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Computational systems biology aims at integrating biology and computational methods

to gain a better understating of biological phenomena. It often requires the assistance

of global optimization to adequately tune its tools. This review presents three

powerful methodologies for global optimization that fit the requirements of most of

the computational systems biology applications, such as model tuning and biomarker

identification. We include the multi-start approach for least squares methods, mostly

applied for fitting experimental data. We illustrate Markov Chain Monte Carlo methods,

which are stochastic techniques here applied for fitting experimental data when a model

involves stochastic equations or simulations. Finally, we present Genetic Algorithms,

heuristic nature-inspired methods that are applied in a broad range of optimization

applications, including the ones in systems biology.

Keywords: optimization, least squares algorithms, Markov chain Monte Carlo, genetic algorithms, computational

systems biology, parameter estimation, global optimization, mathematical modeling

1. INTRODUCTION

The field of optimization has become crucial in our daily life, with servers and computers solving
hundreds of problems every second. From the assets to include in a portfolio, to the shape of
a particular object, to the distribution of packages sent among networks and uncountable other
applications, optimization problems are addressed and solved constantly.

Among the many branches of optimization, global optimization focuses on the development of
techniques and algorithms to discover the best solution, according to specific criteria, when several
local solutions are possible [1]. It has been intensively improved during the last decades and applied
in many fields, such as mathematics, computer science, biology and statistics. These improvements
have had a tangible effect in terms of accuracy of the results and time of execution, allowing the
use of global optimization to solve bigger and more complex problems. In the meanwhile, the
application of computer science techniques to biology has led to the establishment of computational
systems biology [2, 3]. This field aims at gaining knowledge from the vast amount of data produced
by the omics technologies. In addition, it resorts to dynamical representations to gain mechanistic
insights into biological phenomena. Computational systems biology often requires the assistance
of optimization to adequately tune its tools. For example, optimization techniques are applied to
estimate model parameters, here referred as model tuning, and also for data analysis. For instance,
it is used to determine biomarkers, here referred as biomarker identification, as well as to determine
the optimal number of clusters in which data should be divided [3]. Since multiple local solutions to
these optimization problems often occur [4, 5], we provide a concise review of three methodologies
for global optimization that are successfully applied in computational systems biology [6].
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The herein proposed selection of algorithms embraces three
of the main optimization strategies, namely, deterministic,
stochastic and heuristic [1]. We have chosen simple specific
implementations that, in our opinion, help in communicating
the ideas behind the algorithms and elucidate the corresponding
methodologies. We avoided technical details or strict
mathematical rigor to facilitate the reading also for scientists
whose background is more focused on biology than in computer
science or mathematics. Nevertheless, we provided technical
details in the list of references, where a skilled reader can find all
the resources for an in-depth coverage of the matter.

1.1. Model Tuning and Biomarker
Identification as Global Optimization
Problems
Models are here intended for in-silico simulations of biological
phenomena. They are usually systems of differential or stochastic
equations that quantitatively describe chemical reactions or other
complex interactions. A model returns a vector of current values
for all the variables. These variables can be real (e.g., average
chemical concentrations) or integer (e.g., number of molecules
or individuals). For example, wemay consider the Lotka-Volterra
model (Equation 1), also known as the prey-predator model [3].

{

y′ = αy− ayz, y(0) = y0 > 0

z′ = −bz + βyz, z(0) = z0 > 0
(1)

This set of ordinary differential equations describes the
population dynamics of two species in which one of them, the
predators z, consume the other one, the prey y. The Lotka-
Volterra model depends on four parameters: the growth rate
of the prey α, the death rate of predators b, the rate at which
preys are eaten by predators a and the rate at which the predator
population grows as a consequence of eating prey β .

It is not unusual that some of the model parameters are
unknown, such as rate constants or scaling factors. In the absence
of effective methods to determine parameter estimates, a model
provided with a wrong set of parameters may produce a distorted
representation of the observed phenomena. This may lead to the
rejection of its mechanistic description. For example, Figure 1
shows two possible outcomes of the deterministic simulation
of the Lotka-Volterra model, with different sets of parameter
estimates.

Another common application of optimization in
computational systems biology is biomarker identification,
which is frequently related to the problem of classifying samples
measured using the omics technologies (genomics, proteomics,
lipidomics, metabolomics). These techniques produce a
vast amount of data and researchers are challenged to infer
knowledge from it [3]. In classification, certain characteristic
sample properties, such as the expression level of some genes
or proteins, are selected to separate the samples. Such selected
properties, here generically called features, are then used to
divide samples in categories. For example, respondent and non-
respondent to a particular drug or healthy and unhealthy [7, 8].
Usually a sufficiently short list of features, called biomarker, is

sought to discriminate the samples. If this list of features is not
optimally chosen, it may drive to poor classification accuracy.

Optimization problems can be formulated as follows:

min c(θ)

g(θ) ≤ 0

h(θ) = 0

lb ≤ θ ≤ ub

θj ∈ R or Z, j = 1, ..., p

(2)

θ is a vector of dimension p ≥ 1 and it contains the parameter
estimates that are sought. A solution of the optimization
problem contains those parameter estimates that minimize
the function c. We generically refer at them as parameters.
The cost function c, also called objective function, translates
the problem in mathematical equations and it undergoes the
optimization process to estimate the optimal parameters. The
objective function may also depend on other variables rather
than θ , as initial values, forcing functions or other variables that
are not optimized. For the sake of simplicity, such values are not
explicitly included in Equation (2). The objective function may
depend linearly on θ , like in the case of routing or scheduling
problems [9], or non-linearly, such as in many applications of
computational systems biology [5]. Once these parameters are
estimated, their values are fixed in the model. In contrast, the
independent variables, here called just variables, remain free to
vary after the optimization process. For example, in the Lotka-
Volterra model (Equation 1) α, a,β , b are parameters, whereas
y and z are variables. In addition, the problem may be subject
to constraints, which can be bounds for the values that each θj
can assume (lb and ub in Equation 2) or functional relations
among the parameters (g and h). For instance, the parameters
may represent biological rates or physical quantities that cannot
be negative or that are admissible only inside a specific interval.
In other cases, the value of certain parameters may depend
on other parameters, as in the case when their sum should be
smaller or equal to a certain threshold [10]. We refer to the
space where the parameters θ can vary, according to constraints,
as the space of parameters. This set can include continuous or
discrete parameters, or both, according to the problem and the
constraints on θ . If we need to optimize certain rate constants
of chemical reactions, the parameter estimates are continuous
values, whereas the number of genes to take into account to
determine a biomarker is an integer (positive) value. During the
identification of biomarkers, we may also consider a significance
threshold associated to a specific statistical test. Therefore, some
parameters of the problem may be continuous (significance
threshold) whereas, at the same time, others may be integers (the
length of the list).

In certain cases, optimization problems may be solved directly
by studying the objective function. For example, if the problem
depends on a limited number of parameters and variables, or
the objective function is linear or convex (Figure 2A) [9, 11].
However, as soon as the number of variable increases and the
function loses linearity or convexity (Figure 2B), the running
time to solve the problem becomes infeasible. Thus, the need for
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FIGURE 1 | Two possible outcomes of the deterministic simulation of the Lotka-Volterra model with different sets of parameter estimates. (A) shows

the dynamics with the parameters α = 1, a = 0.05, b = 1,β = 0.05. (B) shows the dynamics with α = 0.3, a = 0.05, b = 0.7,β = 0.025. Both the simulations start

from the same initial state.

FIGURE 2 | The plots for two possible objective functions depending on two parameters. (A) shows a convex function, whose minimum is easy to identify.

On the contrary, (B) shows the so-called egg holder function, which is non-convex and its minimum is hard to determine [12].

methods that permit the systematic research for optimal solutions
arises. In this article, we will focus on the case where the objective
function is non-linear and non-convex andmultiple solutions are
possible. We have referred to the plural “methods” since there is
no one-for-all method. As the No Free Lunch Theorem (NFL)
states: “for any algorithm, any elevated performance over one class
of problems is offset by performance over another class” [13].

In the following, we discuss the multi-start non-linear least
squares method (ms-nlLSQ) based on a Gauss-Newton approach
[14], mostly applied for fitting experimental data. We illustrate
the random walk Markov Chain Monte Carlo method (rw-
MCMC) [15], a stochastic technique used when a model involves
stochastic equations or simulations. Finally, we present the
simple Genetic Algorithm (sGA) [16], a heuristic nature-inspired
method that belongs to the class of Evolutionary Algorithms.

sGA is applied in a broad range of optimization applications,
including model tuning and biomarker identification.

Table 1 collects some important properties of the considered
methods. Under specific hypotheses [14, 15], ms-nlLSQ and rw-
MCMC are proved to converge to local or global minimum,
respectively. Analogously, certain implementations of sGA
converge to the global solution, but solely for problems involving
only discrete parameters [17, 18]. ms-nlLSQ is suitable only
for problems where both model parameters and the objective
function are continuous. On the other hand, rw-MCMC supports
continuous and non-continuous objective functions, as well as
sGA that also supports discrete parameters. All the considered
optimization techniques require objective function evaluations
at each iteration step, from just one evaluation in the case of
rw-MCMC, to several as in the case of ms-nlLSQ and sGA.
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TABLE 1 | Comparison of the described algorithms.

ms-nlLSQ rw-MCMC sGA

Convergence Proof to Proof to No

local* global* proof**

Support for continuous parameters
√ √ √

Support for continuous objective

functions

√ √ √

Support for non-continuous

objective functions

–
√ √

Support for discrete parameters – –
√

ms-nlLSQ, multi-start non-linear least squares; rw-MCMC, random walk Markov Chain

Monte Carlo; sGA, simple Genetic Algorithm. *Convergence is assured under specific

hypotheses. **Certain implementations of the algorithm converge to the global solution

for problems involving only discrete parameters.

2. LEAST SQUARES METHODS

Model tuning is the estimation of model parameters to
reproduce experimental time series. This problem is often
formulated in the form of least squares, as in models related
to diabetes [10, 19, 20], biological pathways [21–24], and
pharmacokinetics/pharmacodynamics [25, 26]. Least squares
problems may arise in statistical regression as well [27–32].

We denote the output of the model at a certain time instant
ti as xmodel(ti, θ), i = 1, ..., n. It may be the result, for instance, of
integrating differential equations. When the experimental data at
the same time point xexperimental(ti) is known, we can compute
the residual function r, which can be defined as a vector of
components

ri(θ) = xmodel(ti, θ)− xexperimental(ti). (3)

We refer to a least squares problem [33] when the objective
function is obtained as the squared sum of these residuals for all
the time points:

c(θ) =
n

∑

i=1

ri(θ)
2. (4)

In addition, cmay include weights (wi) that multiply the ri

cW(θ) =
n

∑

i=1

wiri(θ)
2 (5)

and in this case we have a weighted least squares problem [34].
This is often the case when experimental standard deviations
are known and their reciprocal can be used as weights. For
example, biological measures are often collected in triplicate. In
such a case, experimental points can be identified by the mean
of these measurements and by a dispersion index, such as the
standard deviation. This helps in quantifying the confidence in
the measures and the objective function will weight more the
residual of those experimental points that have less uncertainty.
The distance of a model output from the experimental data may
always be quantified as a least squares problem. However, least

squares methods mostly address problems involving continuous
parameters and objective functions [14]. In the following, we
embrace these assumptions.

The least squares methods exploit the properties of the
particular objective function to obtain ad-hoc implementations.
For example, the structure of its derivatives permits to
approximate the objective function without the computation
of the second order derivatives [14]. Due to this and other
attractive features, many applied unconstrained problems are
formulated in terms of least squares. Besides their prominent role
in unconstrained optimization, some implementations allow at
solving constrained problems.

According to the way in which the objective function depends
on the parameters, least squares problems are divided in linear
and non-linear. Linear least squares problems admit unique
solution and fast solving algorithms [14], whereas non-linear
least squares problems admit in general more solutions and
the methods return local solutions. In order to circumvent
these limitations and provide a global solution, the procedure
is repeated starting from different sets of parameter estimates,
hereafter called starting points. The best solution among the
results of the repeated procedure is then selected to ensure
that the result is global. This procedure is known as multi-start
approach. However, as the number of starting point increases,
the overall procedure slows down. Thus, it is crucial to determine
an adequate number of initial points N, such that the space of
parameters is properly explored and the problem is still tractable.
In addition, multiple runs of the procedure may lead to the
same set of parameter estimates, weakening the efficiency of the
method.

Algorithm 1 provides a multi-start implementation for
solving unconstrained non-linear least squares problems by
exploiting a simple Gauss-Newton approach [33]. The global
search procedure begins defining N starting points for the
method. These starting points can be selected randomly in
the space of parameters (Algorithm 1, line 1), or using
more elaborated procedures. For example, the Latin hypercube
technique samples near-randomly the space of parameters trying
to reduce the clustering of points that may happen in random
selection. We refer to Morris and Mitchell [35], Pronzato and
Müller [36], and Viana [37] for a complete description of Latin
hypercube and other sampling techniques. Once the starting
points are determined, for each of them the least squares
procedure is computed (Algorithm 1, lines 2–13). Remarkably,
each run of this approach is independent from the others, and
the procedure naturally supports parallel implementation. This
may allow a consistent speed-up.

The here described Gauss-Newton approach for
unconstrained non-linear least squares problems adopts a
linearization of the objective function through a first order
approximation (Algorithm 1, lines 2 and 5). At each iteration
it proceeds identifying a new search direction by solving a
linear least squares problem for the linearized objective function
(Algorithm 1, line 6). This step requires a model simulation to
compute the residuals r(θ i) and an evaluation of J(θ i). However,
in modeling, the analytical expression of J is often unknown.
In this case, the method has to approximated J(θ i) at each step,
requiring more model simulations [14]. Once the new search
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direction is determined, the parameters are updated along that
direction (Algorithm 1, line 9) and these steps are repeated.

Input: n experimental data points; the corresponding
residual function r, whose components are defined
as in Equation (3); an objective function c as in
Equation (4); the number of starting points N; a
threshold for the termination criterion.

Output: the vector θ providing the global minimum.
1 Randomly select N vectors of dimension p in the space of

parameters {θ1, ..., θN} as starting points;
2 Compute the function J(θ) =

[

∂ri(θ)
∂θ j

]

i=1,...,n;j=1,...,p
;

3 foreach θ i, i = 1, ...,N do

4 repeat

5 Evaluate J̃ = J(θ i);
6 Compute the search direction q such that

J̃T J̃q = −J̃Tr(θ i);
7 Compute ϑ = θ i + q;

8 Compute ε =
∣

∣

∣

∣

∣

∣

θ i−ϑ

θ i

∣

∣

∣

∣

∣

∣
;

9 Update θ i = ϑ ;
10 until ε > threshold;
11 save in memory θ i;
12 end

13 Determine the best solution θ̄ such that c(θ̄) = min
i=1,...,N

c(θ i);

Algorithm 1:Multi-start non-linear least squares method based
on the Gauss-Newton approach.

The optimization procedure runs until termination criteria
are met. Among the many termination criteria [38], here we
considered a common criterion that stops the procedure when
the relative distance of the update is smaller than a certain
threshold (Algorithm 1, line 10). Notably, the gradient of the
objective function may provide termination criteria, which may
be used to certify the local convergence to a stationary point.
However, less computationally demanding procedures, as the
one we considered, are usually preferred. When all the runs are
terminated, the results are compared and the best one is selected,
for instance considering the smallest value of c (Algorithm 1,
line 13).

The Gauss-Newton method shows some drawbacks. In
particular, this method does not support constraints on θ and
requires some hypotheses to ensure the local convergence.
As a consequence, more robust implementations have been
proposed, including some that could manage linear or bound
constraints [14, 33, 39]. Some improvements have been obtained
by determining the step length for the update using line search
[14] or by adopting more accurate second order approximations
of the objective function, such as in the Levenberg-Marquardt
algorithm [40, 41]. As a further extension, the trust region
approach calculates the region of the space of parameters where
the approximation is reliable [42, 43]. Nevertheless, all these
implementations are more computationally demanding. For
example, they require more objective function evaluations and
therefore, more model simulations. In spite of these limitations,
the Gauss-Newton method is very efficient when its convergence

hypotheses are met [14]. Consequently, there is a trade-off
between the expensive computations required at each iteration
and the small number of iterations guaranteed by the fast
convergence.

3. MARKOV CHAIN MONTE CARLO
METHODS

Markov chain Monte Carlo methods (MCMC) are a family of
general purpose techniques that have been applied for a variety
of statistical inferences [44]. Among their many applications,
they have been used for parameter estimation in the context of
Bayesian inference [45] and for maximizing likelihood, especially
when stochastic processes and simulations are involved. In
modeling, likelihood refers to a probability density function that
quantifies the agreement between the model results and the data.
Under the assumption that each experimental measurement is
independently effected by Gaussian noise, the likelihood and the
objective function in Equation (5), are connected by the formula:

L(θ) = s1e
−cW (θ)/2s2 , (6)

where s1 and s2 are normalization factors.
Stochastic simulation is considered a valuable tool to take

into account the noise that affects biological phenomena. A
deterministic simulation returns the average behavior and, once
the model parameters are fixed, its result is always the same. In
contrast, the outcome of each stochastic simulation is different
and precisely reproduces a possible trajectory of the system [3].
Stochastic algorithms simulate each event in an asynchronous
and separate way. Therefore, this strategy allows an accurate
investigation of the behavior of biological phenomena [3, 46].
However, it can be slower than deterministic algorithms when
several events have been generated per unit of time. This is
often the case in the simulation of chemical reaction networks.
In such cases, the stochastic simulation of fast reactions may
require more time than the deterministic approach [47, 48].
On the other hand, when the model includes particularly low
abundances of certain species, e.g., few individuals, considering
average behaviors may not accurately describe the phenomena,
and hence deterministic simulation cannot be applied [3, 49].
Consequently, stochastic simulation has been often applied,
among the others, in the simulation of chemical reaction
networks [50–52], population dynamics [53, 54] and infectious
diseases spreading [55–58].

The results of stochastic simulations may vary substantially,
even if they are obtained using the same set of parameters. For
example, the outcomes depicted in Figure 3 are obtained with the
same parameter estimates of Figure 1A. The results in Figure 3A

are comparable with the deterministic simulation in Figure 1A.
In contrast, Figure 3B shows a dramatically different scenario,
with the extinction of the prey and the consequent extinction of
the predators. Even though both the outcomes are biologically
plausible, deterministic simulations cannot predict the latter.

MCMC methods implement Markov chains, i.e., stochastic
processes that determine the next step using only the information
provided by the current step, and a modified Monte Carlo
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FIGURE 3 | Two possible outcomes of the stochastic simulation of the Lotka-Volterra model with the same set of parameter estimates as in Figure 1A

(α = 1, a = 0.05, b = 1,β = 0.05). The behavior in (A) is comparable with the one in Figure 1A. The behavior in (B) shows a dramatically different scenario, with the

extinction of the prey and the consequent extinction of the predators.

step to determine the acceptance or rejection of each set
of parameters [15]. The convergence of these methods is
guaranteed, under specific hypotheses that are often met
in modeling problems, by the central limit theorem and
its extensions [59]. Therefore, MCMC methods converge
asymptotically to stationary distributions of the Markov chains.
However, this result does not provide the order of convergence
or termination criteria, and in general the convergence is slow
since it is not guaranteed that the optimization process escapes
quickly from local solutions. Consequently, the methods are
stopped when the stationary distributions seem to be reached
by using the so-called diagnostics [60] or after a fixed number
of iterations. Thanks to the Markov chain properties, if the
results are not satisfying, the methods can be restarted from
the last set of parameters without loss of information. Another
consequence of the asymptotic convergence is that the first part of
the results should be discarded to avoid starting bias [61]. These
first iterations are called burn-in or warm-up.

We present an implementation of the random walk MCMC
method (rw-MCMC) in Algorithm 2. This implementation,
as many others, relies on the results of Metropolis et al. [62]
and Hastings [63]. Therefore, it is also called the random
walk Metropolis-Hastings algorithm. This optimization strategy
begins by defining a random set of parameters and evaluating
its likelihood (Algorithm 2, lines 2–3). From this first set of
parameters, the covariance matrix is computed (Algorithm 2,
line 4) and it is used to generate the new candidates. The
method can take advantage of some a priori knowledge for
determining the first set of parameters or the covariance matrix.
In fact, certain literature values or distributions for some of the
parameters may be known, and these can be used to guide the
procedure. Moreover, in some implementations, the covariance
matrix may be updated step-wise, gathering information along
the procedure [64].

The algorithm continues generating a new set of parameters
by perturbing the previous one through random normally
distributed coefficients (Algorithm 2, line 7). This is why the

Input: a likelihood function L that measures the agreement
with the experimental data, for example
(Equation 6); a maximum number of runs N;
the number of first iterations to discard warm-up.

Output: the a posteriori distributions of the parameters
stored as a matrix Dθ ; the vector of the associated
likelihood values VL.

1 Initialize Dθ , VL = ∅;
2 Randomly determine a candidate set of parameters θ1;
3 Compute L1 = L(θ1);
4 Compute the covariance matrix C from the estimates θ1;
5 for i = 1, ...,N do

6 Generate a vector z of random numbers in N(0,C) of the
same size of θ1;

7 Compute θ2 = θ1 + z;
8 Compute L2 = L(θ2);
9 Compute ratio = L2/L1;

10 Generate a random number rand ∼ U(0, 1);
11 if rand < ratio then
12 Update L1 = L2;
13 Update θ1 = θ2;
14 end

15 if i > warm-up then
16 append θ1 to Dθ ;
17 append L1 to VL;
18 end

19 end

Algorithm 2: Random walk Markov chain Monte Carlo
method for parameter estimation.

procedure is called random walk MCMCmethod. In other cases,
such as the independent Metropolis-Hastings algorithm, the new
set of parameters is proposed independently from the previous
[65]. We refer to Brooks et al. [15] for a detailed description
of these and other methods. When the new set of parameters
is generated, its likelihood is computed (Algorithm 2, line 8)
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and compared with the previous. If the new likelihood is bigger
then the previous (L2/L1 > 1), the new set of parameters is
always accepted, otherwise with probability L2/L1 (Algorithm
2, lines 10–13). In order to escape local minima, the latter
rule allows the method to randomly accept values that are not
better in terms of likelihood. In the long run, the method will
return back to the previous value if it was the global solution,
otherwise it continues the exploration of the space of parameters.
This strategy is in contrast with least squares methods. In those
methods, the direction that decreases the objective function is
always chosen and, consequently, their results are in general local
[66, 67]. Thus, the need to apply a multi-start approach to search
for the global solution.

Finally, if the warm-up time is over, the parameters and the
likelihood function are stored (Algorithm 2, lines 15–18). This
set of parameters is needed to build the a posteriori distributions
of parameter estimates, whereas the likelihood values permit to
determine the best set in terms of likelihood, if needed. Once
these probabilities are estimated, they may provide valuable
information, such as the standard deviations or other uncertainty
measures, as well as the correlations between the parameters.
Moreover, collecting the output of the model along with the
parameters provides information about the uncertainty of model
results.

As mentioned, MCMCmethods can be provided with a priori
knowledge on the parameters, such as bounds, experimental
standard deviations or distributions of the parameters. When
these values are known, the methods can take advantage of them
to determine the candidate sets of parameters. In many cases,
this information is processed using Bayesian inference [55]. For
particularly complex models, exploiting this information may
significantly improve the speed of convergence of the algorithm.
For the same end, adaptive implementations have been proposed
[64]. These implementations generally use statistics from the
results, for example the rate at which new candidates are
accepted, to properly update the way in which new candidates are
proposed [68]. In addition, ad hoc implementations for complex
problems have been proposed. In these implementations,
multiple independent runs of the algorithm are generated, each of
them working on an independent subset of the model or starting
from different initial points. The results of these runs are then
combined at the end [69, 70]. Despite the use of MCMCmethods
in discrete problems has been for long time overlooked, some
implementations have recently extended their realm to address
the problem of inferring discrete and mixed-integer parameters
[64, 71].

An optimization method based on Markov chains has
drawbacks and advantages. On the one hand, it allows memory-
efficient implementations and this is particularly convenient
when very complex models are involved. In fact, the algorithm
requires only the information about the previous iteration
(Algorithm 2, lines 7 and 9), whereas the overall results can be
stored at specific sampling rates. On the other hand, the method
iterations cannot be computed in parallel, since they depend
on the previous. MCMC methods for parameter estimation are
usually efficient in the number of objective function evaluations,
computing just one evaluation per iteration. However, the lack of

termination criteria forces the use of several iterations to ensure
the convergence. Nevertheless, they balance this computational
cost by returning the a posteriori distributions of the parameter
estimates, and therefore more information than other
methods.

4. GENETIC ALGORITHMS

Genetic algorithms (GAs), firstly introduced by Holland in 1975
[72] and then improved and varied during the following decades
[73–75], are nature inspired heuristic stochastic algorithms. As
in nature our genes are encoded in chromosomes as strings of
nucleotides, these algorithms encode the space of parameters
as strings. GAs use these strings to create populations of
candidate solutions that evolve according to the principle of
survival of the fittest. In analogy with biology, the objective
function of GAs is called fitness function, and the principle of
survival of the fittest selects those candidates that are better
in terms of objective function. GAs mimic the processes of
natural selection (Figure 4A), the genetic exchange between two
individuals (Figure 4B), known as crossover or recombination,
and the random mutation that take place during the process
(Figure 4C). One of the key ideas underlying these stochastic
algorithms is that the evolution preserves, even under stochastic
choices, those strings (or part of them) that guide the process
toward the best solution. This concept is formalized in the
building block hypothesis and it is detailed in Goldberg [73].

GAs have empirically demonstrated their efficacy and
reliability in a variety of fields and for various applications [74].
For example, they have been applied in synthetic and systems
biology to determine biomarkers [7, 8], design gene regulatory
networks [76], and to estimate parameters [77]. In addition,
the convergence of certain GAs has been formally proved for
problems involving only discrete parameters [17, 18], and some
steps in providing bounds for the runtime have been done
[78, 79]. However, GAs lack the formal proof of convergence

FIGURE 4 | A schematic representation of a genetic algorithm. (A)

shows the selection of four parents in a population of twelve individuals,

highlighted in red and white. (B) shows the crossover for the selected

individuals. The crossover points are randomly selected (red lines) for the

couple of selected individuals (left) and the recombination of their genetic

material produces the new offspring (right). (C) shows the effect of mutation on

the offspring. The mutation randomly alters part of the genetic material.
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for problems involving continuous parameters and theoretically
proved termination criteria.

As a consequence, the convergence of the algorithms is
evaluated a posteriori, for instance introducing a maximum
number of allowed iterations or measuring the changes in
the fitness of the population. Nevertheless, in the proximity
of the solution, the rate at which the evolution takes place
and the fitness increases may slow down. Thus, the maximum
number of generations may be encountered before reaching the
global solution. In some cases, to get around this limitation
and since GAs are very effective in determining the region
of the space of parameters where the global solution is
located, they have been coupled with other methods. In this
way, it is possible to precisely locate the global solution
once a GA has selected the proper region of the space of
parameters or it has provided promising candidate solutions
[80].

In Algorithm 3 we present a basic implementation of
a GA, called simple GA algorithm (sGA), as described in
Goldberg [73]. This algorithm effectively implements the three
fundamental steps of selection, recombination and mutation.
The algorithm begins mapping the vectors of parameters into
strings. In this way, the parameters and the strings are in
one-to-one correspondence and the algorithm can work with
the more convenient representation. A detailed description
of these transformations is provided in Goldberg [73]. An
initial population of candidate solutions is then generated.
As for the starting points of the multi-start approach, these
candidate solutions may be randomly chosen in the space of
parameters, or more elaborated sampling techniques may be
applied [35–37]. Once the initial population has been produced,
the algorithm enters its main loop. Each iteration of the sGA,
also referred as generation, produces a new population of strings.
Among the many possible termination criteria [81], here we
considered the maximum number of generations (Algorithm 3,
line 3).

At each iteration, the selection occurs as a weighted random
choice among the candidate solutions, where individuals with
higher fitness are more likely to be selected (Algorithm 3,
lines 7–8). At this stage, selected individuals are cloned in a new
pool of candidates, called intermediate population (Algorithm 3,
line 9). The size of the intermediate population, here assumed
for simplicity to be equal to the population size N, may vary.
The selection of the candidates may occur in many ways
[82]. The here-implemented roulette selection [73] divides an
interval proportionally to the fitness value of each candidate
solution (Algorithm 3, line 5), and then the individuals are
randomly selected in this interval (Algorithm 3, lines 7–9).
Other popular strategies for the selection of candidate solutions
are the genitor algorithm [83] and the tournament selection
[84]. The first, generates each newborn as in the roulette
selection. However, it does not use an intermediate population
and the newborn replaces the worst string in terms of fitness
in the original population. On the other hand, the tournament
selection randomly picks two or more individuals and only
the best in terms of fitness is cloned in the intermediate
population.

Input: a fitness function c that measures the goodness of the
fit, for example (Equation 5); the population size N;
the rate of mutation σ ; the maximum number of
generations G.

Output: the best candidate solution p̄ after G generations.
1 Map the parameters into strings of length l;
2 Generate an initial population of strings P = {p1, ..., pN};
3 for G times do
4 P′ = ∅;

5 Compute fi = c(pi), i = 1, ...,N and f0 =
N

∑

i=1

fi;

6 for N times do
7 Generate a random number j ∼ U(0, 1);
8 Determine the smallest integer k such that

k
∑

i=1

fi > jf0;

9 Update P′ = pk ∪ P′;
10 end

11 P = ∅;
12 for N times do
13 Generate two integer random numbers

m, n ∼ U(1,N);
14 Select pm, pn ∈ P′;
15 Generate an integer random number t ∼ U(1, l);
16 p̃ = {pm{1 : t}, pn{t + 1 : l}};
17 for i = 1, ..., l do
18 with probability σ randomly variate p̃{i};
19 end

20 Update P = p̃ ∪ P;
21 end

22 end

23 Determine the best solution p̄ such that c(p̄) = min
p∈P

c(p);

Algorithm 3: A simple Genetic Algorithm.

Once the intermediate population has been determined, its
individuals are mated and their genetic material is recombined
to determine the next generation of solution candidates. For
instance, in the here described single point crossover (Figure 4B),
two parents are randomly selected (Algorithm 3, lines 13–14)
and at a random position in the string, their genetic material
is recombined (Algorithm 3, lines 15–16). As for the selection,
the recombination of candidate solutions may be computed
in several ways. Some implementations consider more than
two parents at time or more points for the crossover, whereas
others produce more than one child from the selected parents
[16]. In contrast, some implementations determine part of the
new population by cloning the best candidates in terms of
fitness without recombination at all [85]. This is the case of
the elitist selection, which is commonly adopted to enhance the
performance of genetic algorithms.When this kind of selection is
employed, the convergence to a global solution has been proved
for problems involving discrete parameters [17, 18].

After the recombination, the mutation takes place
(Figure 4C). With a certain probability σ , usually smaller
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than 0.01, each element of the string may be randomly replaced
(Algorithm 3, line 18) [82] and this new string joins the new
population (Algorithm 3, line 20). Once the termination
conditions are met, the algorithm determines the best solution
among the latest population and returns the corresponding
vector of parameters (Algorithm 3, line 23). As for MCMC
methods, if the results are not satisfying and the latest population
has been saved, the algorithm may be restarted from there in the
seek of a better solution.

GAs are powerful approaches to explore high-dimensional
spaces of parameters. However, the choice of the population size
is crucial: with small populations the algorithms are fast, but they
may prematurely converge to local solutions. Larger populations
permit the algorithms to better explore the spaces of parameters,
but more fitness function evaluations are required. The bigger
is the population size, the slower becomes the procedure. In the
seek of a balance between the population size and the exploration
effectiveness, different implementations of the GAs have been
proposed to circumvent the slow down due to large populations.
Several of them parallelize the algorithm, or part of it, to speedup
the procedure. For example, the master slave parallelization
performs the steps of fitness function evaluation, recombination
and mutation in parallel, calculating these operations in different
cpu cores for different parts of the population [86]. On the other
hand, the island model considers many small sub-populations
that evolve independently, i.e., islands, and only after a certain
number of generations some of their individuals can migrate in
other islands [87]. Analogously, the cellular genetic algorithm
arranges the candidate strings in a grid of cells and they can mate
only with their neighbors [82]. The island and cellular approaches
refine many local solutions that are then compared through
the migration, which guides the procedure toward the global
solution. Moreover, they are suitable for parallel implementation
as well, assigning each island or cell to a different cpu
core.

GAs are a specific family of algorithms belonging to the
class of Evolution Strategy (ES) [88]. This class of optimization
techniques shares with the GAs the fundamental steps of
selection, recombination, and mutation. In addition, ESs may
include steps of self-adaptation, which tune parameters such as
the mutation rate [89, 90]. Analogously, ESs may implement
more sophisticated selection strategies that increase the selection
pressure [88]. For example, the so called plus strategy that may
lead to better performance [91]. Certain implementation of GAs
take advantages of those improvements as well.

Despite the lack of termination criteria or proven convergence
for the most general case, genetic algorithms are considered
valuable tools to explore the space of parameters thanks to their
flexibility [67]. The continuous exchange of genetic material
among individuals permits the algorithm to move in the space
of parameters evolving toward the best solution, even if there
are many local solutions. Moreover, mutation adds variability
to the population. This allows the exploration of new areas of
the space of parameters that would otherwise remain unexplored
[73]. Finally, GAs can be applied to a broad range of problems,
from unconstrained to constrained optimization. They permit to
solve problems involving both continuous and discrete variables,

as well as problems with continuous or non-continuous objective
functions.

5. CONCLUSIONS

We presented three powerful methods for global optimization
suitable for computational systems biology applications. We
highlighted pros and cons of the examined approaches and we
provided references for their improvements that may better suit
specific tasks.

We presented the multi-start approach for a non-linear least
squares method [14] that is suitable for parameter estimation
when deterministic simulations are involved, as well as for
statistical regression. The least squares methods have many
attractive properties like the assured local convergence under
specific hypotheses or the valuable termination criteria that
assess the convergence of the method. The multi-start approach
repeats the least squares procedure from different starting points
to explore the space of parameters in the seek of the global
solution. However, these methods cannot be applied in case
of non-continuous objective functions or discrete parameters.
We also illustrated the random walk Markov chain Monte
Carlo method [15] that may be applied for many statistical
inferences, including parameter estimation, and it is suitable
for the framework of Bayesian inference. This method may be
applied in case of continuous and non-continuous objective
functions, as well as when stochastic simulations are involved.
Moreover, its asymptotic convergence to the global solution is
assured under mild hypotheses. In spite of this, the asymptotic
convergence does not provide any termination criteria, and
hence, the convergence cannot be certified. Finally, we have
illustrated a simple Genetic Algorithm [74], a heuristic nature-
inspiredmethod that can be applied to a broad range of problems.
Simple Genetic Algorithm is suitable for problems involving
continuous and non-continuous objective functions, as well as
continuous and discrete parameters. However, there are no
guarantees on its convergence for the most general case, so it
requires cautious evaluations of the results.

We focused on the general ideas behind each method, without
blurring the description with many details. For this reason, we
included simple implementations that, in our opinion, could
better guide in understanding the algorithms and the approaches.
Therefore, our description does not present all the latest
improvements and extensions of the considered optimization
techniques. These improvements include more accurate versions
of least squares procedures [14] and genetic algorithms [75],
implementations of MCMC methods that support discrete
variables [71] and hybrid methods that merge MCMC and
genetic algorithms [92]. These and many other improvements
have enlarged the domain of application of these methods
and have ameliorated their accuracy and convergence, leading,
however, to more complex procedures.

The presented approaches coexist with a vast literature
of exact and heuristics methods. For example, there exist
the simplex [9] and the gradient [14] methods, evolutionary
strategies [88], the branch and bound [93], the particle
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swarm [94] or the simulated annealing [95], and countless other
approaches. For the sake of simplicity and shortness, we have
not covered the entire spectrum of existing deterministic and
stochastic methods. We acknowledge that other reviews have
already pointed out the importance of global optimization in
computational systems biology [5, 67, 96–99]. However, for most
of them, the authors efforts were focused on one particular
methodology. On the contrary, this review aims at providing a
guide to solve common problems in the field, without focusing
on one specific approach.
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