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The multiscale model of hepatitis C virus (HCV) dynamics, which includes intracellular

viral RNA (vRNA) replication, has been formulated in recent years in order to provide

a new conceptual framework for understanding the mechanism of action of a variety of

agents for the treatment of HCV. We present a robust and efficient numerical method that

belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type

method that is highly suited to solve this problem. We provide a Graphical User Interface

that applies this method and is useful for simulating viral dynamics during treatment with

anti-HCV agents that act against HCV on the molecular level.

Keywords: hepatitis C virus, multiscale model, age-structured model, RNA-mediated viral dynamics, partial

differential equations, numerical solution, Rosenbrock method

1. INTRODUCTION

Approximately 71 million people worldwide are affected by chronic hepatitis C viral (HCV)
infection, which is the primary cause of liver cirrhosis, liver cancer and liver transplant [1].
Approximately 400,000 people die each year from HCV, mostly from cirrhosis and hepatocellular
carcinoma [2]. There is no vaccine for HCV and for more than a decade the standard-of-care
of pegylated interferon-alpha (IFN) and ribavirin was suboptima [3]. However the recent advent
of direct-acting antivirals (DAAs) allows for interferon-free, all-oral treatment yielding cure rates
exceeding 90%with pangenotypic activity and shorter durations of therapy (8–24 weeks) compared
to IFN-based therapy (24–48 weeks [4]). While these highly effective DAAs are considered one of
the greatest achievements in medicine, significant challenges remain for eliminating HCV infection
such as finding an optimal approach to current DAA failures, preventing re-infection, identifying
all those infected and the high cost of the new DAAs which represents a major barrier to treating
the populations that are most affected by HCV [3]. Thus, there exists a continuing need for more
affordable therapies, as well as an effective vaccine [5].

Mathematical models are valuable tools for understanding the in vivo serum dynamics of viruses
that trigger both persistent infection (e.g., HIV-1 [6–9], hepatitis B virus [10–12], hepatitis D
virus [13–15], Theiler murine encephalomyelitis virus [16], herpes simplex virus [17] and HCV
[18–20]) and acute infection (e.g., influenza A [21–23] and ebola [24]). Mathematical modeling
is also improving our understanding of intracellular viral genome dynamics [25–28] and the
quantitative events that underlie the immune response to pathogens [6, 9]. The standard model
for HCV kinetics during treatment provided many insights into the effectiveness and mechanism
of action of IFN and ribavirin (reviewed in [29, 30]). This model has been able to retrospectively
predict the duration of treatment needed for HCV eradication (cure) [31–35] and more recently
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was used in real-time (on treatment) to predict the duration
of therapy needed to achieve cure with an IFN-free regimen
of silibinin +ribarivin [36]. In the age of DAAs, new models
are being developed to meet the challenge associated with these
new agents [37–39]. Notably, the first age-based multiscale
mathematical model for HCV kinetics has been developed [25,
40, 41] providing a more comprehensive understanding of viral
treatment response kinetics observed in patients treated with
IFN, HCV protease inhibitors (telaprevir and danoprevir), or the
HCV NS5A inhibitor daclatasvir as well as modes of action of
these drugs.

The aforementioned model is an extension to the classical
Neumann et al. biphasic model [20] that was introduced in
1998 and treated the infected cell as a “black box,” producing
virions but without any consideration of the intracellular viral
RNA replication and degradation within the infected cell [26, 27,
42]. The biphasic model is a set of three ordinary differential
equations (ODEs) with three variables: uninfected target cells
(T), productively infected cells (I), and extracellular virus in
blood (V). The multiscale model considers the intracellular viral
RNA as an additional equation for the variable (R), with the
introduction of age-dependency and time-dependency, making it
a partial differential equation (PDE) model. When this multiscale
model is used to study the dynamics of HCV infection under
therapy with DAAs it includes both intracellular viral RNA
replication/degradation and extracellular viral RNA (i.e., virus
particles) with age-dependency and time-dependency. As such, it
is considerably more difficult to solve compared to the standard
biphasic model. Previously short-term and long-term analytical
approximations were derived [25, 41, 43]. In the short-term
approximation, it was assumed that after therapy is initiated the
infected cells maintain their steady-state levels of HCV, whereas
in the long-term approximation all new infections after the onset
of therapy are neglected. While the short-term approximation
has been shown to be precise only in the first half-day of
treatment, the long-term approximation is in agreement after
several days post-treatment initiation with a simple numerical
solution that utilized a canned solver (an ODE solver used
in higher level languages such as Matlab and Mathematica, or
Python) [41].

In this paper, we provide a robust and efficient numerical
method for solving the multiscale model. The goal is to
considerably improve the numerical solution presented in Rong
et al. [41] that used a canned solver (an ODE solver used in
higher level languages such as Matlab and Mathematica, or
Python), making the numerical solution a flexible and robust
entity alongside the analytical approximations. As it turns out,
because of the properties of this multiscale model and the fact
that the differential equations are stiff, some advanced numerical
methods that involve adaptive stepsize are needed. To begin
with, the use of a canned solver should be replaced with a full-
fledged solver because of the additional integral introduced in the
multiscale model for the variable V that needs to be computed
at each time step. Unlike the construction of numerical schemes
in other applications, for example in the non-linear diffusion of
digital images [44–46] where accuracy can be limited, herein it is
adviseable to construct a stable and efficient scheme that belongs

to the Runge-Kutta family with at least a fourth order of accuracy.
However, due to the nature of the differential equations that are
stiff and the additional integral that needs to be evaluated at each
time step, implicit solvers with adaptive stepsize are considerably
more stable and efficient than the standard Runge-Kutta fourth
order method. We implement implicit schemes with adaptive
stepsize [47] that are highly efficient and stable for use in the
multiscale model with age of hepatitis C virus dynamics.

The main contribution of this manuscript is in the use of the
Rosenbrock method to solve the pre-existing multiscale model of
hepatitis C virus (a system of PDEs), and to provide an open-
access graphical user interference (GUI) to solve and simulate
the model numerically. To the best of our knowledge, this is
the first numerical simulator with a graphical user interface
developed for the multiscale model. In addition, a detailed
presentation of the Rosenbrock method is provided, as well as
updated results. The paper is organized as follows. Section 2
provides the mathematical background for the model. In section
3, we provide the details of the Rosenbrock method including a
step-by-step derivation starting from the standard Runge-Kutta
fourth order, describing how we applied it to solve our problem.
Section 4 presents and discusses the results achieved with our
implementation of the Rosenbrock method, culminating with a
description of the multiscale model simulator that we developed
and is provided for general use. We conclude the paper with a
summary of our results and future work.

2. MATHEMATICAL BACKGROUND

2.1. The Standard HCV Model
The standardmodel that has been used andmodified for studying
hepatitis C viral dynamics is the Neumann et al. model [20].
The three variables this model keeps track of are the target cells
T, in Equation (1a), the infected cells I in Equation (1b) and
the extracellular virus V in Equation (1c). The target cells T are
produced at constant rate s, and decreased by the number of cells
infected by virus in blood V at constant rate β and their death
rate d. The infected cells, I, increase with the new infections at
rate βV(t)T(t) and die at constant rate δ. The virusV is produced
at rate p by each infected cell and is cleared at constant rate c.
The ǫ term denotes the effectiveness of the anti-viral treatment
that decreases viral production from p to (1−ǫ)p. The previously
established ensemble of ODEs for this model is:



















dT(t)
dt
= s− βV(t)T(t)− dT(t)

dI(t)
dt
= βV(t)T(t)− δI(t)

dV(t)
dt
= (1− ǫ)pI(t)− cV(t).

(1a)

(1b)

(1c)

From the mathematical perspective, the model is simple and can
be solved analytically by appropriate assumptions.

2.2. The HCV Age-Based Multiscale Model
The multiscale model of HCV dynamics has been formulated
in recent years [25, 41, 43] in order to study HCV dynamics in
patients and decide among various treatment options. Figure 1
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FIGURE 1 | A systematic overview of the multiscale model. The multiscale

model accounts for the intracellular HCV RNA (vRNA) replication, R, i.e.,

synthesis, degradation and assembly/secretion with rate parameters α, µ, and

ρ, respectively. Treatment (parameters in red) may block vRNA synthesis with

effectiveness ǫα , with an additional time-dependent drug-mediated decrease

e−γt and/or virion assembly/secretion with effectiveness ǫs and/or enhance

the degradation rate of vRNA by a factor κ. T and I represent target and

infected cells, respectively, and V represents extracellular virus. Target cells are

created and die with constant rates s and d (shown as D in the GUI),

respectively, and can be infected by virus, V, with rate constant β. Infected

cells, I, are lost with rate constant δ and virus, V, is cleared from blood with

rate constant c.

depicts a systematic overview of the model, which is described by
the following partial differential equations (PDEs):















































dT(t)
dt
= s− βV(t)T(t)− dT(t)

∂ I(a,t)
∂t +

∂ I(a,t)
∂a = −δ(a)I(a, t)

dV(t)
dt
= (1− ǫs)

∫ ∞

0
ρ(a)R(a, t)I(a, t) da− cV(t)

∂R(a,t)
∂t +

∂R(a,t)
∂a = (1− ǫα)α(a)

−
[

(1− ǫs)ρ(a)+ κµ(a)
]

R(a, t),

(2a)

(2b)

(2c)

(2d)

subject to the boundary conditions I(0, t) = βV(t)T(t), I(a, 0) =
Ī(a), R(0, t) = 1, and R(a, 0) = R̄(a).

The variable I(a, t) for infected cells, that existed in the
standard model as simply I(t), and the newly introduced variable
R(a, t) for intracellular viral RNA (vRNA) both depend on the
age of infection a and the time duration from therapy initiation
t. Hence, a and t are two different times, with the use of partial
derivatives in Equations (2b) and (2d). Model parameters of T,
Equation (2a), and I, Equation (2b), are similar to the standard
model. The quantity of vRNA R, in Equation (2d), depends on its
synthesis α and its degradation µ and secretion from the cell as
virus particles ρ. The quantity of extracellular virus V shown in

Equation (2c) depends on the number of assembled and released
virions and their clearance rate c. A schematic description of the
multiscale model is shown in Figure 1.

An important consideration in this model is that the treatment
starts after the infection has reached its steady state. The steady
states of the different functions are R̄(a, t), Ī(a, t), V̄ and T̄. Given
N, the total number of virions produced by a cell in its life-span,
it was shown in Rong et al. [41] that those values are:

N =
ρ(α + δ)

δ(ρ + µ+ δ)

R̄(a, t) =
α

ρ + µ
+ (1−

α

ρ + µ
)e−(ρ+µ)a

Ī(a, t) = βV̄T̄e−δa

T̄ = c/(βN)

V̄ = (βNs− dc)/(βc).

(3)

Unlike the standard model, three different antiviral effects of
therapy can be simulated in the multiscale model. The decrease
in viral RNA synthesis is represented by εα , the reduction in
secretion by εs and the increase in viral degradation by κ ≥ 1.

Through the method of characteristics, as was derived in Rong
et al. [41], an analytical solution was found for the variable
R(a, t). The same method was applied to derive a solution for
I(a, t). The ensemble of Equations (2) represents the full model.
The analytical solutions for R(a, t) and I(a, t) were described as
follows:

R(a, t) =







α
ρ+µ
+

(

1− α
ρ+µ

)

e−[ρ+µ]a a < t

α
(ρ+µ)

+

(

R̄(a− t)− α
(ρ+µ)

)

e−(ρ+µ)t a ≥ t
(4)

I(a, t) =

{

βV(t − a)T(t − a)e−δa a < t

Ī(a− t)e−δt a ≥ t
(5)

From the system of Equations (2) it can be noticed that
computing V(t) necessitates an integral. If a < t, in other words
the cell age is younger than the time of treatment, i.e., infection
occurs after initiation of treatment, the term I(a, t) of the integral
in Equation (2) depends itself on V(t) and T(t) by consideration
of Equation (5). As was shown in Guedj et al., Rong et al., Rong
and Perelson [25, 41, 43], this makes the analytical solution for
V(t) approximative.

3. MATERIALS AND METHODS

The mathematical difficulties in deriving the long-term
approximation, itself imprecise, hinders the generalization
to more complex models. Numerical solutions are time
consuming unless an efficient method with an adaptive stepsize
is implemented, herein the Rosenbrock method [47]. We present
how it derives from the Runge-Kutta family methods and its
implementation for solving the model shown in Equation 2.

Runge-Kutta methods rely on computing the weighted
average of a small increment from the starting position [48].
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TABLE 1 | Butcher tableau for explicit Runge-Kutta, missing values are null as the

c1 row.

c2 a21

.

.

.
.
.
.

. . .

cS aS1 · · · aS,S−1

b1 · · · bS

b*1 · · · b*
S

TABLE 2 | Butcher tableau for implicit Runge-Kutta.

c1 a11 · · · aS1

.

.

.
.
.
.

. . .
.
.
.

cS aS1 · · · aSS

b1 · bS

b*1 · · · b*
S

Those weights, bi, are predetermined. An advantage of these
methods is that because of the use of Taylor series there exist a
different set of weights b∗i , also known, that allow to compute
directly the approximation error. The number of terms needed
to compute the next value is called the order S.

3.1. A General Introduction to the
Rosenbrock Method
In this section we wish to approximate the function y(t) for

solving the differential equation
dy
dt
= f (t, y), where f (t, y) is

known. Finite-differencemethods of higher order are used. Given
a known value of y at time step n, yn, compute the value at the
next time step yn+1 by means of f (tn, yn).

3.1.1. Explicit Runge-Kutta

The explicit Runge-Kutta family is a generalization of the Euler
method to higher order:

yn+1 = yn + h

S
∑

i=1

kibi (6)

tn+1 = tn + h, (7)

where

ki = f (tn + cih, yn + h

i−1
∑

j=1

aijkj) (8)

and aij, bi, ci are pre-determined constants. They are usually
displayed in a Butcher tableau as in Table 1. It is important to
note the limits of the summation in Equation (8), from 1 to i− 1.
In thismanner, it is straight forward to compute ki at every step. A
drawback of this method is the lack of stability for stiff problems
[49]. The implicit Runge-Kutta methods are offering a solution
to the instability problem.

TABLE 3 | Butcher tableau for Rosenbrock, missing values are null.

c1 γ

.

.

.
.
.
.

. . .

cS aS1 · · · γ

b1 · · · bS

b*1 · · · b*
S

TABLE 4 | The parameters of the model used in all simulations, taken from Rong

et al. [41].

Parameter Value Parameter Value

s 13,0000 cells/mL β 0.00000005 mL day −1 virion −1

d 0.01 day −1 δ 0.14 day −1

κ 6.36 c 22.5 day −1

α 40 day −1 ρ 7.95 day −1

µ 1 day −1 γ 0.24 day −1

εs 0.65 εα 0.997

3.1.2. Implicit Runge-Kutta

The implicit Runge-Kutta methods are themselves a more
stable version of the explicit Runge-Kutta family [48], which
is recommended to be used in stiff problems. The equations
extend to:

yn+1 = yn + h

S
∑

i=1

kibi (9)

tn+1 = tn + h (10)

ki = f (tn + cih, yn + h

S
∑

j=1

aijkj) (11)

and as before, aij, bi, ci are pre-determined constants. The main
difference lies in Equation (11) where the summation is taken
from 1 to S. The difference becomes obvious when looking at
the updated Butcher tableau (Table 2). With the table now full,
at each iteration a system of S equations with S unknowns needs
to be solved.

3.1.3. The Rosenbrock Method

As shown in Rosenbrock [47] a special case of the implicit Runge-
Kutta methods is when all of the values in the Butcher tableau
in the upper triangular matrix above the main diagonal are null
and all the diagonal elements equal to a single value gamma (i.e.,
∀i aii = γ , Table 3). The value of ki shown in Equation (11) can
now be simplified as follows:

ki = f (tn + cih, yn + h

i
∑

j=1

aijkj). (12)
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FIGURE 2 | The log values of the short-term and long-term approximations developed in Rong et al. [41] are shown compared to the PDE solution using the

Rosenbrock method. Model parameters are described in Table 4 with h = 0.001, ha = 0.01.

FIGURE 3 | The difference between the long-term approximation, developed in Rong et al. [41], and the PDE solution using the Rosenbrock method described herein

is computed. Model parameters are as in Figure 2. The method parameters are h = 0.001, ha = 0.01.
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TABLE 5 | Number of iterations taken by the Rosenbrock method given time step

values h and ha compared to the number of iterations taken with the canned

method (Default).

h ha Rosenbrock Default

0.001 0.01 343 2,000

0.01 0.1 112 200

0.1 1 23 20

TABLE 6 | Efficiency comparison of the Rosenbrock method with other methods.

Method Average time (sec) Standard deviation (sec)

Rosenbrock 78.68 1.16

Runge–Kutta 4th order 687.51 17.72

Dormand–Prince 46.51 1.26

Default 688.73 18.67

The computing time in seconds were taken by the various methods for 14 days of

simulation, averaged over 10 repetitions per each method. The starting time step values

were h = 0.001 and ha = 0.01 and the runs were performed on a standard PC.

Additional substitutions [50, 51] allow to rewrite the problem as
follows:

yn+1 = yn + h

S
∑

i=1

gibi (13)

(I/hγ− Jn)gi = f



yn +

i−1
∑

j=1

αijgj



+
1

h

i−1
∑

j=1

γij gj, (14)

where Jn is the Jacobian of f at step n. To evaluate the value yn+1
we now need to compute the values of the gi’s. One can notice
how the left term of the equation contains a matrix with the term
Jn, which is the same for all gi’s. This is one of the key strategies of
this method since to solve for gi there is only one matrix to invert
per time step. It will be taken advantage of by performing an LU
decomposition, as shown in the continuation.

Additionally the error en+1 can be computed as
en+1 :=

∑S
i=1 gib

∗
i where the b∗i ’s are constants [50]. Given

a threshold on the error, the strategy to decide if the step size
must be increased or decreased consists in computing the value
1n+1 := en+1/(TOL×(yn + f (tn, yn) + 10−30)). If 1n+1 is
smaller than 1 then the step size can be increased, else it must be
decreased [52]. A good strategy in the latter case is to recompute
the n+ 1 value but with a smaller step size.

3.2. The Multiscale Model Solution
Since serum HCV RNA is stable in chronic HCV subjects, we
assume that the model is at steady state before the start of
treatment, as shown in Equation (3) and discussed in Rong et
al. [41]. While individuals with recent HCV infection might not
be at steady state at initiation of DAA therapy [3], it may be
feasible to assume a quasi-steady state with lower pre-treatment
HCV RNA levels, as observed in some subjects, which could be
adjusted by changing model parameters.

We implemented the multiscale model with the Rosenbrock
method of order S = 4. We define:

f (tn, yn) : =







dT
dt
(tn, yn)

dV
dt
(tn, yn)







=







s− dTn − βVnTn

(1− ǫs)
∫∞

0 ρ(a)R(a, t)I(a, t) da− cVn






, (15)

where yn =

(

Tn

Vn

)

and

Jn : =











∂
dT
dt

∂T

∂
dT
dt

∂V

∂
dV
dt

∂T

∂
dV
dt

∂V











=











−d − βVn −βTn

0 −c











.

(16)

We note that the term (1−ǫs)
∫∞

0 ρ(a)R(a, t)I(a, t) da is constant
at each iteration and is computed between each one once.We can
now explicitly write the values of the constants and describe the
whole scheme. The Equations (13) and (14) become:



2
I

h
−

(

−d − βVn −βTn

0 −c

)



 g1 = f
(

t, yn
)

(17)



2
I

h
−

(

−d − βVn −βTn

0 −c

)



 g2 = f
(

t, yn + 2g1
)

+
1

h

(

−8g1
)

(18)



2
I

h
−

(

−d − βVn −βTn

0 −c

)



 g3 = f

(

t, yn +
48

25
g1 +

6

25
g2

)

+
1

h

(

372

25
g1 +

12

5
g2

)

(19)



2
I

h
−

(

−d − βVn −βTn

0 −c

)



 g4 = f

(

t, yn +
48

25
g1 +

6

25
g2

)

+
1

h

(

−112

125
g1 +
−54

125
g2 +
−2

5
g3

)

(20)

yn+1 = yn +
19

9
g1 +

1

2
g2 +

25

108
g3 +

125

108
g4 (21)

en+1 =
17

54
g1 +

7

36
g2 + 0g3 +

125

108
g4 (22)

Note that the computations of g3 in Equation (19) and g4 in
Equation (20) use the same value of f , which implies that it needs
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FIGURE 4 | A comparison of the Rosenbrock method with other methods over 14 days of simulation with starting time steps of h = 0.1 and ha = 0.1. The baseline

(the default implementation in the SciPy library of an ODE solver) was computed with time steps of h = 0.001 and ha = 0.01 since with these time step values and

smaller, as expected, all methods converged to the solution of the baseline.

TABLE 7 | Sensitivity of the Rosenbrock method.

Parameter Decreased Increased Parameter Decreased Increased

s 0.88% 1.12% β 0.98% 1.01%

d 1.02% 0.98% δ 1.16% 0.87%

κ 1.08% 0.93% c 1.13% 0.89%

α 0.88% 1.12% ρ 0.93% 1.07%

µ 1.08% 0.93% γ 1.05% 0.96%

Each of the 10 parameters was decreased and increased by 10% of its original value. For

each we present the ratio of the result after 2 days over the result with the original value.

We omit εα and εs since they effectively determine the fraction of α and ρ used in the

model.

to be computed only once. The error term also disregards the
value of g3.

The scheme for one iteration is shown in Algorithm 1. An
important observation is how the error term e is computed.
It derives only from the error induced by the Rosenbrock
iteration, not the computation of the integral term (1 −
ǫs)
∫∞

0 ρ(a)R(a, t)I(a, t) da.

The system (I/hγ−Jn)gi = f
(

yn +
∑i−1

j=1 αijgj

)

+
1
h

∑i−1
j=1 γijgj

needs to be solved for four different values of i. Since the
left hand matrix is constant, it is decomposed into its LU
decomposition once. The Jama package [53] is used to perform
the LU decomposition for solving the system in a highly efficient
manner.

Algorithm 1: General Rosenbrock Scheme. TOL was set to
10−4.

Data: yn, h
Result: Compute the next value yn+1 for a step of size h
integralterm← solve (1− ǫs)

∫∞

0 ρ(a)R(a, t)I(a, t) da;
LU← LU decomposition of


2 I
h
−

(

−d − βVn −βTn

0 −c

)



;

for i← 1 to 4 do

solve for gi: LUgi = f
(

yn +
∑i−1

j=1 αijgj

)

+
1
h

∑i−1
j=1 γijgj;

end

yn+1 = yn +
19
9 g1 +

1
2g2 +

25
108g3 +

125
108g4;

en+1 =
17
54g1 +

7
36g2 + 0g3 +

125
108g4;

if e ≥ TOL×(yn + f (tn, yn)+ 10−30) then
Start again with smaller h;

else

Increase h;
return yn+1

end

4. RESULTS AND DISCUSSION

A preliminary version of the Rosenbrock method was first
implemented in Python3 using the SciPy library, freely available
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FIGURE 5 | Graphical user interface (GUI). The displayed values are the default options and can be modified. At the bottom are the options to add experimental data

and parameters values from a file. Note that setting the four parameters εα , εs, κ and γ (red fonts) to 0 will keep the system in the pre-treatment steady state. An

option to export the parameters is also available.

at http://www.cs.bgu.ac.il/~dbarash/HCVnumerics, and then
converted to Java for the purpose of developing a user-
friendly simulator with a graphical user interface (GUI)
that is freely available at http://www.cs.bgu.ac.il/~dbarash/
HCVsimulator. Aside of the Rosenbrock method, the default
implementation in SciPy of an ordinary differential solver
leverages ODEPACK [54] and is referred to as the canned solver
Default. For this entire section, unless stated otherwise, we used
the parameters from Rong et al. [41] and shown in Table 4. The
parameters that are changed through the results are the number
of days, the size h of the steps for the ODEs, and the size ha of the
steps for computing the integral. In the case of the Rosenbrock
method that utilizes an adaptive stepsize, we bound the stepsize
by h as minimum and ha as maximum.

4.1. Short-Term Approximation Holds for
Half a Day
The short-term approximation [41] is shown in Figure 2 in blue.
The results are shown for only 2 days since the behavior is
smooth and conserved on longer time scales in agreement with
previous results (Figure 2A in [41]). It is clear that after 12 h
the value converges far from the PDE solution. This is expected
since the effect of the treatment on the infection rate is not

taken into account. In practice, most simulations are valuable
for more than half a day and are focused on the long-term
approximation.

4.2. Long-Term Approximation
Underestimates PDE
In Rong and Perelson [43] it is hypothesized that the long-
term approximation is an underestimate of the PDE model
solution since some infection events are being ignored. However,
with realistic parameters characteristic of potent therapy, the
difference between them is very small. Figure 3 depicts the result
of our scheme, measuring the difference between the long-term
approximation and the solution of the multiscale PDE model
(Figure 2B in [41]). We show that the long-term approximation
is converging and we are indeed obtaining that the long-term
approximation is an underestimate of the PDE model solution
(as the difference between the long term approximation and the
solution of the PDEmodel is negative). The difference of less than
0.01 that we are obtaining is very small compared to the y-axis
units shown in Figure 1 of Rong and Perelson [43]. Therefore,
it is possible to view in Figure 3 this small effect that is an
improvement over what was inferred in Rong and Perelson [43]
regarding the long-term approximation. This finding is reiterated
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FIGURE 6 | An example of a parameters file that can be automatically

uploaded. Lines starting with a # are comments (ignored). This file can also be

exported from our software, allowing users to share them easily.

here for completeness and is referred to below in the sub-section
about the Rosenbrock method.

4.3. The Model Equations Are Stiff
An important distinction of the age-based PDE HCV model
equations is their stiffness, or how they can be numerically
unstable even with a small stepsize. We have verified that with
small time-steps the results are similar for all methods. But as
we increase the size of the steps, the instability of the equations
can be observed over 20 days. All explicit methods such as
the standard version of Runge-Kutta quickly diverge from the
solution with small time-steps. On the other hand an implicit
Runge-Kutta method tends to the correct solution and the
Rosenbrock method does so efficiently as reported below.

4.4. The Rosenbrock Method Is Efficient
and Stable
As previously mentioned, the integral term (1 −
ǫs)
∫∞

0 ρ(a)R(a, t)I(a, t) da impedes the use of adaptive stepsize
when a canned solver is used. Such methods are essential to
allow fast computations of complex models like ours. We

present in Table 5 the number of iterations computed using
the Rosenbrock method, shown in the previous section, in
comparison with the default canned method for three different
time step values of h and ha. With the smallest time step, the
Rosenbrock method is more than five times as efficient as the
default canned method, giving results of similar accuracy. This
is crucial since the methods with fixed time step can take up
to tens of seconds per day of simulation with h = 0.001 and
ha = 0.01. For most research needs, simulations are expected
to be performed numerous times for various instances and
parameter values. Under those conditions a five-fold increase
in speed, through the decrease in the number of iterations,
provides a much needed advantage when testing large number of
parameters over long time periods. Interestingly with the highest
value of h, the Rosenbrock method takes additional iterations.
This is due to the greediness of the time step adjustment, which
when increased too quickly and thereby inducing a large error
backtracks and starts again with a smaller value.

Simpler methods than Rosenbrock exist with adaptive
stepsize, such as Dormand–Prince [48], Fehlberg (RKF) [55]
and Cash-Karp (RKCK) [56]. These are explicit methods that
can be easily implemented but are vulnerable to the stiffness of
the equations, while Rosenbrock is an implicit method that is
indeed found to be more stable. In the following comparisons
we demonstrate that the Rosenbrock method is more efficient
than the Runge-Kutta 4th order method and at the same time
it is more stable than both the Runge-Kutta 4th order and the
Dormand-Prince methods.

First, a comparison of the computing time between the
Rosenbrock method and the other methods mentioned above is
reported in Table 6 with starting time step values of h = 0.001
and ha = 0.01 for 14 days of simulation. Each run with a
certain method was repeated 10 times, after which the mean and
standard deviation was taken. The Rosenbrock method is over 8
times faster than the standard Runge-Kutta 4th order method,
which is a non-adaptive time step method. While Dormand–
Prince is an adaptive time step method that is even faster than
Rosenbrock, as will be shown below, it is an explicit method that
does not always converge to the correct solution. The fastest time
of execution for the Dormand-Prince method is not surprising
since an explicit method is easier to evaluate computationally
than an implicit method, in particular because there is no need
for matrix inversions.

Second, a comparison of the methods behavior over 14 days of
simulation is presented in Figure 4. All the methods were started
with time steps of h = 0.1 and ha = 0.1. The baseline (the
default implementation in the SciPy library of an ODE solver)
was computed for h = 0.001 and ha = 0.01 since those time
step values are small enough to ensure that all methods converge
to the same solution. The advantage of the Rosenbrock method
in terms of stability and convergence to the correct solution is
clearly noticed.

Finally, we also report in Table 7 the sensitivity of the
Rosenbrock method. We compute the changed value of the
result after 2 days of simulation given a variation of ±10% on
10 parameters. We notice that most of the perturbations are
symmetrical. We omit εα and εs since they effectively determine
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FIGURE 7 | Several simulations can be displayed simultaneously. Three treatment scenarios are plotted with similar results as previously shown in Rong et al. [41].

the fraction of α and ρ used in the model. The results (Table 7)
indicate that the Rosenbrock method is sufficiently robust for our
needs.

4.5. The Multiscale Model Simulator
We have developed a user-friendly simulator with a GUI for
the multiscale model (Figure 5) that is freely available at http://
www.cs.bgu.ac.il/~dbarash/HCVsimulator. The parameters file
input is shown in Figure 6. For illustration, two example
simulations are provided, one over 2 days (Figure 7) and one
over 28 days (Figure 8). In Figure 7 we show how different
parameter ensembles can be displayed simultaneously. In that
case we chose εα and εs to be 0 or 0.99, resulting in three
curves. We can observe that increasing the εs parameter, which
decreases the assembly/secretion of intracellular virions, has a
strong short term effect that tempers quickly. In contrast the
reduction in the synthesis of vRNA, modeled by an increase
of the parameter εα , shows a slower but more efficient effect
that exhibits stronger results after half a day. Combining both
factors shows a multiphasic viral decline which was observed
under treatment with HCV NS5A inhibitors [25]. In Figure 8 we
present the difference between the long-term approximation and
the Rosenbrock method for those three sets of parameters over
longer (than 2 days) treatment durations (e.g., 28 days). Although
the highest error is present when εs = 0, the error remains below
a tenth of the differences of the log values. Thus, in all cases the

trends from the first 2 days continue in the next 4 weeks and the
error grows minimally.

5. SUMMARY AND CONCLUSIONS

Modeling intracellular viral RNA dynamics within infected
cells is becoming an improtant mean for considering various
curative treatment options. A viral dynamic model that considers
intracellular viral RNA replication, namely an age-structured
PDE multiscale model, has been recently put forth to study
viral hepatitis dynamics during antiviral therapy [25, 41, 43].
This type of model is more complicated to solve than previous
ODEs models. The seminal works that introduce the age-based
multiscale model predominantly use analytical approximations,
with some numerical solutions that are either based on simple
first-order methods or canned solvers [25, 41, 43]. Neither of
these numerical solutions are satisfactory for realistic simulations
of several days of infection and therapy in terms of accuracy,
efficiency and stability.

We first showed that the long-term approximation is an
underestimate of the PDE model solution, which was anticipated
in Rong and Perelson [43] because some infection events
are being ignored in this analytical approximation. We then
observed that the governing differential equations are stiff and
therefore advanced numerical methods are needed. Methods
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FIGURE 8 | Difference in the log values between the long-term approximation [41] and the Rosenbrock method when choosing εα and εs from (0, 0.99). One can

notice how even at the longer treatment duration the difference remains minimal and mostly constant.

with fixed stepsize or alternatively, the use of canned routines,
do not offer a comprehensive solution to the model and are
limited in scope. For example, in the multiscale model, there
is an integral term that needs to be computed at each time
step depending on previous iterations and this is inadequately
done by canned solvers. Methods with adaptive stepsize offer
a considerable improvement for realistic simulations. Having
previously investigated these methods, we found the Rosebrock
method to be the most accurate and efficient among adaptive
stepsize methods for this model. We provide a simulator based
on the Rosenbrock method with a user-friendly GUI that is freely
available at http://www.cs.bgu.ac.il/~dbarash/HCVsimulator.

Future work from the numerical standpoint could potentially
include a more comprehensive treatment of the associated
integral. In particular the adaptive stepsize techniques rely
on the evaluation of the error produced at each evaluation
of the ODE equations. Therefore, the error produced by
the integral itself is never taken into account. Including
that term would allow to relax the restrictions on the
stepsize increase and potentially decrease further, beyond what
is observed in Table 5 as least number of iterations, the
number of iterations that are required to achieve a sufficient
accuracy.

The Rosenbrock method implementation provided here can
be generalized to potentially assist in understating treatment
failure due to drug resistance by the expansion of the age-
based model to include viral strains [57]. It could also be used
to explore age-based models that include further aspects of
intracellular HCV life cycle such as translation positive-strand
HCV RNA and the synthesis of positive and negative-strand
HCV RNA [58]. Finally, since the current age-based HCV
multiscale model is a successful milestone but still fails to predict

cure in some DAA-treated patients [59–61], further model
modification will be needed [38, 39] and future developments
would necessitate some updates in the numerical method. While
such models become quickly overwhelming to solve analytically,
an extension of the presented method is straightforward. The
simulator provided here based on the Rosenbrock method can be
modified accordingly and be developed further to accommodate
the modelers needs.
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