturbed
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measurements, the recovered frequency differences obtained by
the approximate Prony method may not satisfy this special
structure, and the second reconstruction step of our method
cannot be applied directly. Therefore, it would be interesting to
study, how the approximate Prony method can be modified by
incorporating the additional structure information.
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