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Bifurcation Structures in a Bimodal
Piecewise Linear Map
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" Department of Differential Equations and Oscillation Theory, Institute of Mathematics, National Academy of Sciences of
Ukraine, Kyiv, Ukraine, ? Instituts fur Systemtheorie und Regelungstechnik (IST), University of Stuttgart, Stuttgart, Germany

In this paper we present an overview of the results concerning dynamics of a piecewise
linear bimodal map. The organizing principles of the bifurcation structures in both
regular and chaotic domains of the parameter space of the map are discussed. In
addition to the previously reported structures, a family of regions closely related to the
so-called U-sequence is described. The boundaries of distinct regions belonging to these
structures are obtained analytically using the skew tent map and the map replacement
technique.
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1. INTRODUCTION

Various bifurcation scenarios have always been in focus of many researchers from different
theoretical and applied fields. It is know that bifurcation sequences often differ for piecewise smooth
(PWS) systems with respect to smooth ones (see, e.g., [1]). In particular, this happens due to border
collision bifurcations (BCB). This specific notion was initially introduced Nusse and Yorke in [2],
but similar phenomena were also investigated earlier in Leonov [3] and Feigin [4] (see also [5, 6]
and references therein). Recall that due to a BCB an attracting fixed point may be translated to
an attracting cycle of any period or even to cyclic chaotic intervals. The simplest example of such
behavior is the skew tent map, whose bifurcation scenarios are completely described due to intensive
studies [7-10]. Therefore, the skew tent map is often used as a BCB normal form when studying a
generic 1D continuous PWS map [5, 11-13]. Another peculiar situation for PWS maps can happen
when an eigenvalue (or a conjugate pair of complex eigenvalues) of a cycle crosses the unit circle.
Because of certain degeneracy of the map at the bifurcation value, the standard theorems for flip,
fold, or Neimark-Sacker bifurcations cannot be applied, and moreover, the result of such a crossing
can be atypical. For example, an eigenvalue of a fixed point becomes —1, but after the bifurcation
one observes not a 2-cycle, but a chaotic attractor [14]. Further, the bifurcation structure of the
skew tent map also illustrates such a phenomenon as robustness of chaotic attractors [15]. That is,
in the parameter space there exist connected domains that are characterized by chaotic attractors,
that never happens in smooth maps.

In the present paper we continue studying the bifurcation structure of the parameter space
of a generic 1D continuous piecewise linear bimodal map f. In our previous works basic families
of regions related to regular and chaotic dynamics were investigated. In Panchuk et al. [16] we
disclosed three basic bifurcation structures related to attracting cycles: the skew tent map (STM)
structure, the period adding (PA) structure, and the fin structure. The STM structure concerns cycles
whose points are located on the two adjacent branches only (the left and the middle or the middle
and the right). The PA structure is composed by regions associated with cycles placed on the two
outermost branches (the left and the right). The fin structure is related to periodicity regions having
one common boundary with a PA-region.
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In Panchuk et al. [17] we described certain parameter regions
corresponding to chaotic attractors (chaoticity regions) and
related bifurcation structures. These chaoticity regions neighbor
PA and fin regions, and their boundaries are given by homoclinic
bifurcations of repelling cycles. In general, if a cycle has negative
multiplier, then a merging bifurcation occurs, and the number
of pieces of a chaotic attractor is halved. If a cycle has positive
multiplier, an expansion bifurcation occurs, and one observes an
abrupt increase in size of the attractor with uneven density of
points after the bifurcation. For more details see, e.g., [18].

In the current paper we summarize the results of previous
works and describe new family of periodicity regions observed
in the parameter space of the bimodal map. They emerge from
the border that separates the parameter region D;/D, where
asymptotic dynamics is associated with two adjacent branches
(STM structure) from the region Dy where all three branches
can be involved. For parameters belonging to D;/D, symbolic
sequences of the cycles form the so-called U-sequence (see,
e.g., [19, 20]), among which only basic cycles can be stable
while all others are unstable. For parameters in Dy every cycle
with symbolic sequence belonging to U-sequence has a new
complementary cycle (whose symbolic sequence differs by one
symbol) having a single point on the third branch. If the slope of
the third branch is small enough, this new cycle is stable. We refer
to this situation as the “stabilization” of a U-sequence cycle.

The paper is organized as follows. In Section 2 we introduce
the main definitions and notations used throughout the paper.
In Section 3 we recall how the STM structure is formed. Section
4 is devoted to PA and fin regions related to attracting cycles.
In Section 5 we explain the phenomena that occur when the
invariant absorbing interval involving only one border point
collides with the second border point and expands over the third
branch. In Section 6 the chaoticity regions surrounding the PA
and the fin structures are studied. Section 7 concludes.

All results described are obtained in form of explicit analytic
expressions, which can be used for various applied problems. For
such a practical usage see, for instance, [21, 22].

2. PRELIMINARIES

2.1. Basic Notations
Let us consider a family of 1D continuous piecewise linear maps
f : R — Rsuch that

fr(x)=acx+pug, x<dg,
M) =apmx+ pam, de <x <dg, (1)

fRx) = arx + ur,

with  fr(de) = fmlde)s  famldr) =frldr).  (2)

fix f(x)=

x> dr,

Here the slopes az, ar, ar, the offsets prz, i, R, and the
border points d,dr are real parameters, and we suppose that
d; < dr.By using the conditions (2) any two of eight parameters
can be eliminated, but for the sake of generality, we keep all of
them.

In Panchuk et al. [16, 17] the regular and chaotic dynamics of
map (1) is studied in the cases (i) |az| < 1,|lar| < 1 and (ii)

0 < ar < 1,ar > 1. In the present work we consider the case
ar > 0,ar = 0.

Let us first introduce the notations used throughout the
paper.

e We denote by p a point in the parameter space of the map f.

e The values of f at the border points, £ : = f(dz) and r : =
f(dRr), are called (following the tradition of French school on
Iteration Theory [23]) critical points. Successive images of £
and r are denoted as £; := f'(€) and r; := fi(r), i > 1.

e The term partition refers to the intervals Iz = (—oo,d.],
Ipm = (de,dr], and Ig = (dr,00). With each partition
we associate the corresponding symbol, £, M, and R,
respectively. That is, every point x € I is coupled with the
symbol s, where s € {£, M, R}.

e A cycle {x,‘};‘:_o1 of f is associated with the symbolic sequence
0 =50...5...5:~1, lo| = n,s; € {£, M, R}. The cycle is
denoted by O, .

e Consider a cycle O,. Clearly, any cyclic shift of o: 0; =
Si...Sp—150...Si—1 corresponds to the same cycle O,.
Resting on the sequence o; one can construct a function
composition f" = f; o...0f;,_,ofy0...0f_ 1= fo.
Then every point x; satisfies f,(x;) = x; := x,,. For instance,
the points of the 3-cycle {xg, x1,x2} with xo € Iz, x1 € Iz,
X, € IR can be written as xgo = XL MR, X1 = XMRL>
X3 = xR M- Clearly, in the main notation for the cycle O,
any o; can be used, and we choose either the shortest one or
the most suitable for a particular purpose.

e v, denotes the multiplier of Oy, given by v, = ]_[?:_01 a;.

e The periodicity region associated with the stable cycle Oy is
denoted by Py .

e Besides fixed points and cycles the map (1) can also have
attracting n-cyclic chaotic intervals denoted as Q,, = { ],-};’:_01.
Hereby every J; is a closed interval such that (i) f” is chaotic
on J;, and (ii) f(J;) = Ji+1,i = 0,n—2, f(Ju—1) = Jo. For
convenience, Jy refers to the leftmost interval.

e The symbol C, denotes a region in the parameter space related
to Q,. We also refer to C, as a chaoticity region.

The regions P, and C, are confined by boundaries related to
certain bifurcations. The boundaries of periodicity regions P, are
usually associated with one of the following bifurcations: a border
collision bifurcation (BCB) occurring when a point of a cycle
collides with one of the border points; a degenerate flip bifurcation
(DFB) which occurs when the multiplier of a cycle equals minus
one; a degenerate +1 bifurcation (DB1) associated with the
multiplier being equal plus one. For details on these bifurcations
we refer to Sushko and Gardini [14], Nusse and Yorke [2],
Banerjee et al. [5], and Zhusubaliyev and Mosekilde [6].

The boundaries of chaoticity regions are often related, besides
BCBs and DFBs, to homoclinic bifurcations of a repelling cycle
located at the immediate basin boundary of the attractor. For
instance, a merging bifurcation or an expansion bifurcation leads
to changing the number of intervals of a chaotic attractor.
Whereas a final bifurcation (known also as a boundary crisis)
implies a transformation from a chaotic attractor to a chaotic
repeller (see, e.g., [18]). A homoclinic bifurcation is always
associated with an unstable cycle O, and is defined by the
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condition ¢; = x,,, where x, is the appropriate point of O, and
¢j = f/(c), ¢ € {£, 1}, is the critical point of the proper rankj > 0.

For the bifurcation boundaries of periodicity and chaoticity
regions we use the following notations:

° S(‘fi denotes a BCB of the cycle O, which occurs when x,, = d
withd € {dg,dr}.

e 1, and 6, are used for a DFB and a DB1 boundaries,
respectively, associated with v, = —1 and v, = +1.

° y;f , {;Jt and X;{. refer to homoclinic bifurcations: a merging
bifurcation, an expansion bifurcation, and a final bifurcation,
respectively.

2.2. Main Characteristic Regions in the

Parameter Space

At first we describe the regions characterized by simple dynamics,
that is, either an attracting fixed point or divergence to infinity.
Then a brief description of regions related to more complex
behavior follows (see Figure 1).

The function f can have at most three fixed points!, one in
each partition I;, s € {£, M, R}. A fixed point Os, s € {£L, R},
given by x; = us/(1 — a,) appears/disappears through collision
with the border point d;. The related bifurcation boundary is

Ss = {P LM = (1 - as) ds} (3)

Notice that the upper index d; is omitted in the notation &
because it is clear that at £, the collision occurs with d, while
at &g it occurs with dr. Below, for shortness, we drop upper
indices in notations for BCB boundaries whenever it is clear
which border point is involved in the bifurcation (namely, when
the first symbol of o is £ or R the related border point is d or
dr, respectively).

From 0 < a; < 1 the stability regions of O, and O are
obtained:

Pr=1{p: uc <A —ag)de, 0<ag <1},
Pr ={p: ur > (1 —ar)dr, 0 <ar < 1}. (4)

The stability region P is separated from the divergence region Ss
by the boundary a; = 1, where

Sc={p: mg <A —ag)de, ur < (1 —ar)dg, ac > 1},
Sr=1{p: ur > 1 —ar)dr, puc > 1 —ag)de, ag > 1}

5)

(see Figure 1 where P, and Sg are shown).
The region

Pm=1{p: uc >0 —ag)de, uc+ 1 +ag)
de —(Q+aR)dr < pr < (1 —ar)dr}, (6)

!Except the case where the left/the right branch lies on the main diagonal. In this
particular situation every point x € I/x € IR is a fixed point and has a stable set
consisted of all its preimages, if they exist.

bo

Dy

ML

FIGURE 1 | The parameter plane (¢, ) of the map ffor0 <a, <1
and ag > 1. The regions P, P, are related to stable fixed points. The
regions S1, Sp, Sg are related to diverging orbits. The regions D1, Do, and Dg
are associated with asymptotic orbits located in /2 U/aq, Iaq Ul , and

Ip Ula Ulr, respectively.

associated with the attracting fixed point O given by xpq =
um/(1—an),is confined by three boundaries. Namely, the BCB
boundary &, the BCB boundary £, and the DFB boundary

nm=1{p:ur =pc+A+ag)de — 1 +ar)dr}, (7)

related to the condition axq = —1.
The rest of parameter space is occupied by the region

D={p: us>0—ag)de, upr < (1 —ar)dg,
ur < pg+ A +ag)de — (1 +ar)dr}, (8)

which is marked by blue line in Figure 1. First, we notice that for
certain parameter values asymptotic orbits of f are located only
on the two adjacent branches. Namely,

1. If £ < dg then only Iz and I are relevant for asymptotic
dynamics of f. Hence, the surfaces &z, nay, and b; (defined
from the condition £ = d) confine the region

Dy ={p: 1 —ag)dg < pg <dr —dcag,
UR < pgc+ (A +ag)de — (1 +ar)dr} (9)

(outlined red in Figure 1). The related bifurcation structure—
skew tent map (STM for short) structure—is described in
Section 3.

2. Similarly, the condition r > d holds in the region

Dy ={p:ds —drar < ur <1 —ar)dr,
UR < pg+ (A +ag)de — (1 +ar)dr}, (10)

(outlined yellow in Figure 1). This region, also having the
STM structure, is confined by ér, a4, and the boundary b,
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corresponding to the condition r = dz. For p € D, only
Inpm and I are relevant for asymptotic dynamics of f (see
Section 3).

Finally, the conditions £ > dr and r < d define the region
Dy ={p: pr <dg —drar, pc>dr —dcac}, (1)

delineated green in Figure 1). For parameter values belonging
to Dy, orbits of f are located on either Iz and Iz, or involve
all three partitions. Two basic bifurcation structures observed in
the region Dy are period adding (PA for short) structure and fin
structure, described in Section 4.

Figure 2A presents an example of the typical bifurcation
structure related to regular dynamics in the (uz, ur) parameter
plane of the map f (the colors correspond to periods of cycles
as indicated in the color bar). In Figure 2B, on the contrary,
colored zones correspond to chaoticity regions related to chaotic
attractors with different number of intervals (colors correspond
to the number of intervals), while periodicity regions are painted
gray.

In the following sections we characterize different bifurcation
structures observed in the parameter space of the map (1).

3. SKEW TENT MAP STRUCTURE

Letp € D; or p € Dy, then asymptotic dynamics of the map (1)
is associated with two adjacent partitions only. In such a case
the map f is locally topologically conjugate to the famous skew
tent map, which was extensively studied already three decades
ago (see e.g., [7-10]). Below we summarize main facts concerning
this bifurcation structure, which we refer to as the skew tent map
(STM) structure.
Let us consider the skew tent map family g, g,

gAlx) = ax 4+ p,x <0,

g8(x) = Bx+ 1, x > 0, (12)

Sapo i X = Qupu(X) = {
with ¢f < 0. All maps from this family with 4 > 0 (. < 0)
are topologically equivalent to g, g,1 (gu,8,—1). Moreover, gy g1
is topologically equivalent to gg 1. Hence, to describe the STM
structure it is enough to fix © = 1. Non-trivial dynamics in this
case is observed for @ > 0, B < 0. Below, for shortness, we drop
the indices denoting the parameters and refer to the skew tent
map simply as g.

Any point x < 0 is associated with the symbol A, while a point
x > 0 corresponds to the symbol B. The critical point is denoted
as ¢ := g(0) and its images as ¢; == g'(c).

The stability region of the fixed point Op is confined by the
DB1 boundary 63 = {(«,8) : B = 1} and the DFB boundary
ns = {(a,p) : p=—1}

The only possible stable cycles of g are the basic n-cycles
Opgn-1, n = 2. Bach periodicity region Py 4n—1 is confined by
the BCB boundary and the DFB boundary

1—a" !
{(%/3)1 B= —m},

{«w): p =—ﬁ} (13

EABan—2

npAn-1

(see Figure 3 where the boundaries £ 454 and 1z 42 are marked).
The BCB boundary & 453 is particular, because it coincides with
the DFB boundary 1. For every n > 3 the boundary & 45 4n—2
corresponds to the fold BCB leading to the appearance of the
basic cycle Og 4n—1 and its complementary cycle Oz gn—2 which
is necessarily unstable. The boundary ng 4n-1, n > 3, is related
to the DFB of the cycle Og 4n-1, which leads to the appearance
of 2n-cyclic chaotic intervals Q,,,. The DFB of the fixed point O
and the 2-cycle Op 4 are particular as described below.

The chaoticity region C,, n > 3, associated with Qay, is
the area restricted between & g5 4n—2, N5 4n—1, and yg;ln, 1. The
latter one is related to the first homoclinic bifurcation of the cycle
Op_gn-1. This bifurcation occurs when

Cn = Xgan—1 With ¢y = ggan—154n-25(¢). (14)
The condition (14) holds for
Vi ={@p): 2" Vg —pra =0} (3

Crossing the bifurcation boundary yg” ._1 leads to the transition
Qyn = Qp, which is also called the merging bifurcation. The
existence region for n-cyclic chaotic intervals Q, is C, confined
by &apa»-2, boundary y, ;. and the boundary ¢, ,,
corresponding to the first homoclinic bifurcation of the cycle
Op2_gn-2. This homoclinic bifurcation occurs when

cn = gpan—1(0) = XgAn—25 (16)

which gives

Cpng ={@B): " B+ p—a=0}. (17
Crossing the boundary {;" 'un—2p3 leads to the transition Q, = 0,
which is also called the expansion bifurcation. For more detailed
description of merging and expansion bifurcations we refer to
Avrutin et al. [18]. In Figure 3 the boundaries yg A2 and gg B
are marked.

Cases n = 1 and n = 2 differ from the others. The DFB of the
fixed point Op leads either to an attracting 2-cycle or to 2" -cyclic
chaotic intervals, where m > 1 depends on particular parameter
values. As for the 2-cycle O 43, when it loses stability due to DFB,
there can appear 2" -cyclic chaotic intervals Qym, where m > 2
depends on «, 8. Every region Cyn is adjacent to Cym-1 from one
side and to Cym+1 from the other side. The boundary separating
Cym and Cym+1 is associated with the first homoclinic bifurcation
of the 2"-cycle whose symbolic sequence is the m-th harmonic of
B. Recall that to obtain the k-harmonic pg of 5 one has to apply
concatenation operator iteratively as follows:

po=B py=A  pr=pk-1pp_ k=1, (18)
where ,0}’(_ | differs from pg_; only by the last symbol. For
example, p1 = BA, po = BABB, p3 = BABBBABA, and
so on. Notice that according to the rule (18) it is possible to
define harmonics of an arbitrary cycle O, provided that x, is
the rightmost point of the cycle. For instance, in the condition
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11

FIGURE 2 | Bifurcation structure of the (1., pr )-parameter plane of f. (A) Regular dynamics: colors correspond to periods of related cycles, while gray
hatched areas are associated with diverging orbits. (B) Chaotic dynamics: periodicity regions are shown in gray, while chaoticity regions related to chaotic attractors
with different number of intervals are shown with different colors. Parameters: a, = 0.5,ag = 1.3,d, =0,dg =0.3.

13 15

17 19 21 23 25 27 29

-3.5
0

FIGURE 3 | Bifurcation structure of («, 8) parameter plane of the skew
tent map.

(14) for the first homoclinic bifurcation of Oz 4n-1 the symbolic
sequence BA" ~ 1 BA"~ 213 is the first harmonic of BA" ~ 1.

The condition for the first homoclinic bifurcation of the
2"-cycle O,,, is

(19)

gpm+1(c) = ‘xﬂm’

that holds for

(71)m+1

vt = !(a,ﬁ): o gPm1 (%) —1=o0!,

(20)
where §,, = (2" — (—=1)")/3, m > 1. As mentioned above
this bifurcation leads to the transition Qym+1 = Qm, The
case m = 0 (i.e., the merging bifurcation y,?) is related to the
first homoclinic bifurcation of the fixed point Op leading to the
transition @, = Q. For m — oo the curves )/qum+1 in the
(o, B)-plane crowd the point («, 8) = (1, —1) (see Figure 3).

The region related to diverging orbits (hatched in Figure 3)
is confined by the boundary related to the first homoclinic
bifurcation of the fixed point O 4, which occurs when ¢; =

gB(c) = xa:

o

X;{:{(%ﬂ%ﬁ=7}- 1)

-«
At this bifurcation the absorbing interval ] = [c1,c] collides
with a boundary of its basin of attraction (given by O 4 and its
preimage) and for B < = the interval ] is no longer absorbing
causing a typical orbit to diverge. Such bifurcation is also called a
final bifurcation.

Forp € D; or p € D, the original map f is locally topologically
conjugate to g with 8 = aaq, ¢ = ag or o = ag, respectively,
and p = 1 in the neighborhood of d. or dg, respectively. Thus,
to get the boundaries of STM-regions in the parameter space of f
it is enough to substitute £ or R, respectively, instead of .4 and
M instead of B. In Figure 4 the STM-regions in the (uz, ur)
parameter plane associated with attracting cycles are colored with
moderate gray, while for chaoticity regions only their boundaries
are shown (blue lines). The hatched region in D, is related to
diverging orbits.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

May 2017 | Volume 3 | Article 7


http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Panchuk et al.

Bimodal PWL Map: Bifurcation Structures

-V ¥iraim
@-"ir
@72
@-%,,

©‘CJ{?1LM

FIGURE 4 | Bifurcation structure of the (1., ur )-parameter plane of
map f: periodicity regions of the STM structure, as well as the PA and
the fin structures are shown moderate gray, light-gray, and dark-gray,
respectively. For chaoticity regions of the STM structure their boundaries are
shown with blue lines. For PA regions of the first complexity level their
boundaries are plotted red, while green color corresponds to the second
complexity level. The parameters are as in Figure 2.

4. BIFURCATION STRUCTURES
INVOLVING BOTH BORDER POINTS:
REGULAR DYNAMICS

Let us briefly recall how other two periodicity structures are
formed in the parameter space of f for p € Dy.

4.1. Period Adding Structure

Consider a cycle O, of the map f with az > 0, ag > 0
such that all its points belong only to Iz U Iz. Consequently, o
consists only of the symbols £ and R. Then the related periodicity
region P, is a part of the so-called period adding structure (PA
structure). Such structures are also known as Arnold tongues or
mode-locking tongues and often appear in the parameter space
of a certain class of circle maps, 1D discontinuous maps, two-
and higher-dimensional maps near a Neimark-Sacker bifurcation
boundary, etc. (see, for example [3, 24-27]). We recall that the
regions belonging to PA structure are located in the parameter
space according to a specific order based on Farey summation
rule. Namely, consider two cycles Oy, of period n; and Oy, of
period n, with o; containing m; symbols £. Suppose also that
the fractions m;/n; and mjy/n,, called also rotation numbers,
are Farey neighbors, that is, |m;ny — myn;| = 1. Then in the
parameter space between the two regions related to O,, and Oy,
there is a region related to a cycle Oy, of periodicity ny + ny with
o3 having m; + my symbols £, and thus, the rotation number of
Oy, is (my +my)/(ny + ny). Notice that the cycles O,,, i = 1,2, 3,
are not necessarily attracting.

In Figure 4 the regions composing the PA structure are shown
light-gray.

If0 < ag,ar < 1 then any PA-cycle is globally attracting
inside the region of its existence. Indeed, in this case for p € Dy
there always exists an invariant absorbing interval ] = [r, £], and
hence, there are no divergent orbits. Moreover, we consider an
arbitrary PA-cycle O, and immediately get that its multiplier is
Vo = alay " € (0,1), where m is the number of Lsin 0.

However, if one of the slopes is greater than one, while
the other is between zero and one, the inequality v, < 1 is
satisfied only if n < m(1 — log, . ar), so that not all PA-cycles
are attracting. There can also be divergent orbits since there is
an unstable fixed point on the branch whose slope is greater
than one. Furthermore, the interval J is no longer absorbing
after the final bifurcation corresponding to the first homoclinic
bifurcation of this unstable fixed point. The related bifurcation
boundary confines the region in the parameter space in which a
typical orbit diverges. For instance, for 0 < az < 1,ar > 1 (as
in Figure 4) the final bifurcation X% occurs when xg = ¢, and
thus, for any (1 — ar)(acde + pne) < pr < dg — ardg all
orbits go to infinity.

To simplify calculation of analytic expressions for PA-region
boundaries we use the so-called map replacement technique [28].
At first we group symbolic sequences of PA-cycles into infinite
number of families complying with their complexity level (as in
[3]). For example, two families related to basic cycles form the
first complexity level:

(22)

Zia= (R3S = (RO

1 1
Notice that both families contain the common sequence LR =
RL.

To construct the rest of symbolic sequence families we
introduce the following symbolic replacements:

m m (23)

Kﬁ:{z—wnm KR._{£—>£R£’“
T | R—= RLR™ TR RL
Application of a symbolic replacement k4 to a symbolic sequence
o means that each symbol £ in o is replaced by LR™ and
each symbol R by RLR™. Similarly, application of «¥ means
replacing all £’s by LRL™ and all R’s by RL™.

Symbolic sequences of higher complexity levels are obtained
by iterative application of k% and «¥. More precisely, applying
Kfz and KVE to X1,; we get the families

Y2 = {572”2 (Rcan)n1 }:Tm:l ’

$a = {LRL™ (RC™)M)Y (24)
And then applying k£ and k% to X1 we obtain

Tap = {RLR™ (LR™)™}*

Sap = {RL™ (CRL™)MYY (25)
The four families %;5, i = 1,4, compose the second complexity

level. Notice that the families ¥ ; and X3, contain the common
sequence LRRLR = RLRLR with n; = ny = 1, while
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352 and X4, share the sequence LRLRL = RLLRL with
ny =ny = 1.

In short the applied procedure can be written as

B12 = ki (B11), oo = ko (Z11),

32 = kL (221), Tap = ke (Ta1). (26)
Further, applying the replacements (23) with m = n3 to four
families of the second complexity level, we obtain 2° families %3,

j = 1,23, of the third complexity level, and so on. In this way all
symbolic sequences of PA-cycles are obtained.

Now let us identify the PA-regions in the parameter space of
the map f. Each such region has two boundaries corresponding
to BCBs of the related cycle. For the basic cycles Oggrm, n; > 1,
these boundaries are obtained directly from the relevant BCB
conditions giving

Ecrm ={peDy : ug = d11(ag, ar, ur>de,m)}

(27)
Eprrm—1 ={p€Do : g =V1(ag,ar, ur,dr,n1)},
where
<I>1,1 (Cl[,, AR, LR, d> nl) = —1//(61R, nl)luR + ‘P(“’R) arc, ﬂ])d,
(28)
Wy i(ag, ag, ur,dsm) = — (ac + ¥ar,m — 1)) ur
+arg(ar,ac,n)d (29)
with
1—a"b 1—a"
<ﬂ(€l, b,n) = P W(% n) = m- (30)

For Orcm, n > 1, their boundaries are obtained from (27) by
interchanging £ and R. So that, the basic PA-regions are defined
as

Prrm = {p € Dy:Vi1(ac,ar, Ur,dr,n1) < iz

< cbl,l(aﬁxa'R’ UR> dﬁ)nl)}’ (31)
Prem = {p € Do: Vi1(ar,ag, e, de,m) > Ur
> q)l,l(aR) arc, e, dR; nl)} (32)

Further, using the map replacement technique we obtain
periodicity regions associated with cycles whose symbolic
sequences belong to the families ¥;, and ¥, given in (24).
The trick is as follows. Any symbolic sequence T € X, can
be written as 7 = K,fz (o) with certain n, > land o € X,
with particular n; > 1. Then to get the BCBs £92 and £9R we
take the expressions (27) for £zrm and £ »m -1 and substitute
the parameters az, gz, ar, ur by agrm, perm, g prm-1,
HRLRm-1:

s,(nﬁz([jR"I) = {P €Dy : ppRrm = q)l,l(aLan,aRLan—l,
MR/;anfl,dL)nl)},
EKHKZ(RLR"PI) = {P €Dy : pprm = ‘pl,l(acR”z,aRg'anfl,

MR LRm2-1s d'R,: nl)} (33)

Recall that agrm, puerm and ag,ppm-1, Ugreorm-1 denote,
respectively, the coefficients of the following composite
(auxiliary) functions

fern =frofro--ofr,  fremnot =fROfrofR O ofR
— —

n2 ny—1

Schematically, we summarize the applied procedure as follows:

ny L
SLR LoLR™ R>RLRM- S (Lrm)

(34)

ERrrm-1 a(émmz"rl)-

L—LR" R—-RLRM!

Clearly, the coeflicients asrm, erm, A prm-1> WRoRM-1
depend on ag, iz, ar, R, and hence, the equalities in (33) can
be solved with respect to 1., implying the PA-region related to
Oké(ﬁRnl) to be

,PKYg(ﬁR"I) = {peDy:Vilaz,ar, ur,dr,ni, ns)

< Mr < (Dl,Z(aﬁ)aR) M'R,)dﬁinlin2)} (35)

where W) 5, @) are certain functions (see [16] where expressions
for W) 5, @, are given in explicit form).

Similarly, any symbolic sequence T € X, can be written as
T = K,E(o) with n; > 1 and o € X;;. To get the expressions
for the boundaries of P, we perform analogous trick replacing
in (27) the parameters ar, (o, ar, nr with the coeflicients
Apprm—1> WpeRem-1, Arcn, Wren of the related (auxiliary)
composite functions. The resulting new equalities can be resolved
with respect to iz, and the related PA-region is

PK,E(CR”I) = {p e Dy:Vyslag,ar, ur,dr,n1,n) < g

< q)Z,Z(aC) AR, UR» d[,’ ni, 7’12)}. (36)

with certain W0, Pr.

As for the cycles whose symbolic sequences belong to the
families X3, and X4, (25), boundaries of the related periodicity
regions are obtained by interchanging the indices £ and R and
changing the inequality signs to the opposite ones in (36) and
(35), respectively.

Similarly, having expressions for the boundaries of periodicity
regions of the (k — 1)-th complexity level and using this
replacement technique, we can compute the related expressions
for periodicity regions of the k-th complexity level (for more
detail see [16]).

In Figure4 for the regions of the first complexity level
their boundaries are colored red, while for those of the second
complexity level they are green.

4.2. Fin Structure

In Figure 2 or in Figure 4 one can notice that some PA-regions
have other (smaller) periodicity regions attached to them, which
resemble to certain extent fish fins. Every such fin-like region is
associated with a stable kn-cycle, where n is the period of the
related PA-cycle and k > 1. To explain briefly how these regions
appear, let us consider the n-th iterate of f.
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For the map f” every point of the PA-cycle, say Oy, of the
period n is a fixed point. Suppose that the parameter point p € Py
moves outside the region crossing transversally, for instance, the

boundary “.;‘(‘jc (see Figure 5). Near the BCB the map f” is locally
topologically conjugate in the neighborhood of d to a skew tent
map go g, (12) with @ = alﬁa;'{l, B = alﬁ_laMa;’{l (1 is the
number of symbols £ in o) and © < 0 before, © = 0 at,
and u > 0 after the bifurcation. In other words, the skew tent
map is used as the BCB normal form, and the result of such a
bifurcation is completely defined by the values of & and B (see,
e.g., [5, 10, 11]). In particular, for certain combination of az, aq
and ar, a stable k-cycle for f” appears after the BCB. In terms
of the original map f, after the BCB of a stable n-cycle O, there

occurs a stable kn-cycle, say, O;. Crossing the boundary gﬁR is

As for the trunk region Pg £n-1 its k - n-fins correspond to cycles
whose symbolic sequences are obtained from (37) and (38) by
interchanging symbols £ and R. Whether a trunk region has
fins on both sides or none of them is present depends on the
parameters.

Every fin region Po: »s € {L,R), k > 2, obviously has a
common BCB boundary with the related trunk region. At most
Pos. has three more bifurcation boundaries that correspond to
two other BCB’s and the DFB of the associated cycle. Analytic
expressions for the BCB boundaries are obtained by using the
skew tent map as border collision normal form. The DFB
boundary is given by condition alﬁa M a’;{’_l_l = —1, where [ is
the number of symbols £ in o, . For left fins P £ the expressions

are (see [16])

Eppn1={peDo: ug=d11az,ar, ur.de.,n — 1)}, (39)
k(n—1 —
noe =(p € Do apar'” Vap ! = 1), (40)
n—1 n—1y—k+1
d _ acay, ((acay ) -1)
Hﬁ:{peDO: amay L= R nzzl (41)
kn acan  —1
n—1 k—1 n—2
d _ (g "ag)*— -1 _ an ‘-1 _
0?: peDy: ay La —RYHI ay 200+ B UR + af 2ue |+
kn ap ac —1 ar —1
(42)
SOk (k—1) 2 ap -1 2
agg amarp d’R+ (1% aM+$ ,ll/]g-‘,—tl;lz MM:dR 5

n—I—1

treated likewise with the only difference that g = alLa Mag

(for details see [16]).

We refer to O,/ P; as the k - n-fin cycle/region, and to Oy /Py
as the trunk cycle/region. For clarity sake, the region P; is called
the left/right k - n-fin if it is attached to the boundary of P, that is
related to collision of O, with the left/right border point d/dR.

where ®;; is introduced in (28). Notice that the symbolic
sequence of the 1 - n-fin cycle is 0,° = MR"~!, and hence, the
related periodicity region is confined by only three boundaries:
Errn—1(39), Npgrn—1 (40), and & pgen—2 (42).

Similarly, the bifurcation boundaries confining the right k -
n-fin Palzna, contiguous to P pn-1, are

Erppn-—2 ={p€Do: pe=Vi1(azc,ar, ur,dr.n — 1)} (43)
k(n—1)—1
o R ={peDy: aMaé" ) alz = -1}, (44)
n—1 n—1y—k+1
d _ acay ((acal ) -1)
R=1peDy: acapay > = L —=R , (45)
Okn acan  —1
n—1 k—1 n—1
d _ (a ar) —1fa -1 B
G%: peDy: ay lapmar Rn_l R UR + ag Y | +
kn ap “ac — 1 ar — 1
(46)
(n-Dk=1_ & g t—1 no2
ap amapde +am L +amay ‘pue+pum=dcyg,

Furthermore, the complexity level of the trunk region defines the
complexity level of its fins.

Let us consider Pyrn—1,1n 2> 2, of the first complexity level. Its
left k - n-fin regions, k > 1, correspond to cycles whose symbolic

sequences are
of = (LR TMR Y, (37)

while symbolic sequences of the cycles associated with right k -
n-fin regions are

ol = (RLR" =2 I MLR" 2, (38)

where W) ; is given in (29). Again the symbolic sequence of the 1 -
n-fin cycle is o0,F = MLR" 2, and consequently, the periodicity
region Pyr is confined by §,pn-1 (39), npyrn-1 (40), and
Ermpn—-2 (42).

In Figure5 the region Prirn-1 and its fins are shown
schematically.

The boundaries of fins contiguous to trunk regions
Prcn-1 can be obtained by interchanging the indices £
and R in (39-45). The expressions for the boundaries of
fin regions attached to trunk regions of higher complexity
levels can be obtained wusing the map replacement
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PLRn—lLRn—z

A B
PMRn—l
PMRn—lLRn—l
PLRn—ZM PMRn—l(LRn—1)2
KR

ELpn—t

1297

the corresponding parameter points marked in (A).

FIGURE 5 | (A) The left and the right 1 - n-, 2 - n-, and 3 - n-fins of the PA-region P en—1 shown schematically in the (i ¢, 1 )-parameter plane. (B-D) Plots of 1 at

T dy,

technique mentioned in Section 4.1 (see [16] for

details).

5. EXPANSION OF THE ABSORBING
INTERVAL FROM TWO ADJACENT
BRANCHES OVER THE THIRD ONE

The present section describes the phenomena that occur when
the parameter point p crosses the boundary b,/b, entering Dj.
As mentioned above, for p € D;/D, the invariant absorbing
interval J (if it exists) involves only one border point d/dr and is
located in two partitions only. At the boundary b;/b; the interval
J collides with the second border point and expands into the third
partition. This implies modification of bifurcation boundaries
confining periodicity and chaoticity regions.

5.1. Prolongation of the Skew Tent Map

Structure

Recall that for p € Dy asymptotic orbits of the map f are located
in Iz U In only. If additionally either 0 < az < 1,orag > 1
and faoq(€) > xg, then there exists invariant absorbing interval
J = [fm(de),de] C Iz U Ing. Consequently, all bifurcation
boundaries in D; engage only the left border point d, and the
critical point £ (including its images). Similarly, for p € D, the
bifurcation conditions are related to the right border point dg
and the critical point r only. Conversely, for p € Dy the absorbing

interval ] (if existent) extends over all three partitions. Hence, a
bifurcation may be associated with any border or critical point.

Let us consider first chaoticity regions Cs,, C, existing after
the DFB 5 cn-1 of the attracting cycle Opqpn-1, n > 3
(generic case). We describe how their boundaries change when
the parameter point p enters Dy crossing the border b; (see, for
instance, the regions Cg¢ and C3 shown Figure 6A). As described
in Section 3, for p € D; the DFB of O ,n-1 leads to
appearance of 2n-cyclic chaotic intervals Q,,, and thus, the
corresponding region Cy, is confined by 7 (n-1 and y/%l"m, 1
However, the part of Cy, located in Dy is confined by the
other two boundaries. The first one is the fold BCB boundary
Errrn—1acn—2, associated with the collision of the fin cycle
Op n—1pqpon—1 with dg. The second boundary is an extension
of yﬁ”ﬁn_l to Dy, which we refer to as its Dg-prolongation. This
boundary is associated as well with a homoclinic bifurcation of
O pqpn-1, but its condition differs from the one for yﬁ"m, 1> as
we show below.

Figure 7A is a schematic representation of 2n-cyclic chaotic
intervals Q,, = {]i}?igl for p € Cy, C Dj. It can be shown
that the intervals J;, i = 0,2n — 2, are bounded by ¢; 1 and
Litont1 and the interval J5,, — 1 by £2,, and €. Hence, for p € D, the
homoclinic bifurcation corresponding to the merging Q,, = 9,
can be defined by the following condition:

fZ"(K) EfMl)”_lML',”_ZM(K):le)”_I (47)

(cf. (14)). For p € by, the condition £ = dgr holds, and
hence ¢, = r, £;11 = rj, i > 1. Therefore, the intervals Jj,
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FIGURE 6 | Bifurcation structures associated with Dg-prolongations of the boundaries of the chaoticity regions belonging to the STM structure in Dy.
Parameters: (A)ay =0.5,ag =1.3,d, =0,dgr =03.(B)as =09,ag =1.1,d, =0,dg = 1.
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FIGURE 7 | Schematic representation of function f and 2n-cyclic chaotic intervals Qo,, before the merging bifurcation of Qo for (A) p € D1; (B) p € Dg.
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i = 0,2n — 2, constituting Q,, are bounded by ¢;; = r; and
Liton+1 = Tiyan, while the interval ], 1 is given by [r2, — 1, dr].
Hence, the condition (47) becomes

O = faaer1men-2mER) = fon-1pen—2m(1)
= ") = xppenr. (48)

As soon as the point p enters the region Dy by crossing by, the
absorbing interval ] spreads over all three partitions I, Ir, and
Ir. For Qy, it means that J, 1 = [r2n—1,£] C Ip U Ig with
dr € Jan—1 (see Figure 7B). By definition f(J2,—1) = Jo. If p is
close to by, the value of £ is greater than the value of dg, but it is
still close to di, and thus,

fldr) <fl) <flran—1) & r<4¥ <ry.

It entails that Jo = [f(dr),f(r2n—1)] = [r,72,], while £; € Jp.
As a result, only the right boundary of ], is given by ¢, and

its left boundary, as well as the boundaries of the intervals J;, i =
0,2n — 2,are given by the images of r (of the same rank as for p €
by). Thus, for p € Dy the condition for the homoclinic bifurcation
leading to the transition Q,, = Q, coincides with (48). In such
a way the Dy-prolongation of yﬁ” '~n—1 is the merging bifurcation
boundary

2n—1

'}/Mﬁn_lz{pEDol fﬁn—lMﬁn—ZM(T):XM[ln—l}. (49)

Similarly, we deduce that the chaoticity region C, consists of
two parts, one of which is located in D; and the other one in
Dy (see Figure 6A for a sample of C3). The part of C, located

¢
y_/\i[nl:n— 1
and the expansion bifurcation boundary {jﬁl cn—2pq Lhe part of

Vieion-1 (49)

and the Dy-prolongation of §/e& JLEEYVE which is associated with

in Dy is confined by the merging bifurcation boundary

Cy located in Dy is bounded by &7 pn—1r(pn-2,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10

May 2017 | Volume 3 | Article 7


http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Panchuk et al.

Bimodal PWL Map: Bifurcation Structures

the expansion bifurcation as well and leads to the transition
Q, = Q. To obtain the condition related to the mentioned Dy-
prolongation we recall that for p € b; there holds £ = dr. There
follows that

10 = fanen—1(dR) = fon1(r) = "7 Hr) = Xpqpn—2 040

Hence, for p € Dy the expansion Q, = Q occurs at

-1

é-MLanM = (50)

{p € DO : fﬁn—l(r) =XM£n—2M} .
Now we turn to chaotic attractors existing after the DFB of
Om or Opqe. Although these cases are particular they are
treated likewise. The DFB of a stable 2-cycle or a fixed point
implies appearance of intervals Q,» where m > 1 depends on
parameters. Then there exists a cascade of merging bifurcations
ending by the parameter region for that the whole absorbing
interval represents a one-piece chaotic attractor. Each boundary

Com . .
Yoo ! for p € Dy has its Dy-prolongation
Tym+1_
om o :{P€D01 fwm+l(r):xpm} (51)

related to the transition Q,m+1 = Qm. Here py, is the m-th
harmonic of M (cf. (18) with A = L and B = M), and wy +1 =
$2...Sym+1 such that Ms;...sym+1 Pm+1 is (m + 1)-th
harmonic of M.

In Figure 6B we observe the Dy-prolongations y/r\j LAMEME

)2
and - \ o> while 0 and y{ are visible in Figure 6A.
To summarize, we state

Proposition 1 ([17]). Consider a merging bifurcation boundary

)/&qz” C Dj related to the transition Q,, = Q,, where |o| = n,
n = 1, xg is the rightmost point of the cycle Oy. Then the Dy-
prolongation y,™" " of yam is given by the homoclinic bifurcation
condition f,(r) = x, where w is obtained from the first harmonic

of o by dropping the first symbol M.

An expansion bifurcation boundary g“(f” C Dy, n > 3, and its
Do-prolongation ¢," ' are related in a similar way.

Further, let us consider an arbitrary chaoticity region Cym,
m > 2, which extends from D; to Dy. As it was shown above,
when p € D; the boundaries of intervals J;, i = 0,2 — 1,
constituting the chaotic attractor Q,m are defined by the images
of £ only (see Figure 7A). When p € Dy but still close to by,
the rightmost interval Jom_; is given by [rym_1, £]. The intervals
Ji, i = 0,2 — 2, are confined by the images of r, in particular,
Jo = [r,rm]. Moreover, £; < rym, and therefore £; € Jy (see
Figure 7B). Then, if p moves away from b;, the values ¢ and
£y increase, and eventually ¢; = rym. Consequently, when p
moves further away from b, the leftmost interval of Q= becomes
Jo = [r,&1].

Hence, additionally to y,, ' (which is related to r)
another homoclinic bifurcation of the 2"-cycle O,,, related to
¢ may occur. This homoclinic bifurcation defines an additional
boundary of Cym and occurs when the leftmost point of O,
coincides with ¢}, that is, at the boundary

Tym+1_

v,b ={peDo: fr(®) =xy}, (52)

where p), = s3...s5mM with Ms; ... som = pp, (thus, Xpy, 18 the
leftmost point of O, ). In Figure 6B the boundaries yﬁljw and

V?A/P(CM)Z are shown.

We remark that the homoclinic bifurcation of type (52) can
happen only if the corresponding cycle has at least one point in
I. This is not true for the fixed point Oz, and thus, the region
C, does not have this additional bifurcation boundary.

In such a way we can formulate

Proposition 2 ([17]). Suppose that for p € Dy (in a certain

.
neighborhood of by) there exists a Dy-prolongation ypfnm“"l of
14 . . .

piMH C Dy, m > 1, associated with the transition Qym+1 =

Qym. Then there exists a neighborhood U(yprfnmﬂ"l) such that for
p < U(y;fnmﬂ’l) there exists a boundary y/f,l, where p,, is such

that x,, is the leftmost point of the cycle O,,,. The boundary yﬁ,l is

associated with the same transition Q,m+1 = Qpm and related to
a homoclinic bifurcation of the cycle O, colliding with an image
of the critical point .

As for chaoticity regions located in D5, to derive expressions for
their Dy-prolongations it is enough to swap L’s and R’s, as well
as change r to £ in (49-51). Similarly, for p € Dy in a certain
neighborhood of b,, a chaoticity region Cym, m > 1, has an
additional boundary related to a homoclinic bifurcation, whose
expression can be derived from (52) by swapping £’s and R’s and
replacing €, by r;.

5.2. Periodicity Regions for ag — 0:

Stabilization of U-Sequence Cycles

In the previous section we described how the boundaries of
chaoticity regions forming the STM structure change when the
parameter point p enters Dy by crossing b; or b,. Every merging
or expansion bifurcation boundary existent in D;/D; has its
Dy-prolongation. So does every region related to cyclic chaotic
intervals. However, the dynamics of the map f for the parameter
values p € Dy in the neighborhood of b;/b; is not limited to
Dy-prolongations of the STM regions. For instance, in Figure 8
between the right 2 - 2-fin Pr oz of Pre and the left 1 - 3-fin
Pamre of Pr 2 one observes several tongues related to n-cycles
with small values of n, e.g., with n = 5, 6,7, 10. At the first site the
origin of these tongues is unclear. In this section we explain the
reason why such regions appear in the neighborhood of b;. All
stated below can be generalized in the obvious way for b,.

To discover the origin of the tongues that are not Dy-
prolongations of the STM structure, recall that for the skew tent
map (12) even if the dynamics converges to a chaotic attractor,
there exist also many periodic solutions that are unstable.
These cycles appear due to BCBs or DFBs and according to a
certain universal order with decreasing B. Namely, the symbolic
sequences of these cycles form the so-called U-sequence where
“U” stands for “universal,” since this order is common for a
wide class of unimodal maps [19, 20]. Notice that usually U-
sequence is described in terms of kneading sequences associated
with superstable cycles (in the symbolic representation of which
the symbol C related to the extremum of the function is omitted).
The skew tent map obviously cannot have superstable cycles, and
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FIGURE 8 | Stabilization of U-sequence cycles. Panels (B,C) are the enlargements of the areas marked in (A) by blue and magenta lines, respectively. The
parameters area, = 0.57, ag =0.2,dp =0,dg =1.

by using the term “U-sequence” we mean the order of appearance
of the cycles in terms of their complete symbolic representation.

Another peculiarity of the skew tent map is that some blocks
of the U-sequence appear simultaneously. For instance, crossing
the DFB boundary nz 4 (or ng when o > 1) with decreasing j
leads to immediate appearance of cycles with symbolic sequences
being harmonics of B, defined in (18). Similar statement is true
for a basic cycle O gn-1, n > 3, that is, all its harmonics appear
at the same parameter values (at the boundary 7z 4n-1).

In general, the U-sequence is constructed according to a
certain iterative procedure and includes also the basic cycles.
Detailed description of this construction procedure, as well as
explanation of its peculiarities related to the skew tent map, is
beyond the scopes of the current paper. Here we only explain
how an unstable cycle whose symbolic sequence belongs to U-
sequence may be “stabilized” when p enters Dy crossing b; or b;.
For shortness we refer below to such cycles as U-sequence cycles.

Consider, for example, the region related to the 5-cycle
observed in Figure 8A (see also the enlargement in Figure 8B).
For p € D; the line &, denotes the fold BCB, at which
two unstable 5-cycles are born: the cycle Oy n a2 and its
complementary cycle O 2,042 The condition related to this
bifurcation is

£2de) = fraenee) = freenelde) =de. (53)

In fact, (53) defines two different BCB conditions which are
equivalent due to the continuity of f, that is, fo(d.)
fm(de). This explains why the two cycles (which coincide at
the bifurcation moment) appear simultaneously and why their
symbolic sequences after the bifurcation differ by a single symbol.

For p € &, (a2 N by the condition (53) can be rewritten
taking into account that f(d.) = dg:

) =fHdr) = frcae@r) = frear(dr) = de, (54)

since faq(dr) = fr(dRr). Applying f one more time to (54), and
using again the continuity property of f, we get

£ R) = frcrec@r) = freaec@r) = fruciem(dr)
= freamem(dr) = dr(= f(dr)). (55)

Similarly to (53), the equalities (55) define four BCB conditions
that, nevertheless, are equivalent for p € &, (.42 N b1. Notice
that in (55) the BCB conditions depend on dg, in contrast to
(53) where they depend on d. This is similar to how conditions
of homoclinic bifurcations change when the parameter point p
moves from D; to Dy (as described in Section 5).

Now, for p € Dy not all the BCB conditions (55) remain
equivalent. Moreover, the two cycles Oy a2 and O 2o a2
do not appear simultaneously for p € Dy. Instead, each of
them creates a complementary pair with one of the two new
cycles having a single point in Iz (and, thus, existing only for
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p € Dg). Namely, the cycle Op r 22 is now complementary
to O,pr e while O pg2p 042 is complementary to O a k£ aq2-
Clearly, the BCB conditions for the two cycles making a pair are
equivalent, that is,

Imeamecdr) = freaec(dr) = dr,

fmerem@r) = freaem(dr) = dr. (56)

However, the related bifurcation is not necessarily fold BCB.

Let us describe in more detail the BCBs related to four
mentioned 5-cycles. With decreasing pur (for the other
parameter values as in Figure 8) they appear in the following
order. First, the two unstable cycles O 202 and O r a2
are born due to the fold BCB &x .3 (dashed curve). Then
there occurs the BCB £,.7, £ 142 (green curve), at which the point
Xprem? of Opireae moves from the middle partition Iy
to the left one Iz. Hence, the stable cycle O, 2 appears.
Finally, the point of Oy £ 142 located in the right partition Ig
moves to the middle partition In( due to the other BCB & 42
creating the unstable cycle O 2, 2. The region Pyr a2 is
then confined by £ (2, and &, o a2. For ur being below
Eroaee the two unstable cycles Oy pae and Opppage
continue to exist.

We also remark that the region P, 5 » 1,2 has fins similarly to
PA-regions. The mechanism of their creation is the same. Indeed,
at the BCB boundary of P r e related to collision of the
cycle with dz/dg, the map f° is locally (in the neighborhood
of dp/dr) topologically equivalent to the skew tent map g, 1
with @ = a%a’ ar and B = agad,ar/f = ara),. Crossing
transversally this BCB boundary may lead to appearance of a
stable 5k-cycle, k > 1 (cf. Section 4.2). Existence of fins and their
number depends on the parameter values.

The scenario due to that the region P,r,r2 occurs
corresponds to what we call the “stabilization” of a U-sequence
cycle. That is, for p € D; the U-sequence cycle O, is unstable
(except for the basic cycles O pn-1, n > 2, which can be
stable). When p crosses b; entering Dy a new cycle O,/ (among
the others) is born. The symbolic sequence o’ differs from o by
a single symbol. Namely, the symbol M corresponding to the
rightmost point of O, is replaced by R in o’. If the slope ar
is small enough, the cycle O, is stable.

The region related to a 6-cycle observed as well in Figure 8A
has the same origin, though it looks somewhat unlike P £ 142
Let us consider it in more detail and explain why it has different
form. For p € D due to the BCB &, the two unstable
6-cycles O pqpa3 and O 2,043 appear. Similarly to the case
considered above (of the 5-cycle), for p € Dy there are two
more 6-cycles: Opr a3 (stable) and Op r o3 (unstable).
However, in contrast to the previous case, the sequence of
bifurcations occurring with decreasing ju is different. First, the
fold BCB &g, £ A3 Occurs giving rise to the stable cycle O o £ A3
and the unstable one O/ s, 1. Next, the two unstable cycles
Onireas and O p 20043 appear due to the fold BCB &x £ oq4.
Finally, O, ;a3 (stable) and O r a3 (unstable) disappear
at £, 3. Notice that the region Pyr o3 (differently from
Prroaqe) has one more boundary 77,1 £ 13 that corresponds to
the DFB of the related cycle.

pir

-2.5

18

0.9 He

FIGURE 9 | Periodicity regions related to “stabilized” versions of
U-sequence cycles in the limit case ag =0.

The other regions emerging from b; and not belonging to
PA or fin structures are of the same nature as the two regions
described above. Notice that, for a U-sequence cycle Oz aq0, the
higher is its period, the more of its points are located in Ix4.
Thus, to observe for p € Dy the region PR, corresponding to
the “stabilized” version of O, 44, the value a should be small
enough. In the limit case ag = 0, for every U-sequence cycle
there exists the related periodicity region in Dy (see Figure9),
since the multiplier of Oz, equals zero. Clearly, all these
regions have only BCB boundaries and extend to infinite values
Of/’Lﬁ) MR-

6. CHAOTICITY REGIONS SURROUNDING
THE PERIOD ADDING AND THE FIN
STRUCTURES

In Section 4.1 we have recalled how to obtain boundaries of
PA-regions. There are chaoticity regions adjacent to them, and
now we discuss how their boundaries can be derived using the
skew tent map. As an example, Figure 10 shows the structure
of chaoticity regions close to the BCB boundary £, of the
PA-region Pyr. One can observe here two hatched domains.
The first one, denoted DSLt’ER, is contiguous to the PA-region
Prr along the boundary &,%. For p € Dﬁ’LR the map f2 is
locally topologically conjugate to the skew tent map. Hence, the
bifurcation structure can be described by applying directly the
results known for the skew tent map.

In general, in the neighborhood of the boundary S{fﬁ /g;’R of
every PA-region P, associated with an n-cycle O,, there exist
domains denoted th’(r /thz,a’ respectively, such that for related
parameter values the iterate f" is locally (in the neighborhood of
dr/dr) topologically conjugate to the skew tent map.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

13

May 2017 | Volume 3 | Article 7


http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive

Panchuk et al.

Bimodal PWL Map: Bifurcation Structures

A

0.9

FIGURE 10 | Bifurcation structure related to chaoticity regions
associated with the PA-region P, andits left 2. 2-fin P,r AR -
The regions Dsﬂt’mz and D§'2'£R are shown dashed.

The second hatched domain in Figure 10, denoted DZ?’Z’E R,
is located in the neighborhood of the boundary ér,oraq of
the left 2 - 2-fin region Prraqr. In general, let us consider
an arbitrary PA-region Py, related to the n-cycle Oy, and its
left/right k - n-fin P;. In the neighborhood of the BCB boundary
£9R [£92 | respectively, there exists a domain DIk DL guch
that the restriction of f¥” to its absorbing interval is topologically
conjugate to the skew tent map.

6.2. Homoclinic Bifurcation Boundaries in
D’

st

We consider first the trunk region Pz and sub-domain
contiguous to it along the boundary .. Clearly, both points of
the 2-cycle Orr = {xcR,xrc} are fixed points for the second
iterate f2, and at p € £,® the point xcgr collides with dp.
The resulting dynamics caused by this collision depends on the
slopes of f2 at both sides of d at the bifurcation moment. In the
neighborhood of the border point the map f2 is defined as (see
Figure 11)

L,LR
Dst

fers fzldR) <x<dg,
furs de < x < fag (dr),

S ) E{

where f; ' (dr) = (dr — nc)/ac, fal (dR) = (dr — r)/am.
If the condition

fer(de) < fri(dr) (57)
is satisfied, then f2 has a local absorbing interval | =

[sz\/(R(dg),fMR(dg)], on which f2 is topologically conjugate to
the skew tent map (12) with « = agar and = ayar. The

f2

fir
fMM

Tar

fMR

d, fo(dr)

x

FIGURE 11 | The local absorbing interval J of 2 including d . for
L,LR
pe Dst .

parameter region for that the conjugacy takes place is given as

Dsﬁt’CR = {p €Dy: xpr >dg, fM’R(Z) < dR} =

Ur | l—arar
+

peDy: pg>——+ ——Fdg,
ar ar
araml + arpm + pr < dr
(58)
It is located between two boundaries, namely, % and
bR ={peDy: fur(®) =dr}, (59)

which follows from the equality frr (dz) = f/\jll (dr).

Forp € Dsﬁt’LR expressions for all bifurcation boundaries are
derived directly from the related expressions known for the skew
tent map (cf. Section 3).

Similarly, for an arbitrary PA-region P, related to an n-cycle
Oy, n = |o|,let 0 = Lo1Roy, where the symbolic sequences
o1 and o7 are such that the point X245, Re, /¥R, 20, CoOllides with
dr/dr at the BCB boundary &6, R, /ERo, L0, » Lespectively. For
p € P, consider the map f", for which every point of Oy is a
fixed point. Close to the boundary &4, Re,, two branches of f”
joining at the border point d are

n Lo1Ro2> Ei<x<dﬁ,
(x) = {f 1Ro2 L
f fMoyRoy> dr < x < d.

Here cz and d are preimages of dg, such that f,, (;l) = dp and
fMo, (d) = dr. As before it can be shown that as long as

fde) = feoRoy(de) < d (60)
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there exists a local absorbing interval

T = [f}oRey (A2)s fMor Ry (dr)] (61)

such that the restriction f"|; is topologically conjugate to the skew
tent map g with the slopes o Lo, Roy and B = Ao Roy-
Here azsRo, and daqe,Ro, are the slopes of the composite
functions f7s,Re, and fa1o, R, respectively. Such a conjugacy

persists until the parameter point p crosses the border bft’g
given by the condition fz,Ro,(dc) = d, which is equivalent to
fM(Tl (f,CO'IRO'z (dﬂ)) :fMo'l (d) = dR) i~e~>

bsﬁt’(r = {P € Do : forRoy Mo (£) = dR} . (62)

Hence, we can state the following

Proposition 3 ([17]). Forp € Dsﬁt’a, where the region

D57 =1peDo: XtorRes > drs frrRosMar () < dr) (63)

is confined by &4 Ro, and bsﬁt’g given in (62), the expressions for
boundaries of periodicity regions (fins) and chaoticity regions can
be obtained from the related expressions known for the skew tent
map (62) substituting o by e, Ro, and B by apme,Ro,-

For instance, we consider the left k - n-fin P, 7 =
Mo1Roy(LorRa)¥ =1, k > 3, of the PA-region Pro,Ro,-
This fin region represents the area located between three BCB

boundaries: &6, Rq,> Eff (the point x,; of the cycle O; collides

with d.), SgR (the point Xz of the cycle O; collides with dz),

and the DFB boundary 7,. We remark that the boundaries s?f
and 7, emerge from £.5,Rs,, as well as the boundaries between
chaoticity regions adjacent to Prq, Ro, -

Analytic expressions for all these boundaries are derived by

using the skew tent map. Boundaries of the fin region, 5#
and 7, are given in (41) and (40), respectively. Let us consider
the merging and the expansion bifurcation boundaries confining
chaoticity regions Qp, and Q,. They can be obtained by
applying map replacement technique to expressions for yg;kfl
(15) and CBAk 25 (17).

Namely, in (15) we substitute all symbols A with symbolic
sequence LojRoy, all symbols B with symbolic sequence
Mo1Roy, critical point ¢ with f5,re,(€), slope o with
Lo, Roy> and B with aaeRo,. Recall that ars re, and
Mo, Ro, are the slopes of the composite functions fre Ro,
and fa10,Ro,, respectively. Expressing drq,ro, and daae, Ro,

in terms of the original parameters ar, ay, ar we obtain
2kn+n 1
y./\/l(rl Ror(LorRoy)k—1
to transition Qj, = Qi,. Likewise, by applying the same
replacement to (17) one gets the expansion bifurcation boundary
é.lknJrn -1
M(IlRUz(ﬁleﬂz)k - ZMmRJz :

the merging bifurcation boundary related

In short this procedure can be

represented by the following scheme:

chk 2oy Ray (O Lokntn—1 )
BAK=1 A r6iRoy B—MoRoy * Moi1Roa(LoyRay)k~!
(64a)
o Roy (8 Lrnn—1
g‘B.Ak 2B A= Loy Roy B— Moy Roy Mo1Roy (Lo Ror)k—2 Moy Roy”
(64b)

For sake of shortness schemes of such kind are used below to
describe similar replacement procedures.
To sum up we can state

Proposition 4 ([17]). Let the parameter point p move along
the BCB boundary &pqs R, starting from nk-fin  region
PrMoyRoy(LoyRoy)k-1> k= 3. Then p first crosses the
DFB  boundary 04 Roy(coiRopk-1 (40) leading to 2kn-
cyclic chaotic intervals Qji,, then the merging bifurcation

2kn+Vl 1
boundary Y Moy Ror(Lor Rk
Qokn = Qun> and finally, the expansion bifurcation boundary

eknJrn 1 .
{angz Lo Ras)k -2 Mo Ros (64b) leading to Qk,, = Q.

(64a) implying the transition

The case k = 2 is particular. Since a 2n-fin cycle corresponds to
the 2-cycle of the skew tent map g, its DFB leads to the appearance
of 2" -n-cyclic chaotic intervals, where m > 2 dependsonag, ar.
The cascade of the subsequent merging bifurcations is obtained
from (20) applying the same replacement as in (64). In Figure 12
an example of this cascade observed inside the domain th:’mz
is shown, located close to the left 2 - 2-fin region Prramr of
the trunk region P.. One can see three merging bifurcation

. ¢ ¢ ¢ .

boundaries, namely, VAXRLR(MR)Z’ Y mirer>and ¥ o leading

to the transitions Q.5 = Q.4 = Q22 = O, respectively. To
. e .

get the expression for y i LRIMR)? the following replacement

—=fr(6) 0
-
Voas: ASLR BomR TMRLRMRY

can be used. In this way we obtain

L7
YMRLRMR)? = AMR

a
= {peDo:aZEa%a%+f—1:0}.(65)

The expressions for the other two boundaries

¢ arc
YMRLR = {P € Dy : apajar + o 1= 0}, (66a)

yf\jR=:peD0~aMaR+——1_0} (66b)
ac
can be obtained by the same replacement.

We have described above bifurcations of cyclic chaotic
intervals and the related boundaries in the neighborhood of g:fﬁ
of a PA-region P,. To obtain similar bifurcation boundaries in
the neighborhood of S(‘jn one can swap symbols £ and R as
well as interchange the critical points ¢ and r in all analytic
expressions.
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FIGURE 12 | (A) Bifurcation structure of the region Dé’mz. Bifurcation diagram (B) along the arrow shown green in (A) and its enlargement (C).

6.2. Homoclinic Bifurcation Boundaries in
R.k,o 4

Dst f Jarsirum

In this section we describe another parameter domain DZ}’k’a, Frainu

mentioned above, which is located in the neighborhood of an

arbitrary left fin region of a PA-region P, . To describe bifurcation

structure of DZf’k’“ we again use conjugacy with skew tent map

and map replacement technique. farnra
As the first example let us consider the left 2 - 2-fin
region Prramr of the trunk region Prr (see Figure 12A). As y

explained in Section 4.2 the fin region Prrmr has the BCB
boundary £ £ = M related to the collision of the cycle Ozr MR

with the border dp.
In Figure 13 we show the plot of f* on the interval including ZLRLRM
the border point dr for parameter values located in the /

neighborhood of £z -z Am1. The two linear pieces of f4 adjoining e L/RM
at dp are defined as
4y _ [ rerat fg(de) 2 x <dg,
AU frerms dr < x < fg'(de), )
i (ds) dx Sa'(ds)
where fy (dz) = (dz — uat)/arm f de) = (de — pr)/ar. z
If the conditions

FIGURE 13 | The local absorbing interval J of T including d for
pe DR,2,£R
st

frerm(@R) < fr'(dr), (67a)
Fherm(@R) > XrcrM (67b)

Taking into account that fr(frerMm(dR)) = fermr(T),
are held, then there exists a local absorbing interval firr MmdR) = fermfrerm (M), and xpcrm =
ferm (X aqg2), the conditions (67) can be written as

] = [frerm(@R) frerm(dR)] (68)
for f*. The restriction f*|; is topologically conjugate to the skew fermr(r) < dg, (692)
tent map g with the slopes @ = aza’;ag and B = acarar. FeRMR(T) > XpR - (69b)
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The conjugacy between f*|; and g holds in the parameter

region DZ}’ZLR confined by the BCB boundary &g sr A, the
boundary
bR = {peDo: frrmr(r)=dc}, (70)
and the boundary
Cpmae = 1P €D0: ferMR(D =Xcrpe). (71

Note that for the map f the boundary (71) corresponds to an
expansion bifurcation leading from Q4 to Q. Thus, the region

thz,z,c R is defined as

DZ?’Z’ER = {peDy: xrerM > dRs frRMR(T) < dg)
ferRMR() > xp 2} (72)
Figure 14A presents the region DZE’ZL R, where one can observe
chaoticity regions Qym, m = 2,6. The bifurcation boundaries
separating these regions are related to transitions Qym =
Q,m-1. To get expressions for these boundaries we use map
replacement technique. Namely, we take the corresponding
formulae (20) known for the skew tent map and apply the
following replacement:

it c—>frrm(r) Ty+3
ypjzj Tj +3' (73)
A->MLRM  B—>RLRM
Here the symbolic sequence 7j, j > 0, is derived from the

harmonic p; (18) by substituting MLRM instead of A and
RLRM instead of B.

Summing up we can describe D§’2’£ R
The region thz’z’cR\sz MR consists of £ 41 chaoticity regions

Cynjsj = 0,t, where t > 1 depends on ag, ar. If the parameter

in the following way.

py
point p crosses the boundary yrjyﬁ“’ between the chaoticity
regions Cyj+1 and C,j, given by

Tt+343

2(8j+8j41) 2(28j+8j+1) 2(8j+28j+1)
Tj M ar

L
:{peDst: ar

am 1y —
+<—> —1=0},j=0,t—1,
aRr

then the merging bifurcation C,j11 = C,; takes place. Here §; =
(2 —(—1Y)/3.In Figure 14A the merging bifurcation boundaries
v, yi®, vii?, and p4l' are shown. See also 1D bifurcation
diagrams in Figures 14B,C.

In a similar way we characterize the region DZ?’k’g, related

to the boundary “;‘fR of the left k - nfin P, T =
(Lo1Ro2) = Mo Ros, of the trunk region Prs Raoy» k 2,
n > 2. In order to determine the branches of f** which are
adjacent to one another at the border point, we rewrite the
symbolic sequence associated with the fin cycle as follows:

>

=

T = RoyLo; (Razﬁal)k_3 Ro,Lo1 RoyMoi. (74)

Here the underlined symbols R and L are associated with the
points xR, X2, such that xg, collides with dr at Efl =, while

Xz, collides with d at éf £ . We introduce the abbreviation

w1 = 0 Lo (Rcrzl',al)k*3 Roy, wy =01 RoyMoy  (75)

and rewrite the symbolic sequence (74) as Rw;Lw,. Then
the points xRy and xgy, become xRy cw, and Xzw,Rops
respectively. Then in the neighborhood of dr the iterate f*" is
given by

Moy Lo 4 < x < dR,
fRo1Lan» AR <x<d

fkn(x) = {
Here d and d are the preimages of d such that

Fiton (D) =dz,  froy(d) = dr.

The map f* has in the neighborhood of dr a local absorbing
interval

T = Ry 00y (@R fRe01 L0y (dR)] C [d, ], (76)
whenever the conditions
fRowLon(@R) < dv fRoy £y (AR) > Xtwi Lens  (77)

are held. The restriction f*"|; is topologically conjugate to the
skew tent map g with

a = a./\/lwlﬁwz, ﬁ = aRw1£w2~ (78)
Taking into account that fre, (fRw; Lw, (AR)) = fu,L0Rw (1)
f723w1£wz (dr) fa)lﬁa)z (,fa)lﬁsz(r))) and XMy L
Jor Loy (X, £an M), the conditions (77) can be rewritten as

fwlﬁszwl (T") < dﬁ) fwlﬁsz(f') > xwlL',a)zM-
Therefore, the region thz,k,a in which the asymptotic dynamics
of f can be studied by using the skew tent map g with the slopes
given in (78), is confined by the BCB boundary &R, cw,, the
border

bR ={p € Dot furLonran () =dc),  (79)
and the expansion bifurcation boundary
g(:r;kngM = {fa)lﬁwz’R(r) = xwlﬁwz/\/(} . (80)

Accordingly, the region Df’k’a is given by

Rk,
D" = {xRwiLwy > AR> for LonRan () < ALy foo LR (T)

> xwlﬁwz./\/(} M (81)

To sum up we state
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FIGURE 14 | (A) Bifurcation structure of the region D§’2’£R. Bifurcation diagram (B) along the arrow shown red in (A) and its enlargement (C).

Proposition 5 ([17]). The region thz’k’g \PRw, Lo, CONSists of t+1
chaoticity regions Cy.5j, j = 0,t, where t > 1 depends on ar, aR.
Each pair of contiguous chaoticity regions Cyj+1 and Cy; is separated
" nknk—1

by the merging bifurcation boundary y-;
from (20) applying the following replacement

which is derived

C_>fw1 Lawy (r)

.A—>Ma)1 sz

G+l

Yo

"o+ ket nk—1
7.']‘ >
B—>’Rw1 sz

(82)

where Tj is obtained from the harmonic p; (18) by replacing A with
Mawi Lwy and B with Rwi Lw;.

As before, to describe bifurcation structure of the parameter
domain Dﬁ’k’“, located in the neighborhood of an arbitrary right
fin region of a PA-region P, one can interchange £ and R as well

as the critical points £ and r in all analytic expressions.

6.3. Homoclinic Bifurci\tion Boundaries
between D5’ and D**°

As one can see in Figure 10, between the regions
R.2,LR
Dst

Dﬁ’mz and
there are more bifurcation boundaries related to some
homoclinic bifurcations. In contrast to the previous two sections,
where chaotic intervals were associated with only one border
point, dz or dgr, here we consider the case when chaotic intervals
include both border points. This makes impossible direct usage
of the results known for the skew tent map.

In Figures 15A,B we show the area between the regions
Dsﬁt’c R and D§’2’£ R As one can observe there are several
bifurcation boundaries issuing from the curves hﬁ’ﬁ R (59)
and bztz,z,ma (70). Right below we briefly describe how these

bifurcation boundaries can be derived.

First, recall that bsﬁt’ﬁ R is related to the condition fer(de) =
f;,ll (dr). Until frr(de) < f;,ll (dr) (that is, inside Dsﬁt’ﬁR), the
local absorbing interval J of f2 includes only a single kink point
dr. Hence, f2|; is defined by only two branches frr and far.
When there holds the opposite inequality frr (dz) > fj\_/tl(dn),
the absorbing interval J spreads over another kink point f/\_/ll (dr)
(to the right of d ) and becomes

J = [fmr (i @r)) fer(de)] = [rfr(O] 5 fo (dr)

(see Figure 15C). Then f2 |y consists of three branches: fz =, AR,
and faqaq. This transformation is similar to the one described
in Section 5.1 for the original map f, where the parameter
point p crosses the border by. Hence, the bifurcation boundaries
emerging from bft’ﬁ R are of the same sort as Dy-prolongations.
Applying the replacement

Tom+1_4
pm

72(2m+ 1_1)
Tm

(83)
L—LR M—>MR

to (51), one obtains the related analytic expressions for the
mentioned boundaries.
Then we apply the replacement

{—>fr ()
M->MR R—->MM

Zl Z3
’ 7 84
You L—~LR Y (84)

to the additional boundary y/f,l (52). Here the sequences t,, and
7,, are obtained from the sequences p,, and p},, respectively, by
replacing £ with LR and M with MR. Recall, that p,, consists

of the symbols £ and M and is the m-th harmonic of M [see
(18) with A = £ and B = M)], while p}, is obtained from
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FIGURE 15 | (A) Chaoticity regions located between DS‘;'LR and DZ?’ZCR; In (B) the region outlined red in (A) is shown enlarged. (C) Local absorbing interval of f2

including d . for p ¢ D&~ b5 £ (D) Local absorbing interval of 4 including dz for p ¢ DIV2ER

R2,LR
bR2LR,

immediately after crossing immediately after crossing

pm by shifting the first symbol M to the end of the symbolic  expression for the Dy-prolongation y/ral r lie, (51) withm = 1]:
sequence. Note that in (83), r must be replaced by the value
fMR(fX/ll(dR)) = fr(dr) which coincides with r, and that is
why the replacement for r is not necessary.

To illustrate the described procedure let us consider the
boundary y 2 shown in Figure 15A which corresponds to the )
transition Q4 = Q. For f2 this transition is associated with the is derived from the boundary y/ ( (52), m = 1, corresponding to
merging of 2-cyclic chaotic intervals into a single chaotic interval.  another homoclinic bifurcation of O .. Applying (84) to yﬁ‘M
Thus, we can apply the replacement (83) to the expression for the ~ we obtain
Dy-prolongation y/r\l/[ [ie., (51) with m = 0] obtaining

Yxtrer = (P € Do frromrp(n) = xprer).  (86)

The other boundary y?R MR associated with the same transition

yésRMR ={peDo: frAmm®) =xcrMmr}.  (87)
Yar = (P € Do frr(r) = xmr ). (85)
In Figure 15B one can also see the boundaries yjr\l/fn LRUMRY

¢ . .
Likewise, we derive the expression for the boundary ¥\ ,» 304 ¥y r)3> Which correspond to the transition Q16 = Qs.
which is associated with the transition Qg = Q4, by using the  Setting m = 2 and applying the replacement (83) to (51) and the
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replacement (84) to (52) we get

4
Yicae R MoMR TMRLRMR)

=>fr(0)
yﬁ/"” L~LR M—>MR  R—>MM yﬁR(MR

)3

which implies

r14

YMRLRMR): = {P€Do: frrommrPMRLR2 (M)

= XMRLRMR)? ) > (88)

4
YERMRY = {P€Do: frmm(O) = xpr(AMR) - (89)

Analogously we consider the case where the parameter point
p leaves the region DRZLR crossing bRZLR When p €
DIF2ER the condition frRerRMAR) > fRI(dg) is satisfied
and the local absorbing interval J of f* in the neighborhood
of dr includes only two linear branches. Otherwise, the
interval ] spreads over the third branch frara and
becomes

J = frerm (' do)) frerm(dR)]
= [frm (O, ferm(N] 3 f' (de).

See Figure 15D. Thus, for f* crossing the border be’z’ﬂR
is similar to crossing by for f. Consequently, the associated
boundaries of chaoticity regions for p ¢ D72 2£R can be derived
as well from (51) and (52).

For example, the transition Q;¢ = Qg occurs at the
boundaries y %, » and ¥\ s pir craq- We use the expressions

for v, (51) and yélM (52) with m 2 to compute these
mentioned boundaries. It is enough to apply the following

replacements:

y r—>frm ) )/ZM
Me L>MLRM  M—>RLRM ' RERMILRM

{—>frrm(r)

. (90)
£M LSMLRM  M—>RLRM  R—>RMRM

VMERMRERM'

In this way we obtain

¢
VR trarrm = 1P €Do: fRMMERMRLRM2(E)

= xRLRMZmaM}, (91a)
YAMLRMRERM = 1P € Do frrany (1)
= XMLRMRLRM} - (91b)

Regarding the merging bifurcation boundaries yﬁR and y/e\i[
marked in Figure 15A, it can be shown that yﬁR is the Dy-
prolongation of y 4 C D, and yf\}l is the Dy-prolongation of
)/_/:2/1 C D,.

So far all bifurcation boundaries of the regions C, C4, and
Cg related to the transitions Qg = Q4 = Q; = Q are

fully described. However, in Figure 15B one can see that the
region Cj has further boundaries different from those described
above. We can suggest that the regions Cym, m > 4, have
much more complicated form and may have other boundaries,
whose description falls beyond the scopes of the current
paper.

The above example can be generalized. That is, for an arbitrary
PA-region P, we consider the are located between the regions
Dﬁ’“ and thz’k’“, k > 2. The bifurcation boundaries inside
this area are derived in a similar way by using the relevant
replacements (for details see [17]).

7. CONCLUSIONS

In this work we carry on studying asymptotic dynamics of a 1D
continuous bimodal PWL map f with the two outermost slopes
being positive. Previously we have described certain bifurcation
structures related to regular as well as to chaotic dynamics of f.
Three basic bifurcation structures have been identified: the skew
tent map (STM) structure, the period adding (PA) structure, and
the fin structure. In case of STM structure the points of a typical
orbit are located on two neighbor branches only, so that f is
reduced to the skew tent map. In case of PA structure the orbits
belong to the outermost branches only, so that the results known
for the discontinuous map defined on two partitions with positive
slopes can be used. The fin structure is constituted by periodicity
regions that have a common boundary with PA-regions. The
analytic expressions for bifurcation boundaries defined by BCBs,
DEFBs, as well as homoclinic bifurcations (such as merging and
expansion) have been obtained.

In the current paper we have summarized the earlier results
and described another family of tongues associated with regular
dynamics observed in the parameter space of f. They emerge
from the boundary b;/b, that separates the parameter region
D1/D, where f is locally topologically conjugated to the skew
tent map (STM structure) from the region Dy where all three
branches can be involved in asymptotic dynamics. These tongues
are closely related to the cycles whose symbolic sequences form
the U-sequence. For parameters belonging to D;/D, these cycles
are located in the two adjacent partitions and are unstable (except
for the basic cycles having one point in the middle partition,
which can be stable). However, for parameters in Dy every such
cycle has a new complementary cycle with a single point on the
third branch. If the slope of the third branch is small enough,
this new cycle is stable and one observes the related region
in the parameter space of f. In the limit case when the third
branch is horizontal (the slope is zero), for every U-sequence
cycle from D1/D, there exists the related periodicity region in D.
We refer to this situation as the “stabilization” of a U-sequence
cycle.
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