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In the framework of non-parametric support estimation, we study the statistical properties

of a set estimator defined by means of Kernel Principal Component Analysis. Under a

suitable assumption on the kernel, we prove that the algorithm is strongly consistent with

respect to the Hausdorff distance. We also extend the above analysis to a larger class of

set estimators defined in terms of a low-pass filter function. We finally provide numerical

simulations on synthetic data to highlight the role of the hyper parameters, which affect

the algorithm.
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1. INTRODUCTION

A classical issue in statistics is support estimation, i.e., the problem of learning the support of a
probability distribution from a set of points identically sampled according to the distribution. For
example, the Devroye-Wise algorithm [1] estimates the support with the union of suitable balls
centered in the training points. In the last two decades, many algorithms have been proposed and
their statistical properties analyzed [1–14] and references therein.

An instance of the above setting, which plays an important role in applications, is the problem
of novelty/anomaly detection, see Campos et al. [15] for an updated review. In this context,
in Hoffmann [16] the author proposed an estimator based on Kernel Principal Component
Analysis (KPCA), first introduced in Schölkopf et al. [17] in the context of dimensionality
reduction. The algorithm was successfully tested in many applications from computer vision
to biochemistry [18–24]. In many of these examples the data are often represented by high
dimensional vectors, but they actually live close to a nonlinear low dimensional submanifold of
the original space, and the proposed estimator takes advantage of the fact that KPCA provides an
efficient compression/dimensionality reduction of the original data [16, 17], whereas many classical
set estimators refer to the dimension of the original space, as it happens for the Devroye-Wise
algorithm.

In this paper we prove that KPCA is a consistent estimator of the support of the distribution with
respect to the Hausdorff distance. The result is based on an intriguing property of the reproducing
kernel, called separating condition, first introduced in De Vito et al. [25]. This assumption ensures
that any closed subset of the original space is represented in the feature space by a linear subspace.
We show that this property remains true if the data are recentered to have zero mean in the feature
space. Together with the results in De Vito et al. [25], we conclude that the consistency of KPCA
algorithm is preserved by recentering of the data, which can be regarded as a degree of freedom to
improve the empirical performance of the algorithm in a specific application.
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Our main contribution is sketched in the next subsection
together with some basic properties of KPCA and some
relevant previous works. In section 2, we describe the
mathematical framework and the related notations. Section 3
introduces the spectral support estimator and informally
discusses its main features, whereas its statistical properties
and the meaning of the separating condition for the kernel
are analyzed in section 4. Finally section 5 presents the
effective algorithm to compute the decision function
and discusses the role of the two meta-parameters based
on the previous theoretical analysis. In the Appendix
(Supplementary Material), we collect some technical
results.

1.1. Sketch of the Main Result and
Previous Works
In this section we sketch our main result by first recalling the
construction of the KPCA estimator introduced in Hoffmann
[16]. We have at disposal a training set {x1, . . . , xn} ∈ D ⊂ R

d

of n points independently sampled according to some probability
distribution P. The input space D is a known compact subset of
R
d, but the probability distribution P is unknown and the goal is

to estimate the support C of P from the empirical data. We recall
that C is the smallest closed subset of D such that P [C] = 1 and
we stress that C is in general a proper subset ofD, possibly of low
dimension.

Classical Principal Component Analysis (PCA) is based on
the construction of the vector space V spanned by the first
m eigenvectors associated with the largest eigenvalues of the
empirical covariance matrix

1

n

n∑

i= 1

(xi − x)⊗ (xi − x),

where x = 1
n

∑n
i= 1 xi is the empirical mean. However, if the data

do not live on an affine subspace, the set V is not a consistent
estimator of the support. In order to take into account non-linear
models, following the idea introduced in Schölkopf et al. [17]
we consider a feature map 8 from the input space D into the
corresponding feature spaceH, which is assumed to be a Hilbert
space, and we replace the empirical covariance matrix with the
empirical covariance operator

T̂c
n = 1

n

n∑

i= 1

(8(xi)− µ̂n)⊗ (8(xi)− µ̂n),

where µ̂n = 1
n

∑n
i= 1 8(xi) is the empirical mean in the feature

space. As it happens in PCA, we consider the subspace V̂m,n ofH

spanned by the first m- eigenvectors f̂1, . . . , f̂m of T̂c
n. According

to the proposal in Hoffmann [16], we consider the following
estimator of the support of the probability distribution P

Ĉn =



x ∈ D |

∥∥∥∥∥∥
µ̂n +

m∑

j= 1

〈8(x)− µ̂n, f̂j〉 f̂j − 8(x)

∥∥∥∥∥∥
≤ τn



 ,

where τn is a suitable threshold depending on the number of
examples and

µ̂n +
m∑

j= 1

〈8(x)− µ̂n, f̂j〉 f̂j

is the projection of an arbitrary point x ∈ D onto the affine
subspace µ̂n + V̂m,n. We show that, under a suitable assumption
on the feature map, called separating property, Ĉn is a consistent
estimator of C with respect to the Hausdorff distance between
compact sets, see Theorem 3 of section 4.2.

The separating property was introduced in De Vito et al. [25]
and it ensures that the feature space is rich enough to learn any
closed subset of D. This assumption plays the same role of the
notion of universal kernel [26] in supervised learning.

Moreover, following [25, 27] we extend the KPCA estimator
to a class of learning algorithms defined in terms of a low-pass
filter function rm(σ ) acting on the spectrum of the covariance
matrix and depending on a regularization parameterm ∈ N. The
projection of 8̂n(x) onto V̂m,n is replaced by the vector

8̂n,m(x) =
+∞∑

j= 1

rm(σ̂j)〈8(x)− µ̂n, f̂j〉 f̂j,

where {f̂j}j is the family of eigenvectors of T̂c
n and {σ̂j}j is

the corresponding family of eigenvalues. The support is then
estimated by the set

{
x ∈ D |

∥∥µ̂n + 8̂n,m(x)− 8(x)
∥∥ ≤ τn

}
.

Note that KPCA corresponds to the choice of the hard-cut off
filter

rm(σ̂j) =
{
1 i ≤ m

0 i > m
.

However, other filter functions can be considered, inspired by
the theory of regularization for inverse problems [28] and by
supervised learning algorithms [29, 30]. In this paper we show
that the explicit computation of these spectral estimators reduces
to a finite dimensional problem depending only on the kernel
K(x,w) = 〈8(x),8(w)〉 associated with the feature map, as for
KPCA. The computational properties of each learning algorithm
depend on the choice of the low-pass filter rm(σ ), which can be
tuned to out-perform of some specific data set, see the discussion
in Rudi et al. [31].

We conclude this section with two considerations. First, in De
Vito et al. [25, 27] it is proven a consistency result for a similar
estimator, where the subspace V̂n,m is computed with respect
to the non-centered covariance matrix in the feature space H,
instead of the covariance matrix. In this paper we analyze the
impact of recentering the data in the feature space H on the
support estimation problem, see Theorem 1 below. This point of
view is further analyzed in Rudi et al. [32, 33].

Finally note that, our consistency results are based on
convergence rates of empirical subspaces to true subspaces of the
covariance operator, see Theorem 2 below. The main difference

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 November 2017 | Volume 3 | Article 23

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Rudi et al. Kernel Algorithms for Support Estimation

between our result and the result in Blanchard et al. [34], is
that we prove the consistency for the case when the dimension
m = mn of the subspace V̂m,n goes to infinity slowly enough. On
the contrary, in their seminal paper [34] the authors analyze the
most specific case when the dimension of the projection space is
fixed.

2. MATHEMATICAL ASSUMPTIONS

In this section we introduce the statistical model generating the
data, the notion of separating feature map and the properties
of the filter function. Furthermore, we show that KPCA can be
seen as a filter function and we recall the main properties of the
covariance operators.

We assume that the input space D is a bounded closed subset
of Rd. However, our results also hold true by replacing D with
any compact metric space. We denote by d(x,w) the Euclidean
distance |x− w| between two points x,w ∈ R

d and by dH (A,B)
the Hausdorff distance between two compact subsets A,B ⊂ D,
explicitly given by

dH (A,B) = max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
,

where d(x,A) = infw∈A d(x,w).

2.1. Statistical Model
The statistical model is described by a random vector X taking
value in D. We denote by P the probability distribution of X,
defined on the Borel σ -algebra of D, and by C the support of P.

Since the probability distribution P is unknown, so is its
support. We aim to estimate C from a training set of empirical
data, which are described by a family X1, . . . ,Xn of random
vectors, which are independent and identically distributed as
X. More precisely, we are looking for a closed subset Ĉn =
ĈX1 ,...,Xn ⊂ D, depending only on X1, . . . ,Xn, but independent
of P, such that

P

[
lim

n→+∞
dH (Ĉn,C) = 0

]
= 1

for all probability distributions P. In the context of regression
estimate, the above convergence is usually called universal strong
consistency [35].

2.2. Mercer Feature Maps and Separating
Condition
To define the estimator Ĉn we first map the data into a suitable
feature space, so that the support C is represented by a linear
subspace.

Assumption 1. Given a Hilbert space H, take 8 :D → H

satisfying the following properties:

(H1) the set 8(D) is total inH, i.e.,

span{8(x) | x ∈ D} = H,

where span{·} denotes the closure of the linear span;

(H2) the map 8 is continuous.

The space H is called the feature space and the map 8 is called a
Mercer feature map.

In the following the norm and scalar product of H are denoted
by ‖·‖ and 〈·, ·〉, respectively.

Assumptions (H1) and (H2) are standard for kernel
methods, see Steinwart and Christmann [36]. We now
briefly recall some basic consequences. First of all, the map
K :D ×D → R

K(x,w) = 〈8(x),8(w)〉

is a Mercer kernel and we denote by HK the corresponding
(separable) reproducing kernel Hilbert space, whose elements
are continuous functions on D. Moreover, each element f ∈ H

defines a function f8 ∈ HK by setting f8(x) = 〈f ,8(x)〉 for all
x ∈ D. Since 8(D) is total in H, the linear map f 7→ f8 is an
isometry from H onto HK . In the following, with slight abuse of
notation, we write f instead of f8, so that the elements f ∈ H are
viewed as functions on D satisfying the reproducing property

f (x) = 〈f ,8(x)〉 x ∈ D.

Finally, since D is compact and 8 is continuous, it holds that

R = sup
x∈D

∥∥8(x)
∥∥2 = sup

x∈D
K(x, x) < +∞. (1)

Following DeVito et al. [27], we call8 a separatingMercer feature
map if the following the separating property also holds true.

(H3) The map 8 is injective and for all closed subsets C ⊂ D

8(C) = 8(D) ∩ span{8(x) | x ∈ C}. (2)

It states that any closed subset C ⊂ D is mapped by 8 onto the
intersection of 8(D) and the closed subspace span{8(x) | x ∈
C} ⊂ H. Examples of kernels satisfying the separating property
are for D ⊂ R

d [27]:

• Sobolev kernels with smoothness index s > d
2 ;

• the Abel/Laplacian kernel K(x,w) = e−γ |x−w| with γ > 0;
• the ℓ1-kernel K(x,w) = e−γ |x−w|1 , where |·|1 is the ℓ1-norm

and γ > 0.

As shown in De Vito et al. [25], given a closed set C the
equality (2) is equivalent to the condition that for every x0 6∈ C

there exists f ∈ H such that

f (x0) 6= 0 and f (x) = 0 ∀x ∈ C. (3)

Clearly, an arbitraryMercer feature map is not able to separate all
the closed subsets, but only few of them. To better describe these
sets, we introduce the elementary learnable sets, namely

Cf =
{
x ∈ D | f (x) = 〈f ,8(x)〉 = 0

}
,

where f ∈ H. Clearly, Cf is closed and the equality (3) holds true.
Furthermore the intersection of an arbitrary family of elementary
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learnable sets ∩f∈FCf with F ⊂ H satisfies (3), too. Conversely,
if C is a set satisfying (2), select a maximal family {fj}j∈J of
orthonormal functions inH such that

fj(x) = 〈fj,8(x)〉 = 0 ∀x ∈ C, j ∈ J,

i.e., a basis of the orthogonal complement of
{
8(x) | x ∈ C

}
, then

it is easy to prove that

C =
{
x ∈ D | 〈fj,8(x)〉 = 0 ∀j ∈ J

}
=
⋂

j∈J
Cfj , (4)

so that any set which is separating by 8 is the (possibly
denumerable) intersection of elementary sets. Assumption (H3)
is hence a requirement that the family of the elementary learnable
sets, labeled by the elements ofH, is rich enough to parameterize
all the closed subsets of D by means of (4). In section 4.3 we
present some examples.

The Gaussian kernel K(x,w) = e−γ|x−w|2 is a popular choice
in machine learning, however it is not separating. Indeed, since
K is analytic, the elements of the corresponding reproducing
kernel Hilbert space are analytic functions, too [36]. It is known
that, given an analytic function f 6= 0, the corresponding
elementary learnable set Cf =

{
x ∈ D | f (x) = 0

}
is a closed

set whose interior is the empty set. Hence also the denumerable
intersections have empty interior, so that K can not separate
a support with not-empty interior. In Figure 1 we compare
the decay behavior of the eigenvalues of the Laplacian and the
Gaussian kernels.

2.3. Filter Function
The second building block is a low pass filter, we introduce to
avoid that the estimator overfits the empirical data. The filter
functions were first introduced in the context of inverse problem,
see Engl et al. [28] and references therein, and in the context of
supervised learning, see Lo Gerfo et al. [29] and Blanchard and
Mucke [30].

We now fix some notations. For any f ∈ H, we denote by f ⊗ f
the rank one operator (f⊗f )g = 〈g, f 〉f . We recall that a bounded
operator A on H is a Hilbert-Schmidt operator if for some (any)

basis
{
fj
}
j
the series ‖A‖22 : =

∑
j

∥∥Afj
∥∥2 is finite, ‖A‖2 is called

the Hilbert-Schmidt norm and ‖A‖∞ ≤ ‖A‖2, where ‖·‖∞ is
the spectral norm. We denote by S2 the space of Hilbert-Schmidt
operators, which is a separable Hilbert space under the scalar
product 〈A,B〉2 =

∑
j〈Afj,Bfj〉.

Assumption 2. A filter function is a sequence of functions
rm :[0,R] → [0, 1], with m ∈ N, satisfying

(H4) for any m ∈ N, rm(0) = 0;
(H5) for all σ > 0, lim

m→+∞
rm(σ ) = 1;

(H6) for all m ∈ N, there is Lm > 0 such that

∣∣rm(σ ′)− rm(σ )
∣∣ ≤ Lm

∣∣σ ′ − σ
∣∣ ,

i.e., rm is a Lipschitz function with Lipschitz constant Lm.

For fixed m, rm is a filter cutting the smallest eigenvalues (high
frequencies). Indeed, (H4) and (H6) with σ ′ = 0 give

∣∣rm(σ )
∣∣ ≤ Lm |σ | . (5)

On the contrary, if m goes to infinity, by (H5) rm converges
point-wisely to the Heaviside function

2(σ ) =
{
1 σ > 0

0 σ = 0
.

Since rm(σ ) converges to 2(σ ), which does not satisfy (5), we
have that limm→+∞ Lm = +∞.

We fix the interval [0,R] as domain of the filter functions rm
since the eigenvalues of the operators we are interested belong to
[0,R], see (23).

Examples of filter functions are

• Tikhonov filter

rm(σ ) =
mσ

mσ + R
Lm = m

R
.

• Soft cut-off

rm(σ ) =
{
1 σ ≥ R

m
mσ
R σ < R

m .
Lm = m

R
.

• Landweber iteration

rm(σ ) =
σ

R

m∑

k=0

(
1− σ

R

)k
= 1−

(
1− σ

R

)m+1
Lm = m+ 1

R
.

We recall a technical result, which is based on functional
calculus for compact operators. If A is a positive Hilbert-Schmidt
operator, Hilbert-Schmidt theorem (for compact self-adjoint
operators) gives that there exist a basis

{
fj
}
j
of H and a family{

σj
}
j
of positive numbers such that

A =
∑

j

σjfj ⊗ fj ⇐⇒ Afj = σjfj. (6)

If the spectral norm ‖A‖∞ ≤ R, then all the eigenvalues σj belong
to [0,R] and the spectral calculus defines rm(A) as the operator on
H given by

rm(A) =
∑

j

rm(σj)fj ⊗ fj ⇐⇒ rm(A)fj = rm(σj)fj.

With this definition each fj is still an eigenvector of rm(A), but the
corresponding eigenvalue is shrunk to rm(σj). Proposition 1 in
the Appendix in Supplementary Material summarizes the main
properties of rm(A).
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FIGURE 1 | Eigenvalues in logarithmic scale of the Covariance operator when the kernel is Abel (blue) and Gaussian (red) and the distribution is uniformly supported

on the “8” curve in Figure 2. Note that the eigenvalue decay rate of the first operator has a polynomial behavior while the second has an exponential one.

2.4. Kernel Principal Component Analysis
As anticipated in the introduction, the estimators we propose
are a generalization of KPCA suggested by Hoffmann [16] in the
context of novelty detection. In our framework this corresponds
to the hard cut-off filter, i.e., by labeling the different eigenvalues
of A in a decreasing order1 σ1 > σ2 > . . . > σm > σm+1 > . . .,
the filter function is

rm(σ ) =
{
1 σ ≥ σm

0 σ < σm
.

Clearly, rm satisfies (H4) and (H5), but (H6) does not hold.
However, the Lipschitz assumption is needed only to prove the
bound (21e) and, for the hard cut-off filter, rm(A) is simply
the orthogonal projector onto the linear space spanned by the
eigenvectors whose eigenvalues are bigger than σm+1. For such
projections [37] proves the following bound

∥∥rm(A′)− rm(A)
∥∥
2
≤ 2

σm+1 − σm

∥∥A′ − A
∥∥
2
,

so that (21e) holds true with Lm = 2
σm+1−σm

. Hence, our results

also hold for hard cut-off filter at the price to have a Lipschitz
constant Lm depending on the eigenvalues of A.

2.5. Covariance Operators
The third building block is made of the eigenvectors of the
distribution dependent covariance operator and of its empirical
version. The covariance operators are computed by first mapping
the data in the feature spaceH.

As usual, we introduce two random variables 8(X) and
8(X) ⊗ 8(X), taking value in H and in S2, respectively. Since

1Here, the labeling is different from the one in (6), where the eigenvalues are

repeated according to their multiplicity.

8 is continuous and X belongs to the compact subset D, both
random variables are bounded. We set

µ = E
[
8(X)

]
=
∫

D

8(x) dP(x), (7a)

T = E
[
8(X)⊗ 8(X)

]
=
∫

D

8(x)⊗ 8(x) dP(x), (7b)

Tc = T − µ ⊗ µ, (7c)

where the integrals are in the Bochner sense.
We denote by µ̂n and T̂n the empirical mean of 8(X) and

8(X) ⊗ 8(X), respectively, and by T̂c
n the empirical covariance

operator, respectively. Explicitly,

µ̂n = 1

n

∑

i

8(Xi), (8a)

T̂n = 1

n

∑

i

8(Xi)⊗ 8(Xi), (8b)

T̂c
n = T̂n − µ̂n ⊗ µ̂n. (8c)

The main properties of the covariance operator and its empirical
version are summarized in Proposition 2 in the Appendix in
Supplementary Material.

3. THE ESTIMATOR

Now we are ready to construct the estimator, whose
computational aspects are discussed in section 5. The set
Ĉn is defined by the following three steps:

a) the points x ∈ D are mapped into the corresponding centered
vectors 8(x) − µ̂n ∈ H, where the center is the empirical
mean;
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b) the operator rm(T̂c
n) is applied to each vector 8(x)− µ̂n;

c) the point x ∈ D is assigned to Ĉn if the distance between
rmn (T̂

c
n)(8(x)− µ̂n) and8(x)− µ̂n is smaller than a threshold

τ .

Explicitly we have that

Ĉn =
{
x ∈ D |

∥∥rmn (T̂
c
n)(8(x)− µ̂n)− (8(x)− µ̂n)

∥∥ ≤ τn
}
,
(9)

where τ = τn and m = mn are chosen as a function of the
number n of training data.

With the choice of the hard cut-off filter, this reduces to the
KPCA algorithm [16, 17]. Indeed, rm(T̂

c
n) is the projection Qm

onto the vector space spanned by the firstm eigenvectors. Hence
Ĉn is the set of points x whose image 8(x) − µ̂n is close to Qm.
For an arbitrary filter function rm, Q

m is replaced by rm(T̂
c
n),

which can be interpreted as a smooth version of Qm. Note that,
in general, rm(T̂

c
n) is not a projection.

In De Vito et al. [27] a different estimator is defined. In
that paper the data are mapped in the feature space H without
centering the points with respect to the empirical mean and the
estimator is given by

C̃n =
{
x ∈ D |

∣∣〈8(x)− rmn (T̂n)8(x),8(x)〉
∣∣ ≤ τ 2n

}
,

where the filter function rm is as in the present work, but rmn (T̂n)
is defined in terms of the eigenvectors of the non-centered second
momentum T̂n. To compare the two estimators note that

∥∥rm(T̂c
n)(8(x)− µ̂n)− (8(x)− µ̂n)

∥∥2

= 〈
(
I − rm(T̂

c
n)
)2
(8(x)− µ̂n),8(x)− µ̂n〉

= 〈
(
I − r∗m(T̂

c
n)
)
(8(x)− µ̂n),8(x)− µ̂n〉,

where r∗m(σ ) = 2rm(σ ) − rm(σ )
2, which is a filter function too,

possibly with a Lipschitz constant L∗m ≤ 2Lm. Note that for the
hard cut-off filter r∗m(σ ) = rm(σ ).

Though rmn (T̂n) and rmn (T̂
c
n) are different, both Ĉn and

C̃n converge to the support of the probability distribution P,
provided that the separating property (H3) holds true. Hence,
one has the freedom to choose if the empirical data have or not
zero mean in the feature space.

4. MAIN RESULTS

In this section, we prove that the estimator Ĉn we introduce is
strongly consistent. To state our results, for each n ∈ N, we fix an
integermn ∈ N and set F̂n :D → H to be

F̂n(x) = (I − rmn (T̂
c
n))(8(x)− µ̂n),

so that Equation (9) becomes

Ĉn =
{
x ∈ D |

∥∥̂Fn(x)
∥∥ ≤ τn

}
. (10)

4.1. Spectral Characterization
First of all, we characterize the support of P by means of Qc,
the orthogonal projector onto the null space of the distribution
dependence covariance operator Tc. The following theorem will
show that the centered feature map

8c
:D → H 8c(x) = 8(x)− µ

sends the supportC onto the intersection of8c(D) and the closed
subspace (I − Qc)H, i.e,

8c(C) = 8c(D) ∩ (I − Qc)H.

Theorem 1. Assume that 8 is a separating Mercer feature map,
then

C =
{
x ∈ D | Qc(8(x)− µ) = 0

}
, (11)

where Qc is the orthogonal projector onto the null space of the
covariance operator Tc.

Proof: To prove the result we need some technical lemmas, we
state and prove in the Appendix in Supplementary Material.
Assume first that x ∈ D is such that Qc(8(x)− µ) = 0. Denoted
by Q the orthogonal projection onto the null space of T, by
Lemma 2 QQc = Q and Qµ = 0, so that

Q8(x) = Q(8(x)− µ) = QQc(8(x)− µ) = 0.

Hence Lemma 1 implies that x ∈ C.
Conversely, if x ∈ C, then as above Q(8(x) − µ) = 0. By

Lemma 2 we have thatQc(1−Q) = ‖Qcµ‖−2 Qcµ⊗Qcµ. Hence
it is enough to prove that

〈Qcµ,8(x)− µ〉 = 0 ⇐⇒ Qc8(x) = Qcµ,

which holds true by Lemma 3.

4.2. Consistency
Our first result is about the convergence of F̂n.

Theorem 2. Assume that 8 is a Mercer feature map. Take the
sequence {mn}n such that

lim
n→∞

mn = +∞, (12a)

Lmn ≤ κ

√
n

ln n
, (12b)

for some constant κ > 0, then

P

[
lim
n→∞

sup
x∈D

∥∥̂Fn(x)− Qc(8(x)− µ)
∥∥ = 0

]
= 1. (13)
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Proof: We first prove Equation (13). SetAn = I−rmn (T̂
c
n). Given

x ∈ D,

∥∥An(8(x)− µ̂n)− Qc(8(x)− µ)
∥∥

≤
∥∥(An − Qc)(8(x)− µ)

∥∥+
∥∥An(µ − µ̂n)

∥∥

≤
∥∥rmn (T̂

c
n)− rmn (T

c)
∥∥
2

∥∥8(x)− µ
∥∥

+
∥∥(rmn (T

c)− (I − Qc))(8(x)− µ)
∥∥+

∥∥An(µ − µ̂n)
∥∥

≤ 2
√
RLmn

∥∥T̂c
n − Tc

∥∥
2

+
∥∥(rmn (T

c)− (I − Qc))(8(x)− µ)
∥∥+ ‖µ − µ̂n‖ ,

where the fourth line is due to (21e), the bound ‖An‖∞ =
supσ∈[0,1]

∣∣1− rm(σ )
∣∣ ≤ 1, and the fact that both 8(x) and µ

are bounded by
√
R. By (12b) it follows that

sup
x∈D

∥∥An(8(x)− µ̂n)− Qc(8 − µ)
∥∥ ≤ 2

√
Rκ

√
n

ln n

∥∥T̂c
n−Tc

∥∥
2

+ sup
x∈D

∥∥(rmn (T
c)− (I − Qc))(8(x)− µ)

∥∥− ‖µ − µ̂n‖ ,

so that, taking into account (24a) and (24c), it holds that

lim
n→+∞

sup
x∈D

∥∥An(8(x)− µ̂n)− Qc(8 − µ)
∥∥ = 0

almost surely, provided that limn→+∞‖(rmn (T
c)−

(I−Qc))(8(x) − µ)‖ = 0. This last limit is a consequence
of (21d) observing that

{
8(x)− µ | x ∈ D

}
is compact since D

is compact and 8 is continuous.

We add some comments. Theorem 1 suggests that
the consistency depends on the fact that the vector
(I−rmn (T̂

c
n))(8(x)−µ̂n) is a good approximation ofQc(8(x)−µ).

By the law of large numbers, T̂n and µ̂n converge to T and µ,
respectively, and Equation (21d) implies that, if m is large
enough, (I− rm(T))(8(x)−µ) is closed toQc(8(x)−µ). Hence,
ifmn is large enough, see condition (12a), we expect that rmn (T̂

c
n)

is close to rmn (T
c). However, this is true only if mn goes to

infinity slowly enough, see condition (12b). The rate depends on
the behavior of the Lipschitz constant Lm, which goes to infinity
if m goes to infinity. For example, for Tikhonov filter a sufficient

condition is that mn ∼ n
1
2−ǫ with ǫ > 0. With the right choice

ofmn, the empirical decision function F̂n converges uniformly to
the function F(x) = Qc(8(x)− µ), see Equation (13).

If the map 8 is separating, Theorem 1 gives that the zero
level set of F is precisely the support C. However, if C is not
learnable by 8, i.e., the equality (2) does not hold, then the zero
level set of F is bigger than C. For example, if D is connected, C
has not-empty interior and 8 is the feature map associated with
the Gaussian kernel, it is possible to prove that F is an analytic
function, which is zero on an open set, hence it is zero on the
whole space D. We note that, in real applications the difference
between Gaussian and Abel kernel, which is separating, is not
so big and in our experience the Gaussian kernel provides a
reasonable estimator.

From now on we assume that 8 is separating, so that
Theorem 1 holds true. However, the uniform convergence of F̂n

to F does not imply that the zero level sets of F̂n converges to C =
F−1(0) with respect to the Hausdorff distance. For example, with
the Tikhonov filter F̂−1

n (0) is always the empty set. To overcome
the problem, Ĉn is defined as the τn-neighborhood of the zero
level set of F̂n, where the threshold τm goes to zero slowly enough.

Define the data dependent parameter τ̂n as

τ̂n = max
1≤i≤n

∥∥̂Fn(Xi)
∥∥ . (14)

Since F̂n ∈ [0, 1], clearly τ̂n ∈ [0, 1] and the set estimator becomes

Ĉn =
{
x ∈ D |

∥∥̂Fn(x)
∥∥ ≤ τ̂n

}
.

The following result shows that Ĉn is a universal strongly
consistent estimator of the support of the probability distribution
P. Note that for KPCA the consistency is not universal since the
choice of mn depends on some a-priori information about the
decay of the eigenvalues of the covariance operator Tc, which
depends on P.

Theorem 3. Assume that 8 is a separating Mercer feature map.
Take the sequence {mn}n satisfying (12a)-(12b) and define τ̂n
by (14). Then

P

[
lim
n→∞

τ̂n = 0
]
= 1, (15a)

P

[
lim
n→∞

dH (Ĉn,C) = 0
]
= 1. (15b)

Proof: We first show Equation (15a). Set F(x) = Qc(8(x) − µ)
and let E be the event on which F̂n converges uniformly to F(x),
and F be the event such that Xi ∈ C for all i ≥ 1. Theorem 2
shows that P [E] = 1 and, since C is the support, then P [F] = 1.
Take ω ∈ E ∩ F and fix ǫ > 0, then there exists n0 > 0 (possibly
depending on ω and ǫ) such that for all n ≥ n0 |̂Fn(x)−F(x)| ≤ ǫ

for all x ∈ D. By Theorem 1 F(x) = 0 for all x ∈ C and
X1(ω), . . . ,Xn(ω) ∈ C, it follows that |̂Fn(Xi(ω))| ≤ ǫ for all
1 ≤ i ≤ n so that 0 ≤ τ̂n(ω) ≤ ǫ, so that the sequence τ̂n(ω)
goes to zero. Since P [E ∩ F] = 1 Equation (15a) holds true.

We split the proof of Equation (15b) in two steps. We first
show that with probability one limn→+∞ supx∈Ĉn

d(x,C) = 0.
On the event E ∩ F, suppose, by contraction, that the sequence{
supx∈Ĉn

d(x,C)
}
n
does not converge to zero. Possibly passing

to a subsequence, for all n ∈ N there exists xn ∈ Ĉn such that
d(xn, Ĉn) ≥ ǫ0 for some fixed ǫ0 > 0. Since D is compact,
possibly passing to a subsequence, {xn}n converges to x0 ∈ D

with d(x0,C) ≥ ǫ0. We claim that x0 ∈ C. Indeed,

∥∥Qc(8(x0)− µ)
∥∥ ≤

∥∥Qc(8(x0)− 8(xn))
∥∥

+
∥∥̂Fn(xn)− Qc(8(xn)− µ)

∥∥+
∥∥̂Fn(xn)

∥∥
≤
∥∥Qc(8(x0)− 8(xn))

∥∥
+ sup

x∈D

∥∥̂Fn(x)− Qc(8(x)− µ)
∥∥+ τn,

since xn ∈ Ĉn means that
∥∥̂Fn(xn)

∥∥ ≤ τn. If n goes to
infinity, since 8 is continuous and by the definition of E and
F, the right side of the above inequality goes to zero, so that
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∥∥Qc(8(x0)− µ)
∥∥ = 0, i.e., by Theorem 1 we get x0 ∈ C, which is

a contraction since by construction d(x0,C) ≥ ǫ0 > 0.
We now prove that

lim
n→∞

sup
x∈C

d(x, Ĉn).

For any x ∈ D, setX1,n(x) to be a first neighbor of x in the training
set {X1, . . . ,Xn}. It is known that for all x ∈ C,

P

[
lim

n→+∞
d(X1,n(x), x) = 0

]
= 1, (16)

see for example Lemma 6.1 of Györfi et al. [35].
Choose a denumerable family

{
zj
}
j∈J in C such that is dense

in C. By Equation (16) there exists an event G with such that
P [G] = 1 and, on G, for all j ∈ J

lim
n→+∞

d(X1,n(zj), zj) = 0.

Fix ω ∈ G, we claim that limn supx∈C d(x, Ĉn) = 0. Observe that,
by definition of τ̂n, Xi ∈ Ĉn for all 1 ≤ i ≤ n and

sup
x∈C

d(x, Ĉn) ≤ sup
x∈C

min
1≤i≤n

d(x,Xi) = sup
x∈C

d(X1,n(x), x),

so that it is enough to show that limn→+∞ supx∈C d(X1,n(x), x) =
0.
Fix ǫ > 0. Since C is compact, there is a finite subset Jǫ ⊂ J such
that

{
B(zj, ǫ)

}
j∈Jǫ is a finite covering of C. Furthermore,

sup
x∈C

d(X1,n(x), x) ≤ max
j∈Jǫ

d(X1,n(zj), zj)+ ǫ. (17)

Indeed, fix x ∈ C, there exists an index j ∈ Jǫ such that x ∈
B(zj, ǫ). By definition of first neighbor, clearly

d(X1,n(x), x) ≤ d(X1,n(zj), x),

so that by triangular inequality we get

d(X1,n(x), x) ≤ d(X1,n(zj), x) ≤ d(X1,n(zj), zj)+ d(zj, x)

≤ d(X1,n(zj), zj)+ ǫ

≤ max
j∈Jǫ

d(X1,n(zj), zj)+ ǫ.

Taking the supremum over C we get the claim. Since ω ∈ G and
Jǫ is finite,

lim
n→+∞

max
j∈Jǫ

d(X1,n(zj), zj) = 0,

so that by Equation (17)

limsup
n→+∞

sup
x∈C

d(X1,n(x), x) ≤ ǫ.

Since ǫ is arbitrary, we get limn→+∞ supx∈C d(X1,n(x), x) = 0,
which implies that

lim
n→+∞

sup
x∈C

d(x, Ĉn) = 0.

Theorem 3 is an asymptotic result. Up to now, we are not able
to provide finite sample bounds on dH (Ĉn,C). It is possible
to have finite sample bounds on

∥∥̂Fn(x)− Qc(8(x)− µ)
∥∥, as

in Theorem 7 of De Vito et al. [25] with the same kind of
proof.

4.3. The Separating Condition
The following two examples clarify the notion of the separating
condition.

Example 1. Let D be a compact subset of R2, H = R
6 with the

euclidean scalar product, and 8 :D → R
6 be the feature map

8((x, y)) = (x2, y2,
√
2xy,

√
2x,

√
2y, 1),

whose corresponding Mercer kernel is a polynomial kernel of
degree two, explicitly given by

K(x1, y1; x2, y2) = (x1x2 + y1y2 + 1)2. (18)

Given a vector f = (f1, . . . , f6)
⊤, the corresponding elementary

set is the conic

Cf ,c =
{
(x, y) ∈ D | f1x2 + f2y

2 + f3
√
2xy

+ f4
√
2x+ f5

√
2y+ f6 = 0

}
,

Conversely, all the conics are elementary sets. The family of all the
intersections of at most five conics, i.e., the sets whose cartesian
equation is a system of the form





f11x
2 + f12y

2 + f13
√
2xy+ f14

√
2x+ f15

√
2y+ f16 = 0

...

f51x
2 + f52y

2 + f53
√
2xy+ f54

√
2x+ f55

√
2y+ f56 = 0

,

where f11, . . . , f56 ∈ R.

Example 2. The data are the random vectors in R
2

Xi = (sin(a2i + b), sin(c2i + d)),

where a, c ∈ N, b, d ∈ [0, 2π] and 21, . . . ,2n are independent
random variables, each of them uniformly distributed on [0, 2π].
Setting D = [−1, 1]2, clearly Xi ∈ D and the support of their
common probability distribution is the Lissajous curve

C = Lisa,b,c,d = {(sin(aθ + b), sin(cθ + d)) ∈ D | θ ∈ [0, 2π]}.

Figure 2 shows two examples of Lissajous curves. As a filter
function rm, we fix the hard cut-off filter where m is the number
of eigenvectors corresponding to the highest eigenvalues we keep.
We denote by Ĉm,τ

n the corresponding estimator given by (10).
In the first two tests we use the polynomial kernel (18), so that

the elementary learnable sets are conics. One can check that the
rank of Tc is less or equal than 5. More precisely, if Lisa,b,c,d is a
conic, the rank of Tc is 4 and we need to estimate five parameters,
whereas if Lisa,b,c,d is not a conic, Lisa,b,c,d is not a learnable set
and the rank of Tc is 5.
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FIGURE 2 | Examples of Lissajous curves for different values of the parameters. (Left) Lis1,0,1, π
2
. (Right) Lis2,0.11,1,0.3.

FIGURE 3 | From left to right, top to bottom. The set Ĉm,τ
n with n, respectively 2, 3, 4, 5, m = 1, 2, 3, 4 and τ = 0.1, 0.005, 0.005, 0.002.

In the first test the data are sampled from the distribution
supported on the circumference Lis1,0,1, π2 (see panel left of

Figure 2). In Figure 3 we draw the set Ĉm,τ
n for different values

of m and τ when n varies. In this toy example n = 5 is enough
to learn exactly the support, hence for each n = 2, . . . , 5 the
corresponding values of mn and τn are mn = 1, 2, 3, 4 and τn =
0.01, 0.005, 0.005, 0.002.

In the second test the data are sampled from the distribution
supported on the curve Lis2,0.11,1,0.3, which is not a conic (see
panel right of Figure 2). In Figure 4 we draw the set Ĉm,τ

n for
n = 10, 20, 50, 100, m = 4, and τ = 0.01. Clearly, Ĉn is not
able to estimate Lis2,0.11,1,0.3.

In the third test, we use the Abel kernel with the data sampled
from the distribution supported on the curve Lis2,0.11,1,0.3 (see

panel right of Figure 2). In Figure 5 we show the set Ĉm,τ
n for

n = 20, 50, 100, 500, m = 5, 20, 30, 50, and τ = 0.4, 0.35, 0.3, 0.2.

According the fact that the kernel is separating, Ĉn is able to
estimate Lis2,0.11,1,0.3 correctly.

We now briefly discuss how to select the parameter mn

and τn from the data. The goal of set-learning problem is to
recover the support of the probability distribution generating

the data by using the given input observations. Since no output
is present, set-learning belongs to the category of unsupervised

learning problems, for which there is not a general framework
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FIGURE 4 | The set Ĉ4,0.01
n with n respectively 10, 20, 50, 100 .

accounting for model selection. However there are some possible
strategies (whose analysis is out of the scope of this paper).
A first approach, we used in our simulations, is based on the
monotonicity properties of Ĉm,τ

n with respect to m, τ . More
precisely, given f ∈ (0, 1), we select (the smallest) m and (the
biggest) τ such that at most nf observed points belong to the the
estimated set. It is possible to prove that this method is consistent
when f tends to 1 as the number of observations increases.
Another way to select the parameters consists in transforming
the set-learning problem is a supervised one and then performing
standard model selection techniques like cross validation. In
particular set-learning can be casted in a classification problem
by associating the observed example to the class +1 and by
defining an auxiliarymeasureµ (e.g., uniform on a ball of interest
in D) associated to −1, from which n i.i.d. points are drawn.
It is possible to prove that this last method is consistent when
µ(suppρ) = 0.

4.4. The Role of the Regularization
We now explain the role of the filter function. Given a training
set X1, . . . , Xn of size n, the separating property (3) applied to the
support of the empirical distribution gives that

{X1, . . . ,Xn} =
{
x ∈ D | Q̂c

n(8(x)− µ̂n) = 0
}
,

where µ̂n is the empirical mean and I − Q̂c
n is the orthogonal

projection onto the linear space spanned by the family

{
8(X1)− µ̂n, . . . ,8(Xn)− µ̂n

}
, which are the centered images

of the examples. Hence, given a new point x ∈ D the condition∥∥Q̂c
n(8(x)− µ̂n)

∥∥ ≤ τ with τ ≪ 1 is satisfied if only if x
is close to one of the examples in the training set. Hence
the naive estimator

{
x ∈ D |

∥∥Q̂c
n(8(x)− µ̂n)

∥∥ ≤ τ
}
overfits the

data. Hence we would like to replace Q̂c
n with an operator, which

should be close to the identity on the linear subspace spanned by{
8(X1)− µ̂n, . . . ,8(Xn)− µ̂n

}
and it should have a small range.

To modulate the two requests, one can consider the following
optimization problem

min
A∈S2

(
1

n

n∑

i= 1

∥∥(I − A)(8(Xi)− µ̂n)
∥∥2 + λ ‖A‖22

)
.

We note that if A is a projection its Hilbert-Schmidt norm ‖A‖2
is the square root of the dimension of the range of A. Since

1

n

n∑

i= 1

∥∥(I − A)(8(Xi)− µ̂n)
∥∥2

= Tr

(
(I − A⊤)(I − A)

1

n

n∑

i= 1

(8(Xi)− µ̂n)⊗ (8(Xi)− µ̂n)

)

= Tr
(
(I − A⊤)(I − A)T̂c

n

)
,
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FIGURE 5 | From left to right and top to bottom. The learned set Ĉm,τ
n with n respectively of 20, 50, 100, 500, and m = 5, 20, 30, 50, τ = 0.4, 0.35, 0.3, 0.2.

where Tr(A) is the trace, A⊤ is the transpose and ‖A‖2 =√
Tr(A⊤A) is the Hilbert-Schmidt norm, then

1

n

n∑

i= 1

∥∥(I − A)(8(Xi)− µ̂n)
∥∥2 + λ ‖A‖22

= Tr
(
(I − A⊤)(I − A)T̂c

n + λmA
⊤A
)
,

and the optimal solution is given by

Aopt = T̂c
n(T̂

c
n + λm)

−1,

i.e., Aopt is precisely the operator rm(T̂c
n) with the Tikhonov filter

rm(σ ) = σ
σ+λ

and λ = R
m . A different choice of the filter function

rm corresponds to a different regularization of the least-square
problem

min
1

n

n∑

i= 1

∥∥(I − A)(8(Xi)− µ̂n)
∥∥2 .

5. THE KERNEL MACHINE

In this section we show that the computation of
∥∥̂Fn(x)

∥∥, in
terms of which is defined the estimator Ĉn, reduces to a finite

dimensional problem, depending only on the Mercer kernel K,
associated with the feature map. We introduce the centered
sampling operator

Scn :H → R
n (Scnf )i = 〈f ,8(Xi)− µ̂n〉,

whose transpose is given by

Scn
⊤
:R

n → H Scn
⊤v =

∑

i= 1

vi (8(Xi)− µ̂n),

where vi is the i-th entry of the column vector v ∈ R
n. Hence, it

holds that

1

n
Scn

⊤Scn = T̂c
n,

1

n
ScnS

c
n
⊤ = (In −

11⊤

n
)
Kn

n
(In −

11⊤

n
),

where Kn is the n× nmatrix whose (i, j)-entry is K(Xi,Xj) and In

is the identity n× nmatrix, so that the (i, j)-entry of ScnS
c
n
⊤ is

K(Xi,Xj)−
1

n

∑

b

K(Xi,Xb)−
1

n

∑

a

K(Xa,Xj)+
1

n2

∑

a,b

K(Xa,Xb).
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Denoted by ℓ the rank of ScnS
c
n
⊤, take the singular value

decomposition of ScnS
c
n
⊤/n, i.e.,

ScnS
c
n
⊤

n
= V6V⊤,

where V is an n × ℓ matrix whose columns vj ∈ R
n are the

normalized eigenvectors, V⊤V = Iℓ, and 6 is a diagonal ℓ × ℓ

matrix with the strictly positive eigenvalues on the diagonal, i.e.,

6 = diag(̂σ1, . . . , σ̂ℓ). Set U = Scn
⊤V6− 1

2 , regarded as operator
from R

ℓ toH, then a simple calculation shows that

T̂c
n = U6U⊤ rm(T̂c

n) = Urm(6)U⊤,

where rm(6) is the diagonal ℓ × ℓ matrix

rm(6) = diag(rm (̂σ1), . . . , rm (̂σℓ)),

and the equation for rm(T̂c
n) holds true since by assumption

rm(0) = 0. Hence

∥∥̂Fn(x)
∥∥2 = 〈

(
I−rm(T̂c

n)
)
(8(x)−µ̂n),

(
I−rm(T̂c

n)
)
(8(x)−µ̂n)〉

= 〈8(x)− µ̂n,8(x)− µ̂n〉 − 〈(2rm(T̂c
n)

− rm(T̂c
n)

2)(8(x)− µ̂n)〉8(x)− µ̂n

= 〈8(x)− µ̂n,8(x)− µ̂n〉 − 〈U(2rm(6)

− rm(6)2)U⊤(8(x)− µ̂n)〉8(x)− µ̂n

= 〈8(x)− µ̂n,8(x)− µ̂n〉 − 〈V6− 1
2 (2rm(6)

− rm(6)2)6− 1
2V⊤Scn(8(x)− µ̂n)〉Scn(8(x)− µ̂n)

= w(x)− v(x)⊤Gmv(x), (19)

where the real number w(x) = 〈8(x)− µ̂n,8(x)− µ̂n〉 is

w(x) = K(x, x)− 2

n

∑

b

K(x,Xb)+
1

n2

∑

a,b

K(Xa,Xb),

the i-th entry of the column vector v(x) ∈ R
n is

v(x)i = (Scn(8(x)− µ̂n))i = K(x,Xi)−
1

n

∑

a

K(Xa, x)

− 1

n

∑

b

K(Xi,Xb)+
1

n2

∑

a,b

K(Xa,Xb),

the diagonal ℓ × ℓ matrix Rm(6) = 6−1(2rm(6)− rm(6)2) is

Rm(6) = diag

(
2rm (̂σ1)− rm (̂σ1)

2

σ̂1
, . . . ,

2rm (̂σℓ)− rm (̂σℓ)
2

σ̂ℓ

)
,

and the n× n-matrix Gm is

Gm = VRm(6)V⊤. (20)

In Algorithm 1 we list the corresponding MatLab Code.
The above equations make clear that both F̂n and Ĉn can be

computed in terms of the singular value decomposition (V ,6)

Algorithm 1Matlab code for Set Learning.

function [Gm, mu, s] = learnSet(X, k,

rm, m)

% X: n x d matrix of training data

% k: kernel type

% rm: spectral filter

% m: regularization parameter

n = size(X,1);

K = gram(X, X, k); %computes the Gram

matrix with the kernel k

mu = sum(K,2)/n;

s = sum(sum(K))/n^2;

ScScT = (K - ones(n,1)*mu’ - mu*ones(1,

n) + s);

[Rm, V]= rm(ScScT/n, m);

Gm = V * Rm * V’; % see Equation (24)

end

function y = testSet(X, Gm, mu, s, Y)

% Y: t x d -matrix of test data

% y: t-column vector, each entry is (23)

% for the corresponding test point

n = size(X,1);

W = gram(Y,X,k);

vx = W - repmat(sum(W,2)/n,1,size(Y,

2)) ...

- repmat(mu’, size(Y,1),

1)+ s;

w = diag(gram(Y,Y,k)) - 2*sum(W,2)/

n + s;

y = w - diag(vx*Gm*vx’);

end

%----------------

% main script

...% creation of training set X and test

set Y and kernel width c

[Gm, mu, s] = learnSet(X, @abel(c),

@hardcutoff, m);

y = testSet(X, Gm, mu, s, Y);

y <= tau; % membership of test data

of the n × n Gram matrix Kn and of the filter function rm, so
that F̂n belongs to the class of kernel methods and Ĉn is a plug-in
estimator. For the hard cut-off filter, one simply has

Rm(6)ii =





1

σ̂i
σ̂i ≥ σ̂m

0 σ̂i < σ̂m

.

For real applications, a delicate issue is the choice of the
parameters m and τ , we refer to Rudi et al. [31] for a detailed
discussion. Here, we add some simple remarks.

We first discuss the role of τ . According to (10), Ĉm,τ
n ⊆ Ĉm,τ ′

n

whenever τ < τ ′. We exemplify this behavior with the dataset
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FIGURE 6 | From left to right and top to bottom: The family of sets Ĉ5,τ
100,Ĉ

10,τ
100 ,Ĉ20,τ

100 ,Ĉ50,τ
100 with τ varying as in the related colorbar.

of Example 2. The training set is sampled from the distribution
supported on the curve Lis2,0.11,1,0.3 (see panel right of Figure 2)
and we compute Ĉn with the Abel kernel, n = 100 andm ranging
over 5, 10, 20, 50. Figure 6 shows the nested sets when τ runs in
the associated color-bar.

Analyzing the role of m, we now show that, for the the hard

cut-off filter, Ĉm′,τ
n ⊆ Ĉm,τ

n whenever m′ ≤ m. Indeed, this filter
satisfies rm′ (σ ) ≤ rm(σ ) and, since 0 ≤ rm(σ ) ≤ 1, one has
(1− rm(σ ))

2 ≤ (1− rm′ (σ ))2. Hence, denoted by
{
ûj
}
j
a base of

eigenvectors of T̂c
n, it holds that

∥∥(I − rm(T̂c
n))(8(x)− µ̂n)

∥∥2 =
∑

j

(1−rm (̂σj))
2〈8(x)− µ̂n, ûj〉2

≤
∑

j

(1−rm′ (̂σj))
2〈8(x)− µ̂n, ûj〉2

=
∥∥(I − rm′ (T̂c

n))(8(x)− µ̂n)
∥∥2 .

Hence, for any point in x ∈ Ĉm′,τ
n ,

∥∥(I − rm(T̂c
n))(8(x)− µ̂n)

∥∥2
H

≤
∥∥(I − rm′ (T̂c

n))(8(x)− µ̂n)
∥∥2
H

≤ τ 2,

so that x ∈ Ĉm,τ
n .

As above, we illustrate the different choices ofm with the data
sampled from the curve Lis2,0.11,1,0.3 and the Abel kernel where

n = 100 and τ ranges over 0.25, 0.3, 0.4, 0.5. Figure 7 shows the
nested sets whenm runs in the associated color-bar.

6. DISCUSSION

We presented a new class of set estimators, which are able to
learn the support of an unknown probability distribution from a
training set of random data. The set estimator is defined through
a decision function, which can be seen as a novelty/anomality
detection algorithm as in Schölkopf et al. [6].

The decision function we defined is a kernel machine. It is
computed by the singular value decomposition of the empirical
(kernel)-covariancematrix and by a low pass filter. An example of
filter is the hard cut-off function and the corresponding decision
function reduces to KPCA algorithm for novelty detection first
introduced by Hoffmann [16]. However, we showed that it is
possible to choose other low pass filters, as it was done for
a class of supervised algorithms in the regression/classification
setting [38].

Under some weak assumptions on the low pass filter, we
proved that the corresponding set estimator is strongly consistent
with respect to the Hausdorff distance, provided that the
kernel satisfies a suitable separating condition, as it happens,
for example, for the Abel kernel. Furthermore, by comparing
Theorem 2 with a similar consistency result in De Vito et al. [27],
it appears clear that the algorithm correctly learns the support
both if the data have zero mean, as in our paper, and if the data
are not centered, as in De Vito et al. [27]. On the contrary, if
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FIGURE 7 | From left to right and top to bottom: The family of sets Ĉm,0.25
100 ,Ĉm,0.3

100 ,Ĉm,0.4
100 ,Ĉm,0.5

100 with m varying as in the related colorbar.

the separating property does not hold, the algorithm learns only
the supports that are mapped into linear subspaces by the feature
map defined by the kernel.

The set estimator we introduced depends on two parameters:
the effective number m of eigenvectors defining the decision
function and the thickness τ of the region estimating the support.
The role of these parameters and of the separating property was
briefly discussed by a few tests on toy data.

We finally observe that our class of set learning algorithms
is very similar to classical kernel machines in supervised
learning. So, in order to reduce both the computational
cost and the memory requirements, there is the possibility
to successfully implement some new advanced approximation
techniques, for which there exist theoretical guarantees for the
statistical learning setting. For example random features [39, 40],
Nyström projections [41, 42] or mixed approaches with iterative
regularization and preconditioning [43, 44].
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