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Many applied studies collect one or more ordered categorical predictors, which do not fit

neatly within classic regression frameworks. In most cases, ordinal predictors are treated

as either nominal (unordered) variables or metric (continuous) variables in regression

models, which is theoretically and/or computationally undesirable. In this paper, we

discuss the benefit of taking a smoothing spline approach to the modeling of ordinal

predictors. The purpose of this paper is to provide theoretical insight into the ordinal

smoothing spline, as well as examples revealing the potential of the ordinal smoothing

spline for various types of applied research. Specifically, we (i) derive the analytical form of

the ordinal smoothing spline reproducing kernel, (ii) propose an ordinal smoothing spline

isotonic regression estimator, (iii) prove an asymptotic equivalence between the ordinal

and linear smoothing spline reproducing kernel functions, (iv) develop large sample

approximations for the ordinal smoothing spline, and (v) demonstrate the use of ordinal

smoothing splines for isotonic regression and semiparametric regression with multiple

predictors. Our results reveal that the ordinal smoothing spline offers a flexible approach

for incorporating ordered predictors in regression models, and has the benefit of being

invariant to any monotonic transformation of the predictor scores.

Keywords: isotonic regression, monotonic regression, nonparametric regression, ordinal data, smoothing spline,

step function

1. INTRODUCTION

1.1. Motivation
The General Linear Model (GLM) (see [1]) is one of the most widely applied statistical methods,
with applications common in psychology [2], education [3], medicine [4], business [5], and several
other disciplines. The GLM’s popularity in applied research is likely due to a combination of the
model’s interpretability and flexibility, as well as easy availability through R [6] and commercial
statistical softwares (e.g., SAS, SPSS, etc.). The GLM and its generalized extension (GzLM; see
[7]) are well-equipped for modeling relationships between variables of mixed types, i.e., unordered
categorical and continuous variables can be simultaneously included as predictors in a regression
model. However, many studies collect one (or more) ordered categorical variables, which do not fit
neatly within the GLM framework.

For example, in finance it is typical to rate the risk of investments on an ordinal scale (very
low risk, low risk, . . . , high risk, very high risk), and a typical goal is to model expected returns
given an investment’s risk. In medical studies, severity of symptoms (very low, low, . . . , high, very
high) and adherence to treatment (never, rarely, . . . , almost always, always) are often measured on
ordinal scales, and a typical goal is to study patient outcomes in response to different treatments
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after controlling for symptom severity and treatment adherence.
Psychological attributes such as personality traits and intelligence
are typically measured on an ordinal scale, e.g., using
questionnaires consisting of Likert scale items (strongly disagree,
disagree, . . . , agree, strongly agree), and many psychological
studies hope to understand how individual and group differences
in psychological traits relate to differences in observed behavioral
outcomes.

The examples mentioned in the previous paragraph represent
just a glimpse of the many ways in which ordinal variables
are relevant to our day-to-day financial, physical, and mental
health. When it comes to modeling ordinal outcome (response)
variables, there are a multitude of potential methods discussed in
the literature (see [8–12]). However, when it comes to including
ordinal variables as predictors in a GLM (or GzLM), the choices
are slim. In nearly all cases, ordinal predictors are treated as
either nominal (unordered) or continuous variables in regression
models, which can lead to convoluted and possibly misleading
results.

Suppose X is an ordered categorical variable with K categories
(levels) 1 < · · · < K, and suppose we want to include X as a
predictor in a regression model. The naive method would be to
include K − 1 dummy variables in the model design matrix, and
let the intercept absorb the K-th level’s effect. We refer to this
method as naive for two reasons: (i) this approach ignores the
fact that the levels of X are ordered and, instead, parameterizes
X as K − 1 unrelated variables, and (ii) this approach makes
it cumbersome (and possibly numerically unstable) to examine
interaction effects involving ordinal predictors, which could be
of interest in a variety of studies. Although the dummy coding
approach will suffice for certain applications, this method is far
from ideal. Furthermore, if the number of levels K is large, the
dummy coding approach could be infeasible.

Another possibility for including an ordinal predictor X in a
regression model is to simply treat X as a continuous variable. In
some cases, researchers make an effort to code the levels of an
ordinal predictor X such that the relationship between X and Y is
approximately linear. This approach is parsimonious because the
ordinal predictor with K categories (requiring K − 1 coefficients)
will be a reduced to a continuous predictor with a linear effect
(requiring 1 coefficient). However, this approach is problematic
for several reasons (i) the slope coefficient in such a model has
no meaning, (ii) different researchers could concoct different
coding schemes for the same data, which would hinder research
comparability and reproducibility, and (iii) the ordinal nature of
the predictor X is ignored, which is undesirable.

Penalized regression provides a promising framework for
including ordinal predictors in regression models [13], given
that an appropriate penalty can simultaneously induce order
information on the solution and stabilize the estimation.
Gertheiss and Tutz [13] discuss how a binary design matrix in
combination with a squared difference penalty can be used to
fit regression models with ordinal predictors. This approach is
implemented in the R package ordPens [14], which fits models
containing additive effects of ordinal and metric (continuous)
predictors. Adding a penalty to impose order and stabilize
the solution is a promising approach, but this method still

parameterizes X as K − 1 unrelated variables in the model design
matrix. As a result, this approach (and the ordPens R package)
offer no method for examining interaction effects between
multiple ordinal predictors or interaction effects between ordinal
and metric predictors.

1.2. Purpose
In this paper, we discuss the benefits of taking a smoothing
spline approach [15, 16] to the modeling of ordinal predictors.
This approach has been briefly mentioned as a possibility [15,
p. 34], but a thorough treatment of the ordinal smoothing
spline is lacking from the literature. Expanding the work of
Gertheiss and Tutz [13] and Gu [15], we (Section 3.1) derive the
analytical form of the reproducing kernel function corresponding
to the ordinal smoothing spline, which makes it possible
to efficiently compute ordinal smoothing splines. Our results
reveal that the reproducing kernel function only depends on
rank information, so the ordinal smoothing spline estimator
is invariant to any monotonic transformation of the predictor
scores. We also (Section 3.2) propose an ordinal smoothing
spline isotonic regression estimator via factoring the reproducing
kernel function into monotonic (step) functions. Furthermore,
we (Section 3.3) prove a correspondence between the ordinal
and linear smoothing spline for large values of K, and
(Section 3.4) develop computationally scalable approximations
for fitting ordinal smoothing splines with large values of K.
Finally, we demonstrate the potential of the ordinal smoothing
spline for applied research via a simulation study and two
real data examples. Our simulation study (Section 4) reveals
that the ordinal smoothing spline can outperform the linear
smoothing spline and classic isotonic regression algorithms
when analyzing monotonic functions with various degrees of
smoothness. Our real data results (Section 5) demonstrate
that the ordinal smoothing spline—in combination with the
powerful smoothing spline ANOVA framework [15]—provides
an appealing approach for including ordinal predictors in
regression models.

2. SMOOTHING SPLINE BACKGROUND

2.1. Reproducing Kernels
Let H denote a Hilbert space of functions on domain X , and
let 〈·, ·〉 denote the inner-product of H. According to the Riesz
representation theorem [17, 18], if L is a continuous linear
functional in a Hilbert space H, then there exists a unique
function ζL ∈ H such that Lη = 〈ζL, η〉 for all η ∈ H. The
function ζL is referred to as the representer of the functional L.
The evaluation functional [x]η = η(x) evaluates a function η ∈ H

at an input x ∈ X . If the evaluation functional [x]η = η(x)
is continuous in H for all x ∈ X , then the space H is referred
to as a reproducing kernel Hilbert space (RKHS) (see [15, 16]).
If H is a RKHS with inner-product 〈·, ·〉, then there exists a
unique function ρx ∈ H that is the representer of the evaluation
functional [x](·), such that [x]η = 〈ρx, η〉 = η(x) for all η ∈ H

and all x ∈ X . The symmetric and non-negative definite function

ρ(x, y) = ρx(y) = ρy(x) = 〈ρx, ρy〉 (1)
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is called the reproducing kernel of H because it satisfies the
reproducing property 〈ρ(x, y), η(y)〉 = η(x) for all η ∈ H and all
x, y ∈ X , see Aronszajn [19]. IfH = H0⊕H1 withH0∩H1 = ∅,
then

ρ(x, y) = ρ0(x, y)+ ρ1(x, y) (2)

where ρ0 ∈ H0 and ρ1 ∈ H1 are the reproducing kernels of H0

andH1, respectively, such that

〈ρ(x, y), η(y)〉 = 〈ρ0(x, y), η0(y)〉0 + 〈ρ1(x, y), η1(y)〉1
= η0(x)+ η1(x) = η(x)

(3)

with 〈·, ·〉 = 〈·, ·〉0 + 〈·, ·〉1, η = (η0 + η1) ∈ H, η0 ∈ H0, and
η1 ∈ H1.

2.2. Smoothing Spline Definition
Assume a nonparametric regression model (see [15, 16, 20–23])

yi = η(xi)+ ǫi (4)

for i = 1, . . . , n, where yi ∈ R is the real-valued response for the
i-th observation, xi ∈ X is the predictor for the i-th observation
where X is the predictor domain, η ∈ H is an unknown smooth

function where H is a RKHS with inner-product 〈·, ·〉, and ǫi
iid∼

N(0, σ 2) is a Gaussian error term. A smoothing spline is the
function ηλ that minimizes the penalized least squares functional

1

n

n
∑

i=1

(

yi − η(xi)
)2 + λJ(η) (5)

where J(·) is a quadratic penalty functional such that larger
values correspond to less smoothness, and λ ≥ 0 is a
smoothing parameter that balances the trade-off between fitting
and smoothing the data. LetH = H0 ⊕H1 denote a tensor sum
decomposition ofH, whereH0 = {η : J(η) = 0} is the null space
of J andH1 = {η : 0 < J(η) < ∞} is the contrast space. Similarly,
let 〈·, ·〉 = 〈·, ·〉0+〈·, ·〉1 denote the corresponding decomposition
of the inner-product ofH. Note that, by definition, the quadratic
penalty functional J is the inner-product of the contrast spaceH1,
i.e., J(η) = 〈η, η〉1. Given λ, the Kimeldorf-Wahba representer
theorem [24] states that the ηλ minimizing Equation (5) has the
form

ηλ(x) =
m−1
∑

v=0

dvφv(x)+
n

∑

i=1

ciρ1(x, xi) (6)

where the functions {φv}m−1
v=0 span the penalty’s null space H0,

the function ρ1 is the reproducing kernel of the contrast space
H1, and d = {dv} and c = {ci} are the unknown coefficient
vectors (see [15, 16, 25]). The reproducing property implies that
the quadratic penalty functional J(ηλ) = 〈ηλ, ηλ〉1 has the form

J(ηλ) =
n

∑

i=1

n
∑

j=1

cicjρ1(xi, xj) (7)

which can be easily evaluated given ρ1, c, and x.

TABLE 1 | Ingredients for forming different types of smoothing splines.

Type Reproducing Kernel Hilbert space components

Nominal X : x ∈ {1, . . . ,K}
H: η ∈ R

K

H0: η0 ∈ {η : η(1) = · · · = η(K)}
〈η, ξ〉0: Kη̄ξ̄ where η̄ = 1

K

∑K
x= 1 η(x) and ξ̄ = 1

K

∑K
x= 1 ξ (x)

ρ0(x, y): 1/K

H1: η1 ∈ {η :
∑K

x= 1 η(x) = 0}
〈η, ξ〉1:

∑K
x= 1[η(x)− η̄][ξ (x)− ξ̄ ]

ρ1(x, y): δxy − 1/K where δxy = 1 if x = y and δxy = 0 otherwise

Ordinal X : x ∈ {1, . . . ,K} where 1 < · · · < K

H: η ∈ R
K

H0: η0 ∈ {η : η(1) = · · · = η(K)}
〈η, ξ〉0: Kη̄ξ̄ where η̄ = 1

K

∑K
x= 1 η(x) and ξ̄ = 1

K

∑K
x= 1 ξ (x)

ρ0(x, y): 1/K

H1: η1 ∈ {η :
∑K

x= 1 η(x) = 0}
〈η, ξ〉1:

∑K
x= 2[η(x)− η(x − 1)][ξ (x)− ξ (x − 1)]

ρ1(x, y): 1− x ∨ y + 1
2K [x(x − 1)+ y(y − 1)]+ (K− 1)(2K− 1)

6K

Polynomial X : x ∈ [0, 1]

H: η ∈ {η :
∫ 1
0 [η(m)(x)]2dx < ∞} where η(m) = dm

dxm
η(x)

H0: η0 ∈ {η : η(m) = 0}
〈η, ξ〉0:

∑m−1
v= 0 (

∫ 1
0 η(v)dx)(

∫ 1
0 ξ (v)dx)

ρ0(x, y):
∑m− 1

v= 0 κv (x)κv (y)

H1: η1 ∈ {η :
∫ 1
0 η(v) = 0, v = 0, . . . ,m − 1,

∫ 1
0 [η(m)(x)]2

dx < ∞}
〈η, ξ〉1:

∫ 1
0 η(m)ξ (m)dx

ρ1(x, y): κm(x)κm(y)+ (−1)m−1κ2m(|x − y|)

Thin-Plate X : x ∈ R
d

H: η ∈ {η : 〈η, η〉1 < ∞}
H0: η0 ∈ {η : 〈η, η〉1 = 0}

〈η, ξ〉0: 1
R

∑R
j= 1 η(x̃j )ξ (x̃j ) where {x̃j}Rj= 1 ⊆ {xi}ni= 1 are the knots

ρ0(x, y):
∑M

v= 1 φv (x)φv (y) where 〈φu,φv〉0 = δuv and

M =
(d+m− 1

d

)

H1: η1 ∈ {η : 0 < 〈η, η〉1 < ∞}
〈η, ξ〉1:
∑

v1+···+vd=m
m!

v1 !···vd !
∫

R
· · ·

∫

R
( ∂mη

∂x
v1
1 ···∂xvd

d

)( ∂mξ

∂x
v1
1 ···∂xvd

d

)dx1 · · ·dxd

ρ1(x, y): (I− P(x))(I− P(y))γ (‖x− y‖)

For ordinal splines, the notation x ∨ y denotes the maximum of x and y.

For polynomial splines, the κv functions denote scaled Bernoulli polynomials (see [35]).

For thin-plate splines, P(x) = (Pη)(x) =
∑M

v= 1〈η,φv〉0φv (x) denotes the projection of η onto
H0, and γ (x) ∝ x2m−d log(x) if d is even or γ (x) ∝ x2m−d if d is odd.

2.3. Types of Splines
The type of spline will depend on the forms of the RKHS H

and the inner-product 〈·, ·〉, which will depend on the predictor
domain X . The essential components for the formation of a
smoothing spline include: (i) form a tensor sum decomposition
of the RKHS H = H0 ⊕ H1, (ii) partition the inner-product
of the RKHS 〈·, ·〉 = 〈·, ·〉0 + 〈·, ·〉1 such that 〈·, ·〉k defines an
inner-product in Hk for k ∈ {0, 1}, (iii) define the smoothing
spline penalty as J(η) = 〈η, η〉1, and (iv) derive the reproducing
kernels of H0 and H1. Table 1 provides the information needed
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to form three common smoothing splines (nominal, polynomial,
and thin-plate), as well as the ordinal smoothing spline. See
Gu [15] and Helwig and Ma [26] for more information about
nominal and polynomial smoothing splines, and see Gu [15],
Helwig andMa [26], Duchon [27],Meinguet [28], andWood [29]
for more information about thin-plate splines. More information
about the ordinal smoothing spline will be provided in Section 3.

2.4. Tensor Product Smoothers
Suppose we have a model with predictor vector X =
(X1, . . . ,Xd) ∈ X =

∏d
j=1 Xj where Xj ∈ Xj ∀j. If the predictors

are all continuous with similar scale, a thin-plate spline can
be used. However, if the predictors differ in type and/or scale
(e.g., some nominal and some continuous), another approach is
needed. Let x = (x1, . . . , xd)

′ and y = (y1, . . . , yd)
′ denote two

realizations of X and let

ρXj (xj, yj) = ρ0j(xj, yj)+ ρ1j(xj, yj) (8)

denote the reproducing kernel function corresponding toHXj =
H0j ⊕ H1j, which denotes a RKHS of functions on Xj for j =
1, . . . , d. The symmetric and non-negative definite function

ρ(x, y) =
d

∏

j=1

ρXj (xj, yj) = ρ0(x, y)+ ρ1(x, y) (9)

defines the unique tensor product reproducing kernel function
corresponding to the tensor product RKHS

H = HX1 ⊗ · · · ⊗HXd
= H0 ⊕H1 (10)

where ρ0 ∈ H0 with H0 = H01 ⊗ H02 ⊗ · · · ⊗ H0d denoting
the tensor product null space and ρ1 ∈ H1 with H1 = H ⊖ H0

denoting the tensor product contrast space.
A tensor product smoothing spline solves the penalized least

squares problem in Equation (5) in a tensor product RKHSH =
⊗d

j=1HXj = H0 ⊕ H1. In this case, the contrast space can be

decomposed such as H1 = H
∗
1 ⊕ · · · ⊕ H

∗
s where the H

∗
k
are

orthogonal subspaces with inner-products 〈·, ·〉∗
k
. The different

H
∗
k
may have different modules, so it is helpful to reweight

the relative influence of each H
∗
k
. Specifically, when solving the

penalized least squares functional, we can define

J(η) =
s

∑

k=1

θ−1
k

〈η, η〉∗k

ρ1(x, y) =
s

∑

k= 1

θkρ
∗
k (x, y)

(11)

where ρ∗
k

∈ H
∗
k
is the reproducing kernel of H∗

k
and θk > 0

are additional (non-negative) smoothing parameters that control

the influence of eachH
∗
k
[see 15, 25, 26]. We can decompose any

η ∈ H such as

η(x) = η0(x)+
s

∑

k=1

η∗k (x)

= 〈ρ0(x, y), η0(y)〉0 +
s

∑

k=1

θ−1
k

〈θkρ∗
k (x, y), η

∗
k (y)〉

∗
k

(12)

where η0 ∈ H0 and η∗
k

∈ H
∗
k
for k = 1, . . . , s. Note that

the different η∗
k
functions correspond to different nonparametric

main and interaction effects between predictors, so different
statistical models can be fit by removing different H∗

k
subspaces

(and corresponding η∗
k
) from the model.

2.5. Smoothing Spline Computation
Applying the Kimeldorf-Wahba representer theorem, we can
approximate Equation (5) as

n−1‖y− Kd− Jc‖2 + λc′Qc (13)

where y = (y1, . . . , yn)
′ is the response vector,K = {φv(xi)}n×m is

the null space basis function matrix, J = {ρ1(xi, x̃j)}n×R denotes

the contrast space basis function matrix with {x̃j}Rj=1 ⊆ {xi}ni=1

denoting the selected knots, and Q = {ρ1(x̃i, x̃j)}R×R denotes the
penalty matrix. The full solution uses all unique xi as knots, but
using a subset of R≪ n knots has been shown to perform well in
practice, as long as enough knots are included to reasonably span
X [26, 30–32]. Given λ, the optimal coefficients are

(

d̂

ĉ

)

=
(

K′K K′J
J′K J′J+ nλQ

)† (

K′

J′

)

y (14)

where (·)† denotes the Moore-Pensore pseudoinverse [33, 34].
The fitted values can be written as

η̂ = Kd̂+ Jĉ = Sλy (15)

where

Sλ =
(

K J
)

(

K′K K′J
J′K J′J+ nλQ

)† (

K′

J′

)

(16)

is the smoothing matrix, which depends on λ and any θk
parameters embedded in ρ1. The smoothing parameters can be
obtained byminimizing the Generalized Cross-Validation (GCV)
criterion [35]

GCV(λ) = n−1‖y− Sλy‖2
[1− tr(Sλ)/n]2

(17)

where tr(Sλ) is often considered the effective degrees of freedom
of a smoothing spline.
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2.6. Bayesian Interpretation
The smoothing spline solution in Equation (15) can be
interpreted as a Bayesian estimate of a Gaussian process [36–40].
Suppose that η = (η0 + η1) ∈ H = H0 ⊕ H1 where ηk ∈ Hk

for k ∈ {0, 1}. Furthermore, assume that (i) η0(x) = φ′d where
φ′ = (φ1(x), . . . ,φm(x)) and d ∼ N(0m, τ

2Im), (ii) η1(x) = ρ′c
where ρ′ = (ρ1(x, x̃1), . . . , ρ1(x, x̃R)) and c ∼ N(0R,

σ 2

nλQ
†), and

(iii) η0 and η1 are independent of one another and of the error
term ǫ. Applying Bayes’s Theorem, the posterior distribution of
β = (d′, c′)′ is multivariate normal with mean and covariance

µβ|y = 6′
βy6

−1
y y

6β|y = 6β −6′
βy6

−1
y 6βy

(18)

where 6β = bdiag(τ 2Im,
σ 2

nλ JQ
†) is a block-diagonal matrix,

6yβ = (τ 2K σ 2

nλ JQ
†), and 6y = τ 2KK′ + σ 2

nλ JQ
†J′ + σ 2In.

Letting τ 2 → ∞ corresponds to a diffuse prior on the null space
coefficients, and

µ̂β|y = lim
τ 2→∞

µβ|y =
(

K′K K′J
J′K J′J+ nλQ

)† (

K′

J′

)

y (19)

makes the posterior mean equivalent to the smoothing spline
coefficient estimates from Equation (14). The corresponding
Bayesian covariance matrix estimator is

6̂β|y = lim
τ 2→∞

6β|y = σ 2

(

K′K K′J
J′K J′J+ nλQ

)†

. (20)

Using this Bayesian interpretation, one can form a 100(1 −
α)% Bayesian “confidence interval” around the smoothing spline
estimate

ψ ′µ̂β|y ± Zα/2

√

ψ ′6̂β|yψ (21)

where ψ ′ = (φ′, ρ′) and Zα/2 is a critical value from a standard
normal distribution. These confidence intervals have a desirable
across-the-function coverage property, such that the intervals
are expected to contain about 100(1 − α)% of the function
realizations, assuming that the GCV has been used to select the
smoothing parameters [37, 38, 40].

3. ORDINAL SMOOTHING SPLINE

3.1. Formulation
Real-valued functions on X = {1, . . . ,K} correspond to real-
valued vectors of length K, where the function evaluation is
equivalent to coordinate extraction, i.e., η(x) for x ∈ {1, . . . ,K}
can be viewed as extracting the x-th element of the vector η =
(η1, . . . , ηK)

′. Thus, equipped with an inner product, the space of
functions on X = {1, . . . ,K} is a RKHS, denoted by H = R

K ,
which can be decomposed into the tensor summation of two
orthogonal subspaces: H = H0 ⊕ H1. The null space H0 =
{η :η(1) = · · · = η(K)} consists of all constant functions (vectors
of length K), and the contrast space H1 = {η :

∑K
x= 1 η(x) = 0}

consists of all functions (vectors of length K) that sum to zero
across the K elements.

For ordinal predictors x ∈ X = {1, . . . ,K} with 1 < · · · < K,
we can use the penalty functional

J(η) =
K

∑

x=2

[η(x)− η(x− 1)]2 (22)

which penalizes differences between adjacent values [13, 15].
Letting η = [η(1), . . . , η(K)]′, we can write the penalty functional
as

J(η) = ‖Dη‖2 (23)

where D = {dij}K−1×K is a first order difference operator matrix
with elements defined as

dij =







1 if j = i+ 1
−1 if j = i
0 otherwise.

(24)

As an example, with K = 5 the matrixD has the form

D =









−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1









. (25)

The penalty functional in Equation (22) corresponds to the
inner-product

〈η, ξ 〉 = Kη̄ξ̄ +
K

∑

x= 2

[η(x)− η(x− 1)][ξ (x)− ξ (x− 1)]

= η′
(

1

K
1K1

′
K

)

ξ + η′D′Dξ

(26)

where η̄ = (1/K)
∑K

x=1 η(x), ξ̄ = (1/K)
∑K

x=1 ξ (x), 〈η, ξ 〉0 =
η

(

1
K 1K1

′
K

)

ξ is the inner product of the null space, and 〈η, ξ 〉1 =
η′D′Dξ is the inner product of the contrast space. Note that
(

1
K 1K1

′
K

)

D′D = 0K×K by definition. Furthermore, note that the
ordinal smoothing spline estimates η within the same RKHS as
the nominal smoothing spline (see Table 1), however the ordinal
smoothing spline uses a different definition of the inner-product
for the contrast space, which induces a different reproducing
kernel.

Theorem 3.1. Given the ordinal smoothing spline inner-product
in Equation (26), the null space H0 = {η : η(1) = · · · = η(K)}
has reproducing kernel ρ0(x, y) = 1/K, and the contrast space
H1 = {η :

∑K
x= 1 η(x) = 0} has reproducing kernel

ρ1(x, y) =
K− 1
∑

k= 1

(

1{x≤k} −
k

K

) (

1{y≤k} −
k

K

)

= 1− x ∨ y+ 1

2K

[

x(x − 1)+ y(y − 1)
]

+ K̃

for x, y ∈ {1, . . . ,K} where 1{·} is an indicator function, x ∨ y =
max(x, y), and K̃ = (K−1)(2K−1)

6K .
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See the Supplementary Material for a proof. Note that
Theorem 3.1 provides the reproducing kernel needed to
numerically evaluate the optimal ηλ from Equation (6) for the
ordinal smoothing spline. Considering the model in Equation (4)
with X = {1, . . . ,K} where 1 < · · · < K are elements of an
ordered set, the penalized least squares problem has the form

n−1‖y− d1n − GQc‖2 + λc′Qc (27)

where y = (y1, . . . , yn)
′ is the response vector, d is the unknown

intercept, G = {gij}n×K is a selection matrix such that gij = 1
if xi = j for j ∈ {1, . . . ,K} and gij = 0 otherwise, Q =
{ρ1(x̃i, x̃j)}K×K with x̃i = i and x̃j = j for i, j = 1, . . . ,K, and c =
(c1, . . . , cK)

′ are the unknown function coefficients. Given λ, the
optimal coefficients and smoothing matrix can be obtained using
the result in Equations (14) and (16) with K = 1n and J = GQ.
When applying the Bayesian interpretation in Section 2.6, note
that the pseudoinverse of Q has Toeplitz form for the internal
rows and columns with deviations from Toeplitz form in cells
(1,1) and (K,K). As an example, with K = 5 the pseudoinverse of
Q is given by

Q† = D′D =













1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1













(28)

where c ∼ N(0, [σ 2/(nλ)]Q†) is the assumed prior distribution
for the contrast space coefficients.

3.2. Relation to Isotonic Regression
Using the reproducing kernel definition in the first line of
Theorem 3.1, Q = {ρ1(x, y)}K×K = MM′ where the elements
of the matrixM = {mij}K×K−1 have the form

mij =
{

(j− K)/K if i ≤ j
j/K if i > j

(29)

As an example, with K = 5 the matrixM has the form

M = 1

5













−4 −3 −2 −1
1 −3 −2 −1
1 2 −2 −1
1 2 3 −1
1 2 3 4













. (30)

Note that the columns of M sum to zero, which implies that
Q0Q = 0K×K , where Q0 =

(

1
K 1K1

′
K

)

is the reproducing kernel
matrix for the null space. To visualize the ordinal smoothing
spline reproducing kernel function, Figure 1 plots the columns
of M and the columns of the corresponding reproducing kernel
matrix Q for the situation with K = 5. Note that by definition
(i) the K−1 columns ofM are (linearly independent) monotonic
increasing functions of x ∈ {1, . . . ,K} and (ii) the K columns of
Q are linearly dependent given thatQ has rank K − 1.

The factorization of the reproducing kernel matrix Q = MM′

implies that the ordinal smoothing spline can be reformulated

to form an isotonic regression estimator. Specifically, we could
reparameterize the ordinal smoothing spline problem as

n−1‖y− d1n − GMcm‖2 + λ‖cm‖2 (31)

where cm = M′c and Q = MM′ by definition. Note that
columns of M are monotonic increasing such that the k-th
column contains two unique values with the “jump” occurring
between rows k and k + 1 for k ∈ {1, . . . ,K − 1}, see Figure 1.
Thus, by constraining the elements of cm to be non-negative, we
can constrain the ordinal smoothing spline to be a monotonic
increasing function across the values 1 < · · · < K. Specifically,
for a fixed λ we seek the solution to the problem

min
β

1

2
β ′ (X′X+ nλI∗K

)

β − y′Xβ subject to Aβ ≥ 0K (32)

where β = (d, c′m)
′ is the coefficient vector, X = [1n,GM] is the

designmatrix, I∗K is aK×K identity matrix with cell (1,1) equal to
zero, and A = (0K−1, IK−1) is the (K − 1)×K constraint matrix.

Theorem 3.2. The coefficient vector β minimizing the inequality
constrained optimization problem in Equation (32) has the form

β̂∗ =
(

IK + C−1A′
2B2A

)

β̂

where C = X′X+nλI∗K , β̂ = C−1X′y is the unconstrained ordinal
smoothing spline solution, and the A2 and B2 matrices depend on
the active constraints.

See the Supplementary Material for the proof. Note that
Theorem 3.2 reveals that the ordinal smoothing spline
isotonic regression estimator is a linear transformation of
the unconstrained estimator. Furthermore, Theorem 3.2
implies that η̂ = S∗λy where the smoothing matrix has the
form S∗λ = X

(

IK + C−1A′
2B2A

)

C−1X′. Thus, when the non-
negativity constraints are active, tr(S∗λ) can be used as an estimate
of the effective degrees of freedom for smoothing parameter
selection.

3.3. Reproducing Kernel as K → ∞

We now provide a theorem on the behavior of the ordinal
smoothing spline reproducing kernel as the number of levels K
of the ordered set X = {1, . . . ,K} approaches infinity.

Theorem 3.3. As K → ∞, we have ρ1(x, y)/(K − 1) → ρ̃1(x̃, ỹ)
where

ρ1(x, y) = 1−x∨y+ 1

2K

[

x(x− 1)+ y(y− 1)
]

+ (K − 1)(2K − 1)

6K

is the ordinal smoothing spline reproducing kernel function for
x, y ∈ X = {1, . . . ,K} with x ∨ y = max(x, y) denoting the
maximum of x and y, and

ρ̃1(x̃, ỹ) = (x̃− 1/2)(ỹ− 1/2)+ (1/2)
{

(

|x̃− ỹ| − 1/2
)2 − 1/12

}

is the linear smoothing spline reproducing kernel function for x̃, ỹ ∈
X̃ = [0, 1] with x̃ = (x− 1)/(K − 1) and ỹ = (y− 1)/(K − 1) by
definition.
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FIGURE 1 | Visualization of the ordinal smoothing spline reproducing kernel function with K = 5 levels of X. Left plot shows the columns of the factorized kernel matrix

M, whereas right plot shows the columns of reproducing kernel matrix Q = MM′.

FIGURE 2 | (Top) Visualization of the (standardized) ordinal and linear smoothing spline reproducing kernel functions with K = 5 levels of X. (Bottom) Frobenius norm

between the (standardized) ordinal and linear smoothing spline reproducing kernel matrices Q as a function of K.

See the Supplementary Material for a proof. Note that
Theorem 3.3 implies that ordinal and linear smoothing splines
will perform similarly as the number of levels of the ordered
set K increases. In Figure 2, we plot the reproducing kernel
function for the (standardized) ordinal and linear smoothing
spline (with K = 5), along with the Frobenius norm between the
(standardized) ordinal and linear smoothing spline reproducing
kernel matrices for different values of K. This figure reveals that
the two kernel functions are practically identical for K ≥ 20, and
can look quite similar even for small values of K (e.g., K = 5).

3.4. Approximation for Large K
If the number of elements of the ordered set K is quite large,
then using all K levels as knots would be computationally

costly. In such cases, the unconstrained ordinal smoothing spline
solution can be fit via the formulas in Equations (14) and (16)
with a set of knots {x̃j}Rj=1 ⊂ {1, . . . ,K}. When monotonicity

constraints are needed, the ordinal smoothing spline would
still be computationally costly for large K. This is because the
factorization of the reproducing kernel into the outer product
of monotonic functions, i.e., Q = MM′, depends on K.
For a scalable approximation to the ordinal smoothing spline
isotonic regression estimator, the penalty functional itself can be
approximated such as

J(η) =
R

∑

j=2

[η(x̃j)− η(x̃j−1)]
2 (33)
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where the knots 1 = x̃1 < · · · < x̃R = K are assumed to be
ordered and unique. The modified RKHS is

H = {η : η(x) = η(x̃j) if x ∈ {x̃j− 1 + 1, . . . , x̃j}} ⊂ R
K (34)

for x ∈ {1, . . . ,K} and j ∈ {2, . . . ,R}. The modified RKHSH has
the modified inner product

〈η, ξ 〉 = η′
(

1

R
1̃K 1̃

′
K

)

ξ + η′D̃′D̃ξ (35)

where 1̃K is a K × 1 vector that contains ones in the positions
corresponding to the R knots and zeros elsewhere, and D̃ is a
sparse R−1×K first order difference operator matrix with entries
defined as

d̃ij =







1 if j = x̃i+1

−1 if j = x̃i
0 otherwise.

(36)

As an example, with K = 5 and R = 3 knots (x̃1, x̃2, x̃3) =
(1, 3, 5), the matrix D̃ has the form

D̃ =
(

−1 0 1 0 0
0 0 −1 0 1

)

. (37)

Theorem 3.4. Given the ordinal smoothing spline inner-product
in Equation (35), the null space H0 = {η : η(x̃1) = · · · = η(x̃R)}
has reproducing kernel ρ0(x, y) = 1/R, and the contrast space
H1 = {η :

∑R
j= 1 η(x̃j) = 0} has reproducing kernel

ρ1(x, y) =
R− 1
∑

j= 1

(

1{x≤x̃j} −
j

R

) (

1{y≤x̃j} −
j

R

)

for x, y ∈ {1, . . . ,K} where 1{·} is an indicator function and
1 = x̃1 < · · · < x̃R = K are the knots.

See the Supplementary Material for a proof. Note that
Theorem 3.4 provides the reproducing kernel needed to
compute the ordinal smoothing spline isotonic regression
estimator using the knot-based approximation for large
K. Specifically, Theorem 3.4 reveals that we can write
J̃ = {ρ1(xi, x̃j)}n×R = P̃M̃′ and Q̃ = {ρ1(x̃i, x̃j)}R×R = M̃M̃′

where P̃ = {p̃ij}n×R− 1 with p̃ij = (j/R) − 1{xi≤x̃j} for

i = 1, . . . , n and j = 1, . . . ,R − 1, and M̃ = {m̃ij}R×R−1 with
m̃ij = (j/R) − 1{x̃i≤x̃j} for i = 1, . . . ,R and j = 1, . . . ,R − 1.

Note that P̃ = G̃M̃ where G̃ = {g̃ij}n×R is a selection matrix
such that g̃ij = 1 if xi = j = 1 or xi ∈ (x̃j−1, x̃j] for j = 2, . . . ,R,
and g̃ij = 0 otherwise. Using the modified reproducing
kernel, the reparameterized ordinal smoothing spline
problem is

n−1‖y− d1n − G̃M̃c̃m‖2 + λ‖c̃m‖2 (38)

where c̃m = M̃′c, so analogs of the results in Section 3.2 can be
applied.

4. SIMULATION STUDY

To investigate the performance of the ordinal smoothing spline,
we designed a simulation study that manipulated two conditions:
(i) the sample size (4 levels: n ∈ {50, 100, 200, 500}), and
(ii) the data generating function η (2 forms, see Figure 3). To
simulate the data, we defined xi to be an equidistant sequence
of n points spanning the interval [0,1], and then defined
yi = η(xi) + ǫi where the error terms were (independently)
randomly sampled from a standard normal distribution. Note
that each xi is unique, so K = n in this case. We compared
four different methods as a part of the simulation: (a) linear
smoothing spline, (b) ordinal smoothing spline, (c) monotonicity
constrained ordinal smoothing spline, and (d) isotonic regression
implemented through the isoreg function in R [6]. Methods
(a)–(c) were fit using the bigsplines package [41] in
R. For the smoothing spline methods, we used the same

FIGURE 3 | The data generating functions from the simulation study. In each case, the function is defined as η(x) = 1
K

∑K− 1
k= 1 sign(

√
x − x*

k
) where the {x*

k
}K− 1
k= 1 are a

sequence of equidistant knots spanning the interval [0,1].
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sequence of 20 points as knots to ensure that differences in
the results are not confounded by differences in the knot
locations. For each of the 8 (4 n × 2 η) cells of the
simulation design, we generated 100 independent samples of
data and fit each of the four models to each generated
sampled.

To evaluate the performance of each method, we calculated
the root mean squared error (RMSE) between the truth
η and the estimate η̂. The RMSE for each method is
displayed in Table 2 and Figure 4, which clearly reveal the
benefit of the ordinal smoothing spline. Specifically, Figure 4
reveals that the unconstrained ordinal smoothing spline
outperforms the linear smoothing spline for smaller values
of n = K, and performs similarly to linear smoothing
spline for large values of K. Figure 4 also reveals that
the monotonicity constrained estimator (using the knot-
approximated reproducing kernel function described in Section
3.4) performed slightly better than the unconstrained ordinal
smoothing spline, particularly in the n = 50 condition.
Furthermore, the simulation results in Figure 4 demonstrate
that the ordinal smoothing spline systematically outperforms
R’s (default) isotonic regression routine. Thus, the ordinal
smoothing spline offers an effective alternative to classic
nonparametric and isotonic regression approaches, and—unlike
the linear smoothing spline—the ordinal smoothing spline has
the benefit of being invariant to any monotonic transformation
of x.

TABLE 2 | Median root mean squared error (RMSE) across 100 simulation

replications.

Method Function A Function B

n = 50 n = 100 n = 200 n = 500 n = 50 n = 100 n = 200 n = 500

lin 0.299 0.230 0.161 0.132 0.280 0.195 0.156 0.120

ord 0.253 0.211 0.166 0.130 0.239 0.193 0.162 0.123

mon 0.248 0.190 0.161 0.128 0.224 0.187 0.148 0.116

iso 0.321 0.269 0.201 0.148 0.325 0.263 0.204 0.154

5. EXAMPLES

5.1. Example 1: Income by Education and
Sex
To demonstrate the power of the monotonic ordinal smoothing
spline, we use open source data to examine the relationship
between income and educational attainment. The data were
collected as a part of the 2014 US Census and are freely available
from the Integrated Public Use Microdata Series (IPUMS) USA
website (https://usa.ipums.org/usa/), which is managed by the
Minnesota Population Center at the University of Minnesota.
Note that the original data file usa_00001.dat contains data
from n∗ = 3, 132, 610 subjects. However, we restrict our analyses
to individuals who were 18+ years old and earned a non-zero
income as reported on their 2014 census, resulting in a sample
size of n = 2, 214, 350 subjects. We fit the monotonic ordinal
smoothing spline separately to the males’ data (n = 1, 093, 949)
and females’ data (n = 1, 120, 401) using all 11 unique education
levels as knots. Due to the positive skewness of the income
data, we fit the model to y = log(income). Finally, to ensure
our results were nationally representative, we fit the model
via weighted penalized least squares using the person weights
(PERWT) provided with the IPUMS data.

The fit models explain about 15% of the variation in the

male and female income data, and reveal noteworthy differences

in expected incomes as a function of education and sex. The

predicted mean incomes for each educational attainment level

and sex are plotted in Figure 5, which has some striking trends.

First, note that expected income is low (about $15,000 for males
and $10,000 for females) for individuals without a high school
education. Completing high school results in an approximate
$7,000 expected increase in income for men, but only a $4,500
expected increase in income for women. Similarly, completing 1
year of college results in an expected $1,700 pay increase for men,
but only an expected $1,000 increase for women. This disturbing
trend continues to magnify at each education level, such that
women receive a smaller expected return on their education. At
the highest level of educational attainment, the gender pay gap is

FIGURE 4 | Box plots of the root mean squared error (RMSE) between η and η̂ for each method.
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FIGURE 5 | Monotonic ordinal smoothing spline solution showing the relationship between education and income for males (blue circle) and females (red triangle).

most pronounced such that women tend to make about $28,000
less per year than men.

5.2. Example 2: Student Math Performance
As a second example, we use math performance data from
Portuguese secondary students. The data were collected by Paulo
Cortez at the University of Minho in Portugal [42], and are
available from the UCIMachine Learning Repository [43]. In this
example, we use the math performance data (student-mat.csv),
which contains math exam scores from n = 395 Portuguese
students. We focus on predicting the students’ scores on the first
exam during the period (G1). Unlike Cortez et al., we model the
first exam (instead of the final grade) because we hope to identify
factors that cause students to fall behind early in the semester.
By discovering factors that relate to poor math performance
on the first exam, it may be possible to create student-specific
interventions (e.g., tutoring or more study time) with hopes of
improving the final grade.

In Table 3, we describe the 15 predictor variables that we
include in our model. To model the math exam scores, we fit a
semiparametric regression model of the form

mathi = β0 + β1schooli + β2sexi + β3famsupi + β4paidi

+β5 activitiesi + β6 nurseryi + η1(agei)

+η2(failuresi)+ η3(absencesi)+ η4(Medui)

+η5(traveltimei)+ η6(studytimei)+ η7(goouti)

+η8(Walci)+ η9(healthi)+ ǫi (39)

where mathi is the i-th student’s score on the first math exam,
β0 is an unknown regression intercept, (β1, . . . ,β6) are unknown
regression coefficients corresponding to the six binary predictors
(school, sex, famsup, paid, activities, nursery), ηj is the j-th effect

function for j = 1, . . . , 9, and ǫi
iid∼ N(0, σ 2) is the i-th student’s

model error term. We used a cubic smoothing spline marginal
reproducing kernel for the integer valued variables (age, failures,
absences) because these variables are measured on a ratio scale.
We used the ordinal smoothing spline reproducing kernel (see
Theorem 3.1) for the other six nonparametric effects because

TABLE 3 | Predictor variables for math performance example.

Variable Type Range/levels

Student’s School (school) Binary 1 = Gabriel Pereira, 0 =
Mousinho da Silveira

Student’s Sex (sex) Binary 1 = male, 0 = female

Educational Support (famsup) Binary 1 = yes, 0 = no

Extra Paid Classes (paid) Binary 1 = yes, 0 = no

Extra-Curricular Activities (activities) Binary 1 = yes, 0 = no

Attended Nursery School (nursery) Binary 1 = yes, 0 = no

Student’s Age (age) Integer 15, 16, …, 22

Number of Failures (failures) Integer 0, 1, 2, 3

Number of Absences (absences) Integer 0, 1, …, 75

Mother’s Education (Medu) Ordinal None, <4th, 5th-9th,

secondary, higher

Travel Time to School (traveltime) Ordinal <15min, 15–30min, 30–60

min, >60 min

Study Time per Week (studytime) Ordinal <2 h, 2–5 h, 5–10 h, >10 h

Goes Out with Friends (goout) Ordinal 1 = very low, …, 5 = very

high

Weekend Alcohol Consumption (Walc) Ordinal 1 = very low, …, 5 = very

high

Health Status (health) Ordinal 1 = very bad, …, 5 = very

good

these variables were measured on an ordinal scale (see Table 3).
The full smoothing spline solution was fit, i.e., all n = 395 data
points were used as knots.

The smoothing parameters were chosen by minimizing the
GCV criterion [35]. To avoid the computational expense of
simultaneously tuning the GCV criterion with respect to 9
smoothing parameters (one for each ηj), we used a version of
Algorithm 3.2 described by Gu and Wahba [25] to obtain initial
values of the smoothing parameters. Then we fit the model
with the 9 local smoothing parameters fixed at the initialized
values, and optimized the GCV criterion with respect to the
global smoothing parameter λ. This approach has been shown to
produce results that are essentially identical to the fully optimal
solution (see [15, 26]).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 July 2017 | Volume 3 | Article 15

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Helwig Ordinal Smoothing Spline

FIGURE 6 | Estimated effects of the different predictor variables on expected math scores with 90% Bayesian confidence intervals (dashed lines) around the

predictions.

The fit model explains about 23% of the variation in the
students’ scores on the first math exam. The estimated regression
coefficients (β̂1, . . . , β̂6) and effect functions (η̂1, . . . , η̂9) are
plotted in Figure 6, along with 90% Bayesian confidence intervals
[37, 38, 40] around the effect functions. Examining the top row of
Figure 6, it is evident that only two of the six parametric effects
has a significant effect: sex and famsup. The signs andmagnitudes
of these significant coefficients reveal that (i) males tend to
get higher math exam scores than females, and (ii) students
who receive extra educational support from their families tend
to get lower math exam scores. This second point may seem
counter-intuitive, because one may think that extra educational
support should lead to higher grades. However, it is likely that

the students who receive extra support are receiving this extra
support for a reason.

Examination of the remaining subplots in Figure 6 reveals
that the number of prior course failures has the largest (negative)
effect on the expected math scores, which is not surprising.
There is a slight trend such that larger ages lead to better
grades, but the trend is not significantly different from zero
according to the 90% Bayesian confidence intervals. Given the
other effects in the model, the number of absences has no effect
on the expected math scores, which is surprising. Having a
mother who completed higher education increases a student’s
expected math exam score, whereas there were no significant
differences between the other four lesser levels of the mother’s
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education. Studying for 5 or more hours per week increases a
student’s expected scores, whereas studying less than 2 h per week
decreases a student’s expected scores. Going out with friends
and/or drinking on the weekend with high or very high frequency
significantly decreases a student’s expected math exam scores.
Given the other effects, travel time to school and a student’s health
did not have significant effects on the math exam scores.

6. DISCUSSION

6.1. Summary of Findings
Our simulation and real data examples reveal the flexibility
and practical potential of the ordinal smoothing spline. The
simulation study investigated the potential of the ordinal
smoothing spline for isotonic regression, as well as the
relationship between the ordinal and linear smoothing
spline reproducing kernel functions. The simulation results
demonstrated that (i) the ordinal smoothing spline can
outperform the linear smoothing spline at small samples,
(ii) the ordinal smoothing spline performs similar to the linear
smoothing spline for large K, and (iii) monotonic ordinal
smoothing splines can outperform standard isotonic regression
approaches. Thus, the simulation study illustrates the results in
Theorems 3.1–3.3, and also reveals that the knot-approximated
reproducing kernel proposed in Theorem 3.4 offers an effective
approximation to the monotonic ordinal smoothing spline
solution.

The first example (income by education and sex) offers a
practical example of the potential of the ordinal smoothing
spline for discovering monotonic trends in data. Unlike classic
approaches to isotonic regression, the ordinal smoothing spline
uses a reproducing kernel (and knot-based) approach, making it
easily scalable to large survey samples such as the US Census data.
Using a large and nationally representative sample of US citizens
ages 18+, this example reveals a clear gender pay gap, such
that women receive less return on their educational investments,
i.e., less pay for the same level of education. And note that the
predictor could be monotonically transformed without changing
the ordinal smoothing spline solution, which is one of the
primary benefits of using the ordinal smoothing spline estimator
for variables such as Educational Attainment—which has no clear
unit of measurement.

The second example (math grades) demonstrates the
effectiveness of using ordinal smoothing splines to include
multiple ordinal predictors in a regression model along with
other nominal and metric (continuous) predictors. Furthermore,
the second example illustrates that many ordinal relationships
do not have a clear linear in/decrease across the K levels of the
ordinal variable. This reveals that it could be difficult and/or
misleading to code ordinal predictors as if they were continuous
(e.g., linear) effects. So, despite this common practice in the social
sciences, our results make it clear that this sort of approach does
not have an obvious solution for all ordinal variables, and could
be particularly problematic when multiple ordinal variables are
included in the same model.

6.2. Concluding Remarks
This paper discusses the ordinal smoothing spline, which can
be used to model functional relationships between ordered
categorical predictor variables and any exponential family
response variable. This approach makes it straightforward to
incorporate one (or more) ordinal predictors in a regression
model, and also provides a theoretically sound method
for examining interaction effects between ordinal and other
predictors. In this paper, we present the ordinal smoothing
spline reproducing kernel function (Theorem 3.1), which has the
benefit of being invariant to any monotonic transformation of
the predictor. We also discuss how the ordinal smoothing spline
estimator can be adjusted to impose monotonicity constraints
(Theorem 3.2). Furthermore, we reveal an interesting asymptotic
relationship between ordinal and linear smoothing splines
(Theorem 3.3), and develop large sample approximations for
ordinal smoothing splines (Theorem 3.4). Finally, we have
demonstrated the practical potential of ordinal smoothing splines
using a simulation study (Section 4) and real data examples from
two distinct disciplines (Section 5).

In nearly all applications of the GLM or GzLM, ordered
categorical predictors are treated as either unordered categorical
predictors or metric predictors for modeling purposes. In most
cases, it is not obvious which approach one should choose.
Neither approach is ideal for ordinal data, so one must ultimately
decide which aspect of the data should be misrepresented in the
model. Treating ordinal data as unordered (by definition) ignores
the ordinal nature of the data, which is undesirable. Whereas,
treating ordinal data as metric (continuous) ignores the discrete
nature of the data, which is undesirable. In contrast, the ordinal
smoothing spline is the obvious solution to this problem, because
the ordinal smoothing spline (i) respects the ordinal nature of the
predictor, and (ii) provides a theoretically sound framework for
incorporating ordinal predictors in regression models.
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