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Partitions of unity in R
d formed by (matrix) scales of a fixed function appear in many parts

of harmonic analysis, e.g., wavelet analysis and the analysis of Triebel-Lizorkin spaces.

We give a simple characterization of the functions and matrices yielding such a partition

of unity. For expanding matrices, the characterization leads to easy ways of constructing

appropriate functions with attractive properties like high regularity and small support.

We also discuss a class of integral transforms that map functions having the partition

of unity property to functions with the same property. The one-dimensional version of

the transform allows a direct definition of a class of nonuniform splines with properties

that are parallel to those of the classical B-splines. The results are illustrated with the

construction of dual pairs of wavelet frames.

Keywords: partition of unity, splines, wavelet frames, dual frames, integral transforms

1. INTRODUCTION

A function g : R
d → C is said to have the (scaling) partition of unity property with respect to a real

invertible d× dmatrixA if

∞∑

j=−∞
g(Ajγ ) = 1,∀γ ∈ R

d \ {0}. (1.1)

Partitions of unity of this form appear in several parts of analysis, e.g., wavelet analysis and the
theory for Triebel-Lizorkin spaces, and the question of how to construct them has attracted some
attention. In particular, this issue comes up in connection with the analysis of tight wavelet frames
in L2(Rd) [1] and the more general case of dual wavelet frame pairs [2, 3].

In this paper we will give a surprisingly simple characterization of the scaling partition of
unity property. In the special case where A is an expanding matrix, i.e., a real matrix with all its
eigenvalues having absolute value strictly greater than one, the characterization leads to easy ways
of constructing appropriate functions g with attractive properties like high regularity and small
support. Under certain conditions, nonnegativity of the function g can be guaranteed. We also
discuss a class of integral transforms that can be used to generate functions with the partition
of unity property. The one-dimensional version of the transform leads in a natural fashion to a
definition of a recursively given family of nonuniform splines. These splines have some similarities
with the classical B-splines: their regularity and support grow with the order, and they satisfy the
de Boor recursion formula [4, 5]. However, there are also differences: all the splines have support
within [−1, 1], and they satisfy a scaling partition of unity condition instead of the translation
partition of unity condition. Finally, the key results are applied to the construction of dual pairs of
wavelet frames.
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The paper is organized as follows. In section 2, we characterize
the scaling partition of unity condition and provide explicit and
easily verifiable sufficient conditions in the case where A is an
expanding matrix. Section 3 deals with the above mentioned
one-dimensional integral transform and its lifting to higher
dimensions. Finally, section 4 applies the results to obtain easy
constructions of wavelet frames in L2(Rd) and their associated
dual frames.

2. CHARACTERIZATION OF THE
PARTITION OF UNITY PROPERTY

We first establish a characterization of the scaling partition of
unity property. Despite its simplicity we have not been able to
find it stated in the literature.

Theorem 2.1 Consider a function g : R
d → C and any real

invertible d × d matrixA. Then the following hold:

(i) Assume that the infinite series
∑∞

j=−∞ g(Ajγ ) is convergent

for all γ ∈ R
d \ {0}. Then there is a function ϕ : R

d → C such
that

g(γ ) = ϕ(γ )− ϕ(Aγ ), ∀γ ∈ R
d \ {0}. (2.1)

(ii) On the other hand, take any function ϕ : R
d → C such

that (2.1) holds. Then, fixing any γ ∈ R
d \ {0}, the series∑∞

j=−∞ g(Ajγ ) is convergent if and only if the two limits

limN→±∞ ϕ(ANγ ) exist.
(iii) Take again any function ϕ : R

d → C such that (2.1) holds.
Then the partition of unity condition (1.1) holds if and only if
the two limits limN→±∞ ϕ(ANγ ) exist and

lim
N→−∞

ϕ(ANγ )− lim
N→∞

ϕ(ANγ ) = 1

for all γ ∈ R
d \ {0}.

Proof. For the proof of (i), assume that the infinite series∑∞
j=−∞ g(Ajγ ) is convergent for all γ ∈ R

d \ {0}. Then

g(γ ) =
∞∑

j=0

g(Ajγ )−
∞∑

j=1

g(Ajγ ) =
∞∑

j=0

g(Ajγ )−
∞∑

j=0

g(Aj
Aγ ).

Taking now ϕ(γ ) : =
∑∞

j=0 g(A
jγ ), γ ∈ R

d \ {0}, yields the
result. For the proof of (ii), by direct calculation and for any
M,N ∈ N,

N∑

j=−M

g(Ajγ ) = [ϕ(A−Mγ )− ϕ(A−M+1γ )]+ [ϕ(A−M+1γ )

− ϕ(A−M+2γ )]+ · · · + [ϕ(ANγ )

− ϕ(AN+1γ )]

= ϕ(A−Mγ )− ϕ(AN+1γ ).

Then (ii) follows immediately; and (iii) is a consequence of (ii).�

Note that the function ϕ satisfying (2.1) for a given function
g is not unique. In the sequel ϕ will denote any such
function, not necessarily the one constructed in the proof of
Theorem 2.1.

Via Theorem 2.1, we can now show that any expanding matrix
A leads to the partition of unity property for a large class of
functions g. The following result and its proof hold whenever ||·||
denotes an arbitrary norm on R

d.

Proposition 2.2 Let A be any expanding d × d matrix, and
consider any function ϕ : R

d → C which is continuous at γ = 0
and satisfies the conditions that ϕ(0) = 1 and lim||γ ||→∞ ϕ(γ ) =
0. Then the function g(γ ) := ϕ(γ )−ϕ(Aγ ) satisfies the partition
of unity condition (1.1).

Proof. By Lemma 5.2 in Hernandez et al. [6], a matrix A is
expanding if and only if there exist constantsC ∈ (0, 1] and α > 1
such that

||ANγ || ≥ CαN ||γ || (2.2)

for all γ ∈ R
d and N ∈ N ∪ {0}. Thus, the

assumption lim||γ ||→∞ ϕ(γ ) = 0 immediately implies that

limN→∞ ϕ(ANγ ) = 0 for all γ ∈ R
d \{0}. Replacing γ byA−Nγ

in the inequality (2.2) shows that ||A−Nγ || ≤ C−1α−N ||γ ||
for all γ ∈ R

d and N ∈ N ∪ {0}; thus the assumptions
imply that limN→−∞ ϕ(ANγ ) = 1. The result now follows from
Theorem 2.1. �

Example 2.3 We first give an example of a partition of unity
based on a diagonal matrix, and then a construction that works
for arbitrary expanding matrices.

(i) Consider an even, continuous and nonnegative function
k : R → R such that

∫ ∞
0 k(t) dt = 1. Then the function

ϕ(γ ) :=
∫ ∞

γ

k(t) dt, γ ∈ R,

satisfies the conditions in Proposition 2.2. Thus, for any a > 1,
the function

g(γ ) = ϕ(γ )− ϕ(aγ ) =
∫ aγ

γ

k(t) dt

satisfies the partition of unity condition
∑

j∈Z
g(ajγ ) = 1, γ ∈

R \ {0}. Clearly, g ∈ C1(R). Note that for any choice of a norm
|| · || on R

d, the function g can be lifted to a radial function
g̃ : R

d → R, by defining g̃(γ ) := g(||γ ||), γ ∈ R
d; the function

g̃ satisfies the partition of unity condition with respect to the d×d
diagonal matrixA = aI.

(ii) Let || · || be the Euclidean norm on R
d. The function ϕ(γ ) :=

e−||γ ||2 , γ ∈ R
d, satisfies the conditions in Proposition 2.2. Thus,

for any expanding d × dmatrixA, the function

g(γ ) = ϕ(γ )− ϕ(Aγ ) = e−||γ ||2 − e−||Aγ ||2

satisfies the partition of unity condition (1.1). Clearly, g ∈
C∞(Rd). �
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Proposition 2.2 makes it easy to construct partitions of
unity for arbitrary expanding matrices A. Furthermore, several
properties of the generating function g can be controlled directly
in terms of the function ϕ, e.g., regularity and support. We now
prove that nonnegativity of g can also be guaranteed by choosing
ϕ to be a radial function with respect to a given norm || · || on R

d:

Proposition 2.4 Let ||·|| be an arbitrary norm onR
d and consider

an expanding d × d matrix A such that ||γ || ≤ ||Aγ || for all
γ ∈ R

d. Let r :[0,∞) → R denote a continuous decreasing
function such that r(0) = 1 and r(s) → 0 as s → ∞. Letting
ϕ(γ ) : = r(||γ ||), γ ∈ R

d, the function g(γ ) = ϕ(γ ) − ϕ(Aγ )
has the following properties:

(i) g ≥ 0.
(ii)

∑
j∈Z

g(Ajγ ) = 1,∀γ ∈ R
d \ {0}.

(iii) There exists a constant C > 0 such that

C ≤
∑

j∈Z

|g(Ajγ )|2 ≤ 1, ∀γ ∈ R
d \ {0}. (2.3)

Proof. Since the function r is decreasing, (i) follows immediately
from the assumption that ||γ || ≤ ||Aγ || for all γ ∈ R

d. The
partition of unity (ii) follows from Proposition 2.2, so we only
need to prove (iii). In order to do so, the nonnegativity of g
and (ii) imply that 0 ≤ g(Ajγ ) ≤ 1 for every j ∈ Z and all
γ ∈ R

d \ {0}; thus,
∑

j∈Z
|g(Ajγ )|2 ≤

∑
j∈Z

g(Ajγ ) = 1.

In order to prove the lower bound in (2.3), let η ∈ R
d \ {0}.

Then by (ii), there exists jη ∈ Z such that ǫη : = g(Ajηη) >
0. Thus, we can choose an open set Iη containing η such that
g(Ajηγ ) ≥ ǫη/2 for all γ ∈ Iη . Letting B(0, 1) denote the closed

unit ball in R
d with respect to the norm || · ||, the open sets

Iη , η ∈ B(0, 1), form a cover of B(0, 1); thus, we can select a
finite subcover, i.e., B(0, 1) ⊂ Iη1 ∪ Iη2 ∪ · · · ∪ Iηn for some

η1, . . . , ηn ∈ B(0, 1). It follows that for any γ ∈ R
d with ||γ || ≤ 1,

γ must lie in Iηℓ for some ℓ ∈ {1, . . . , n}; thus,

∑

j∈Z

|g(Ajγ )|2 ≥ |g(Ajηℓ γ )|2 ≥
1

4
ǫ2ηℓ ≥

1

4
min{ǫ2η1 , . . . , ǫ

2
ηn
}.

This proves the lower bound in (2.3) for γ belonging to the closed
unit ball in R

d. Taking now an arbitrary γ ∈ R
d \ {0}, the

argument in the proof of Proposition 2.2 shows that there exists
N ∈ N such that ||A−Nγ || ≤ 1; thus, by a change of variable,
∑

j∈Z

|g(Ajγ )|2 =
∑

j∈Z

|g(Aj+N(A−Nγ ))|2 =
∑

j∈Z

|g(Aj(A−Nγ ))|2

≥
1

4
min{ǫ2η1 , . . . , ǫ

2
ηn
}.

This completes the proof. �

The condition ||γ || ≤ ||Aγ ||, γ ∈ R
d, is clearly necessary

for the nonnegativity of g(γ ) = ϕ(γ ) − ϕ(Aγ ) whenever ϕ is a
function of the type considered in Proposition 2.4. Note that the
condition does not follow from A being expanding, as we shall
see in the example below.

Example 2.5 Take || · || to be the Euclidean norm on R
2 and

let A =
(

0 2
3/4 0

)
. The eigenvalues are ±

√
3/2, so A is indeed

expanding. However A

(
1
0

)
=

(
0
3/4

)
, so the condition ||γ || ≤

||Aγ || is clearly violated. �

3. AN INTEGRAL TRANSFORM
PRESERVING PARTITIONS OF UNITY

In this section, we consider certain integral transforms that map
a function g having the scaling partition of unity property to
another function with the same property. We first discuss the
transform onR

d and then specialize to the one-dimensional case,
where explicit calculations are much easier. It turns out that the
one-dimensional case leads to a definition of a class of splines in
a natural way.

3.1. The Integral Transform on R
d

Fix a measurable function g : R
d → C and consider formally the

integral operator Kg that maps a function f : R
d → C to

h(γ ) = (Kg f )(γ ) :=
∫

Rd
f (t)g

( γ
||t||

)
dt, γ ∈ R

d, (3.1)

where || · || is an arbitrary norm on R
d. The set of functions f for

which the transform is well-defined clearly depends on the choice
of the function g. Typically, we assume that g is supported on an
annulus

a(R1,R2) := {t ∈ R
d
∣∣R1 ≤ ||t|| ≤ R2}

for some R2 > R1 > 0. For example, if a function f ∈ L1(R)
has support in an annulus a(R1,R2) and g is a bounded function
with support in an annulus a(R3,R4), then h is well-defined and
supported on the annulus a(R3R1,R4R2).

The following proposition describes a case where the integral
transform is well-defined for all f ∈ L1(R) and generates a family
of partitions of unity.

Proposition 3.1 Let g : R
d → C, and consider a real invertible

d × d matrixA such that

∑

j∈Z

g(Ajγ ) = 1, ∀γ ∈ R
d \ {0},

and there exists a constant C > 0 for which

∑

j∈Z

|g(Ajγ )| ≤ C, ∀γ ∈ R
d \ {0}.

Then the integral transform Kg in (3.1) is well-defined for every

f ∈ L1(Rd), and

∑

j∈Z

h(Ajγ ) =
∫

Rd
f (t) dt, ∀γ ∈ R

d \ {0}.
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In particular, if f ∈ L1(Rd) is chosen such that
∫

Rd f (t) dt = 1,
then the function h has the scaling partition of unity property with
respect to the matrix A. If the function g is nonnegative, then
the transform Kg maps nonnegative functions f to nonnegative
functions h = Kg f .

Proof. The assumptions imply that g is bounded, so it is clear
that the integral in (3.1) is well-defined for every γ ∈ R

d

whenever f ∈ L1(Rd). Fixing any γ ∈ R
d \ {0},

∫

Rd

∑

j∈Z

∣∣f (t)g
(Ajγ

||t||
)∣∣ dt =

∫

Rd
|f (t)|

∑

j∈Z

|g(Aj(γ ||t||−1))| dt

≤ C

∫

Rd
|f (t)| dt <∞;

thus, by Lebesgue’s dominated convergence theorem,

∑

j∈Z

h(Ajγ ) =
∫

Rd
f (t)

∑

j∈Z

g(Aj(γ ||t||−1)) dt =
∫

Rd
f (t) dt.

The rest of the proof is clear. �

A similar but more general result can be obtained by replacing
the expression g( γ||t|| ) in (3.1) by a function g(t, γ ) that yields

a partition of unity in the second variable. We leave the exact
formulation to the interested reader.

3.2. An Example of the Integral Transform
on R and a Class of Splines
In this subsection, we will study the one-dimensional version of
the integral transform in (3.1). We will fix a constant c ∈ (0, 1),
and consider the set

S := [−1,−c) ∪ (c, 1].

Furthermore, we will fix g : = χS. Then the integral transform Kg

in (3.1), which we denote simply as K here, takes the form

h(γ ) = Kf (γ ) :=
∫ ∞

−∞
f (t)χS

( γ
|t|

)
dt, γ ∈ R. (3.2)

Note that for any fixed γ ∈ R,

χS(
γ

|t|
) = 1 ⇔ c |t| < |γ | ≤ |t| ⇔ |γ | ≤ |t| < |γ |/c;

thus,

h(γ ) =
∫ −|γ |

−|γ |/c
f (t) dt +

∫ |γ |/c

|γ |
f (t) dt. (3.3)

In particular, the integral in (3.3) is well-defined for all γ ∈ R

whenever f ∈ L1loc(R). We leave the short proof of the following
result to the reader.

Lemma 3.2 For any f ∈ L1loc(R), the function h = Kf is even; and
if f is an even function, then for γ > 0,

h(γ ) = 2

∫ γ /c

γ

f (t) dt.

The main merits of the transform K are that it increases the
regularity of f and that the resulting function h = Kf satisfies the
scaling partition of unity property under some weak conditions
on f :

Proposition 3.3 Let f ∈ L1loc(R) and consider the integral
transform h = Kf in (3.2). Then the following hold:

(i) If f ∈ L1(R), then

∑

j∈Z

h(cjγ ) =
∫ ∞

−∞
f (t) dt, ∀γ ∈ R \ {0}.

(ii) If f ∈ Ck(R) for some k ∈ N ∪ {0} and f is supported away
from the origin, then h ∈ Ck+1(R).

Proof. As (i) clearly follows from Proposition 3.1, we only have
to prove (ii). Letting F(γ ) :=

∫ γ
0 f (t) dt, γ ∈ R, it follows from

(3.3) that

h(γ ) = F(|γ |/c)− F(|γ |)+ F(−|γ |)− F(−|γ |/c)

=

{
F(γ /c)− F(γ )+ F(−γ )− F(−γ /c), if γ ≥ 0,

−[F(γ /c)− F(γ )+ F(−γ )− F(−γ /c)], if γ ≤ 0.

For γ > 0, the function h is obviously differentiable, and

h′(γ ) =
1

c
f (γ /c)− f (γ )− f (−γ )+

1

c
f (−γ /c);

thus under the stated assumptions h is (k+1) times continuously
differentiable for γ > 0. Similarly, h is (k+1) times continuously
differentiable for γ < 0; and since the function h vanishes on a
neighborhood of zero, h is even infinitely differentiable at γ = 0.
�

Example 3.4 Let f (t) = e−|t|, t ∈ R. Then for γ ∈ R,

h(γ ) =
∫ ∞

−∞
e−|t|χS

( γ
|t|

)
dt

= 2

∫ |γ |/c

|γ |
e−|t| dt = 2(e−|γ | − e−|γ |/c).

Observe that Proposition 3.3(i) implies that h ∈ C(R) and∑
j∈Z

h(cjγ ) = 2 for γ ∈ R \ {0}. We could of course obtain

this construction via Proposition 2.2 as well. �

We will now use the integral transform K to give a direct
definition of a class of splines with attractive properties.

Definition 3.5 Let h1 := χS, and define the functions hn, n ≥ 2,
inductively by

hn(γ ) := Khn−1(γ ) =
∫ ∞

−∞
hn−1(t)χS

( γ
|t|

)
dt, γ ∈ R. (3.4)
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Example 3.6 Direct calculation based on (3.4) shows that

h2(γ ) =





0, if |γ | ≤ c2,

2c−1|γ | − 2c, if c2 ≤ |γ | ≤ c,

2− 2 |γ |, if c ≤ |γ | ≤ 1,

0, if 1 ≤ |γ |,

and

h3(γ ) =





0, if |γ | ≤ c3,

2c−3|γ |2 − 4 |γ | + 2c3, if c3 ≤ |γ | ≤ c2,

−2(c−1 + c−2) |γ |2 + 4(c+ c−1) if c2 ≤ |γ | ≤ c,

|γ | − 2(c+ c2),

2(1− |γ |)2, if c ≤ |γ | ≤ 1,

0, if 1 ≤ |γ |.

�

Let us collect some of the key properties of the spline functions
hn:

Proposition 3.7 The functions hn, n ∈ N, have the following
properties:

(i) hn is a spline, with knots at the points±cn,±cn−1, . . . ,±1.
(ii) hn is even.
(iii) For n ≥ 2, hn ∈ Cn−2(R).

(iv) supp hn = [−1,−cn] ∪ [cn, 1] and hn > 0 on (−1,−cn) ∪
(cn, 1).

(v) Qn : =
∫ ∞
−∞ hn(γ ) dγ > 0 for all n ∈ N, and Q1 = 2(1−c).

(vi) 1
Qn−1

hn satisfies the partition of unity condition

1

Qn−1

∑

j∈Z

hn(c
jγ ) = 1, ∀γ ∈ R \ {0}.

(vii) There exists a constant C > 0 such that

C ≤
1

Q2
n−1

∑

j∈Z

|hn(cjγ )|2 ≤ 1, ∀γ ∈ R \ {0}.

(viii) For n ≥ 2, the functions hn satisfy the recursion formula

hn(γ ) =
2

n− 1
[(1− |γ |)hn−1(γ )

+ (c−1|γ | − cn−1)hn−1(c
−1γ )], γ ∈ R. (3.5)

Proof. Most of the results are immediate consequences of results
that are already proved. Indeed, (i) follows from (viii), which will
be proved below; (ii) follows from the definition and Lemma 3.2;
and (iii) and (vi) are obtained from Proposition 3.3 and Example
3.6. In addition, (iv) is proved by a straightforward induction,
(v) is a consequence of (iv) plus a direct calculation of Q1; and
(vii) follows from the partition of unity exactly as in the proof of
Proposition 2.4(iii).

We will now prove the only item that remains, namely (viii).
Since hn is even for all n ∈ N, we will assume that γ ≥ 0. To get
started, direct calculations based on the expressions in Example
3.6 show that the recursion formula holds for n = 2 and n = 3.
Thus, we will now consider n ≥ 4. Define the function Hn by

Hn(γ ) :=
∫ γ

0
hn(t) dt, γ ≥ 0. (3.6)

We will perform an inductive proof of the recursion formula for
hn, assuming that it holds for hk for all k = 2, . . . , n − 1. Now,
using Lemma 3.2 and the induction hypothesis,

hn(γ ) =
4

n− 2

∫ γ /c

γ

[(1− t)hn−2(t)

+ (c−1t − cn−2)hn−2(c
−1t)] dt.

Then a direct calculation using integration by parts yields that

hn(γ ) =
4

n− 2

[
−

∫ γ /c

γ

(Hn−2(t/c)−Hn−2(t)) dt

+ (1− γ )(Hn−2(γ /c)−Hn−2(γ ))

+ (c−1γ−cn−1) (Hn−2(γ /c
2)−Hn−2(γ /c))

]
. (3.7)

Now, it follows from (3.6) and Lemma 3.2 that

∫ γ /c

γ

(Hn−2(t/c)−Hn−2(t)) dt =
1

2

∫ γ /c

γ

hn−1(t) dt =
1

4
hn(γ ).

Also,

Hn−2(γ /c)−Hn−2(γ ) =
∫ γ /c

γ

hn−2(t) dt =
1

2
hn−1(γ ).

Hence, based on (3.7), after solving for hn(γ ), we
obtain (3.5). �

The splines in Definition 3.5 are indeed well-known: as noted
from the recursion formula (3.5), they are the symmetrized
version of the nonuniform B-splines with knots at cn, cn−1, . . . , 1,
see [4, 5]. Here, we have provided another perspective in
obtaining them. Their properties also serve as a concrete
illustration of the general properties we derived in Propositions
3.1 and 3.3. Other related papers on polynomial splines with
geometric knots include [7–9].

As a further comment on the one-dimensional transform K
in (3.2), we observe that it can be lifted to a transform acting on
functions on R

d:

Example 3.8 In this example, we describe a way of lifting the
transform K to generate radial functions on R

d.

(i) We can easily lift the integral transform to an operator that
yields a radial function h̃ : R

d → C as output. Indeed, taking an
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arbitrary norm ||·|| onR
d, define the integral transform K̃, acting

on functions f ∈ L1loc(R), by

h̃(γ ) = K̃f (γ ) :=
∫ ∞

−∞
f (t)χS

( ||γ ||
|t|

)
dt, γ ∈ R

d.

Clearly, in terms of the transform K in (3.2), we have h̃(γ ) =
Kf (||γ ||) = h(||γ ||). Furthermore, if f ∈ L1(R), then

∑

j∈Z

h̃(cjγ ) =
∫ ∞

−∞
f (t) dt, ∀γ ∈ R

d \ {0}.

(ii) As a special case of (i) and based on the nonuniform B-
splines hn in (3.4), we can define a family of radial functions h̃n on
R
d by

h̃n(γ ) := hn(||γ ||), γ ∈ R
d.

Each of these radial functions is supported on an annulus,
and they can be easily calculated using the recursion formula
in Proposition 3.7. Also, h̃n satisfies the partition of unity
condition

∑

j∈Z

h̃n(c
jγ ) =

∫ ∞

−∞
hn−1(t) dt, ∀γ ∈ R

d \ {0}.
�

4. WAVELET FRAMES IN L2(Rd) AND DUAL
FRAMES

In this section, we apply the results on the scaling partition of
unity to construct dual pairs of matrix-based wavelet frames
in L2(Rd). Since wavelet frames is a well-studied area by
itself (see, e.g., [10–12]), we will not make any attempt to
motivate them or highlight their applications but just state
the definitions and results that are strictly necessary for our
discussion.

Given an invertible d × d matrix A with real entries, we
define the scaling operator DA : L2(Rd) → L2(Rd) by (DAf )(x)
:= | detA|1/2f (Ax); and, for ν ∈ R

d, the translation operator
Tν : L2(Rd) → L2(Rd) by Tν f (x) := f (x − ν). Fixing a function
ψ ∈ L2(Rd), a d× dmatrixA and a translation parameter b > 0,
the associated wavelet system is given by {DAjTbkψ}j∈Z,k∈Zd .

Denoting the canonical norm on L2(Rd) by || · ||2, the wavelet
system {DAjTbkψ}j∈Z,k∈Zd is said to form a frame for L2(Rd) if

there exist constants A,B > 0 such that

A||f ||22 ≤
∑

j∈Z,k∈Zd

|〈f ,DAjTbkψ〉|2 ≤ B||f ||22, ∀f ∈ L2(Rd);(4.1)

if at least the upper condition in (4.1) is satisfied, it is called
a Bessel sequence. Two Bessel sequences {DAjTbkψ}j∈Z,k∈Zd and

{DAjTbkψ̃}j∈Z,k∈Zd , where ψ , ψ̃ ∈ L2(Rd), are said to form dual
frames if

f =
∑

j∈Z,k∈Zd

〈f ,DAjTbkψ̃〉DAjTbkψ , ∀f ∈ L2(Rd).

We will need the following result, which gives sufficient
conditions for wavelet systems to form Bessel sequences,
frames, and dual frames. It exists in several variants in the
literature: (i) was first stated explicitly in Lemvig [3], while
versions of (ii) can be found, e.g., in [6, 13]; see also [14].
We define the Fourier transform on L1(Rd) by F f (γ ) =
f̂ (γ ) : =

∫
Rd f (x)e

−2π ix·γ dx, γ ∈ R
d, with the usual extension

to L2(Rd).

Lemma 4.1 LetA denote an invertible d × d matrix with real entries,

and let b > 0. Then the following hold:

(i) If ψ ∈ L2(Rd) and

B : =
1

bd
ess sup
γ∈Rd

∑

j∈Z

∑

k∈Zd

|ψ̂
((

A
T
)j
γ

)
ψ̂

((
A

T
)j
γ − k/b

)

| <∞, then {DAjTbkψ}j∈Z,k∈Zd

is a Bessel sequence. If furthermore

A : =
1

bd
ess inf
γ∈Rd


∑

j∈Z

|ψ̂((AT)jγ )|2

−
∑

j∈Z

∑

k 6=0

|ψ̂((AT)jγ ) ψ̂((AT)jγ − k/b)|


 > 0,

then {DAjTbkψ}j∈Z,k∈Zd is a frame for L2(Rd) with bounds A,B.

(ii) Assume that the matrix A is expanding and suppose that for some

ψ , ψ̃ ∈ L2(Rd), {DAjTbkψ}j∈Z,k∈Zd , {DAjTbkψ̃}j∈Z,k∈Zd are Bessel

sequences. Then {DAjTbkψ}j∈Z,k∈Zd , {DAjTbkψ̃}j∈Z,k∈Zd are dual

frames for L2(Rd) if and only if for all m ∈ Z
d,

∑

{j∈Z | (AT )−jm∈Zd}

ψ̂((AT)−jγ ) ̂̃ψ((AT)−jγ + (AT)−jm/b)

= bd δm,0, a.e. γ ∈ R
d. (4.2)

Remark 4.2 It follows from Lemma 4.1 that if ψ̂ is

supported on the closed ball B(0,R) of radius R in R
d and

b ≤ (2R)−1, then {DAjTbkψ}j∈Z,k∈Zd is a Bessel sequence when

ess supγ∈Rd

∑
j∈Z

|ψ̂((AT)jγ )|2 <∞; and it is a frame when

0 < ess inf
γ∈Rd

∑

j∈Z

|ψ̂((AT)jγ )|2 ≤ ess sup
γ∈Rd

∑

j∈Z

|ψ̂((AT)jγ )|2 <∞.

If both ψ̂ and ̂̃ψ are supported on B(0,R), then (4.2) is satisfied for

m ∈ Z
d \{0}when b ≤ (2R)−1; in this case the condition (4.2) consists

of the single equation

∑

j∈Z

ψ̂((AT)−jγ ) ̂̃ψ((AT)−jγ ) = bd, a.e. γ ∈ R
d.

Up to the factor bd, this essentially means that the function ψ̂ ̂̃ψ
satisfies the scaling partition of unity property with respect to the

matrixAT .

Proposition 3.7 and Lemma 4.1 lead to the following frame
result on L2(R) for the splines hn in (3.4):
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Theorem 4.3 Given any n ∈ N and c ∈ (0, 1), consider the spline hn in

(3.4). Fix b ∈ (0, cn−1/2] and define the functions ψ , ψ̃ ∈ L2(R) by ψ̂

:= hn and

̂̃ψ(γ ) := b

Q2
n−1

n−1∑

j=−n+1

hn(c
jγ ), γ ∈ R. (4.3)

Then {DcjTkbψ}j,k∈Z and {DcjTkbψ̃}j,k∈Z are dual wavelet frames for

L2(R).

Proof. Since supp ψ̂ ⊂ [−1, 1] ⊆ [−c−n+1, c−n+1], the frame
property of {DcjTkbψ}j,k∈Z follows directly from Proposition
3.7(vii) and Remark 4.2. Now, by the partition of unity condition
in Proposition 3.7(vi), we have

1

Qn−1

∑

j∈Z

ψ̂(cjγ ) = 1, ∀γ ∈ R \ {0}. (4.4)

The expression on the right-hand side of (4.3) clearly defines
a bounded function, with compact support [−c−n+1,−cn−1] ∪
[cn−1, c−n+1] which is bounded away from the origin. Thus the
function ψ̃ is well-defined and {DcjTkbψ̃}j,k∈Z is a Bessel sequence
by Lemma 4.1(i) and Remark 4.2.

If γ ∈ supp ψ̂ , then ψ̂(cjγ ) can only be nonzero for j =
−n+ 1,−n+ 2, . . . , n− 1; thus (4.4) implies that ̂̃ψ(γ ) = b

Qn−1
for

γ ∈ supp ψ̂ . It follows that ψ̂(γ ) ̂̃ψ(γ ) = b
Qn−1

ψ̂(γ ) for all γ ∈ R;
using again (4.4) now shows that

∑

j∈Z

ψ̂(cjγ ) ̂̃ψ(cjγ ) = b, ∀γ ∈ R \ {0}.

Hence we conclude from Lemma 4.1(ii) and Remark 4.2 that
{DcjTkbψ}j,k∈Z, {DcjTkbψ̃}j,k∈Z are indeed dual frames. �

Note that a different dual frame {DcjTkbψ̃}j,k∈Z associated with
{DcjTkbψ}j,k∈Z could have been obtained via the results in Lemvig
[2]. Also, by combining the result with the lifting transform in
Example 3.8, it is easy to construct radial dual wavelet frames
{DcjITkbψ}j∈Z,k∈Zd and {DcjITkbψ̃}j∈Z,k∈Zd for L2(Rd),where ψ , ψ̃ ∈
L2(Rd); we leave the details to the reader.

We also note that the unitary extension principle and its
many variants is a classical tool to construct wavelet frames based
on splines, see, e.g., [10–12]. However, in this case the frame
generators themselves are splines, while in our construction the
splines occur in the Fourier domain. Figure 1 shows the graphs

of the splines ψ̂ and ̂̃ψ in Theorem 4.3 when c = 1/2, n = 3 and
b = cn−1/2.

We will now establish a result about the construction of
wavelet frames in L2(Rd), based on Proposition 2.4:

Theorem 4.4 Let || · || denote any norm on R
d, and consider an

expanding d×d matrixA such that ||γ || ≤ ||ATγ || for all γ ∈ R
d. Let

r :[0,∞) → R be a continuous decreasing function supported on [0,R]

for some R > 0 such that r(0) = 1. Consider the function ψ : R
d → R

defined via ψ̂(γ ) := r(||γ ||)− r(||ATγ ||), γ ∈ R
d. Then the following

hold:

(i) Whenever b ≤ (2R)−1, {DAjTbkψ}j∈Z,k∈Zd is a wavelet frame for

L2(Rd).

(ii) If r(γ ) = 1 for γ ∈ [0,R1] for some R1 > 0, there exists a finite

index set J containing 0, which depends on the matrix A and the

numbers R,R1, such that

∑

j∈J
ψ̂((AT)jγ ) = 1, ∀γ ∈ supp ψ̂ .

(iii) If r(γ ) = 1 for γ ∈ [0,R1] for some R1 > 0, choose an index set J

as in (ii) and for b > 0, define the function ψ̃ : R
d → R via

̂̃ψ(γ ) := bd
∑

j∈J
ψ̂((AT)jγ ), γ ∈ R

d. (4.5)

Then for sufficiently small values of b, {DAjTbkψ}j∈Z,k∈Zd and

{DAjTbkψ̃}j∈Z,k∈Zd are dual frames for L2(Rd).

Proof. The matrix AT is expanding, so Proposition 2.4(iii)
implies that there exists a constant C > 0 such that C ≤∑

j∈Z
|ψ̂((AT)jγ )|2 ≤ 1 for all γ ∈ R

d \ {0}. The result in (i) now
follows from Remark 4.2.

In order to prove (ii), we will first show that the function ψ̂ is
supported on the annulus a(R1||AT ||−1,R). (This annulus is well-
defined as ||γ || ≤ ||ATγ || ≤ ||AT || ||γ || implies that ||AT || ≥ 1.)
If ||γ || ≥ R, we also have that ||ATγ || ≥ R, so indeed ψ̂(γ ) = 0.

Now, assume that ||γ || ≤ R1||AT ||−1. Then ||γ || ≤ R1 and

||ATγ || ≤ ||AT || ||γ || ≤ ||AT ||R1||AT ||−1 = R1;

thus ψ̂(γ ) = r(||γ ||)− r(||ATγ ||) = 1− 1 = 0 as claimed.
Now, applying Proposition 2.4(ii) to the expandingmatrixAT ,

we have

∑

j∈Z

ψ̂((AT)jγ ) = 1, ∀γ ∈ R
d \ {0}. (4.6)

SinceAT is expanding, there exist constants C′ ∈ (0, 1] and α > 1

such that ||(AT)jγ || ≥ C′αj||γ || for all γ ∈ R
d and j ∈ N ∪ {0}.

Thus, for j ∈ N ∪ {0} and any γ ∈ supp ψ̂ ,

||(AT)jγ || ≥ C′αj||γ || ≥ C′αjR1||AT ||−1.

It follows that for γ ∈ supp ψ̂ , we have ψ̂((AT)jγ ) = 0 whenever
C′αjR1||AT ||−1 ≥ R, i.e., for j sufficiently large. On the other hand,
since ||(AT)−jγ || ≤ (C′)−1α−j||γ || for all γ ∈ R

d and j ∈ N∪ {0}, it
also follows that for γ ∈ supp ψ̂ ,

||(AT)−jγ || ≤ (C′)−1α−jR;

thus ψ̂((AT)−jγ ) = 0 whenever (C′)−1α−jR ≤ R1||AT ||−1, i.e., for
j sufficiently large. This completes the proof of (ii).

Finally, to establish (iii), we first note that for every j ∈ Z, there
exist constants λj,µj > 0 such that

λj||γ || ≤ ||(AT)jγ || ≤ µj||γ ||, ∀γ ∈ R
d. (4.7)

Indeed, for j = 0, we simply take λ0 = µ0 = 1. If j ∈ N,

then C′αj||γ || ≤ ||(AT)jγ || ≤ ||(AT)j|| ||γ || for all γ ∈ R
d.
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FIGURE 1 | Plots of the splines ψ̂ and ̂̃ψ in Theorem 4.3 when c = 1/2, n = 3 and b = cn−1/2.

On the other hand, ||(AT)−jγ || ≤ (C′)−1α−j||γ || and ||γ || =
||(AT)j(AT)−jγ || ≤ ||(AT)j|| ||(AT)−jγ || for all γ ∈ R

d.Next, using
the fact that supp ψ̂ ⊂ a(R1||AT ||−1,R), it follows from (4.7) that
supp ψ̂((AT)j·) ⊂ a(R1||AT ||−1µ−1

j ,Rλ−1
j ) for every j ∈ Z. Thus

the definition of ̂̃ψ in (4.5) shows that ̂̃ψ is a bounded function,
with

supp ̂̃ψ ⊂
⋃

j∈J
supp ψ̂((AT)j·) ⊂ a

(
R1||AT ||−1 min

j∈J
µ−1
j ,Rmax

j∈J
λ−1
j

)
.

Since J is a finite set containing 0, maxj∈J λ
−1
j ≥ λ−1

0 = 1 and

so Rmaxj∈J λ
−1
j ≥ R. Consequently, both ψ̂ and ̂̃ψ are supported

on the closed ball B(0,Rmaxj∈J λ
−1
j ). The rest of the proof of

(iii) is similar to the proof of Theorem 4.3, where Lemma 4.1
and Remark 4.2 are applied. Specifically, we see that whenever
b ≤ (2Rmaxj∈J λ

−1
j )−1, {DAjTbkψ}j∈Z,k∈Zd and {DAjTbkψ̃}j∈Z,k∈Zd

are Bessel sequences. Also, the partition of unity condition (4.6)
together with (ii) shows that

∑

j∈Z

ψ̂((AT)jγ ) ̂̃ψ((AT)jγ ) = bd, ∀γ ∈ R
d \ {0};

and hence, {DAjTbkψ}j∈Z,k∈Zd and {DAjTbkψ̃}j∈Z,k∈Zd are dual

frames for L2(Rd). �
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