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While methods from statistical mechanics were some of the earliest analytical tools used

to understand collective motion, the field has substantially expanded in scope beyond

phase transitions and fluctuating order parameters. In part, this expansion is driven

by the increasing variety of systems being studied, which in turn, has increased the

need for innovative approaches to quantify, analyze, and interpret a growing zoology of

collective behaviors. For example, concepts from material science become particularly

relevant when considering the collective motion that emerges at high densities. Here,

we describe methods originally developed to study inert jammed granular materials that

have been borrowed and adapted to study dense aggregates of active particles. This

analysis is particularly useful because it projects difficult-to-analyze patterns of collective

motion onto an easier-to-interpret set of eigenmodes. Carefully viewed in the context

of non-equilibrium systems, mode analysis identifies hidden long-range motions and

localized particle rearrangements based solely on the knowledge of particle trajectories.

In this work, we take a “how to” approach and outline essential steps, diagnostics, and

know-how used to apply this analysis to study densely-packed active systems.

Keywords: mode analysis, active matter, jammed active matter, collective motion, human crowds, soft spots,

rattler, topological defects

1. INTRODUCTION

The vast complexity of human neurobiology gives rise to a rich interior life filled with thoughts,
moods, motivations, ideas, discourse, and imagination. Given this lived experience, it’s remarkable
that the challenges for explaining an individual’s specific actions recede when we instead consider
emergent group-scale human collective behavior [1]. This observation has fueled a surge of
interest at the intersection of social psychology, behavioral economics, and data science, resulting
in highly-effective and systematic strategies for broad-based social engineering [2–4]. These
behavioral interventions, often called “nudges,” are a modern staple for organizations ranging from
governments to Fortune 500 companies seeking to broadly reshape the individual decisions that
give rise to emergent collective behavior [5, 6]. While nudges are straight-forward to implement
when the collective behavior occurs frequently, low-probability high-impact “black swan” events [7,
8], such as disasters at mass gatherings, call for alternative strategies. For example, music concerts,
religious pilgrimages, sporting competitions, political protests, and consumer shopping holidays
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occasionally lead to spontaneous and shockingly injurious large-
scale human collective motion [9–11]. In these situations,
high crowd densities and limited communication can result in
fatalities through stampedes, crowd crush, or escape panic. These
negative outcomes offer substantial impetus for the development
of preventative safety strategies and life-saving interventions that
can be deployed at mass gatherings. With this goal in mind, we
describe a physical and mathematical approach to understand,
predict, and ultimately prevent tragic human collective motion.
By unraveling the basic physical mechanisms of emergent
collective motion in this complex system, we aim to ground and
inspire future intervention strategies.

The methods for analyzing high-density human crowds
described here stem from an uncanny resemblance between
mass gatherings and disordered granular packings (Figure 1)
[12–15]. In both cases, we observe dense, irregular structure
that persists over extended periods of time, punctuated
with large sudden collective motion or spatially localized
rearrangements. The existing research on these complex
materials provides a systematic framework for characterization
of collective motion along with theoretical tools that connect
local structure to dynamical response [16–22]. The method
derives from an analysis of disordered linear systems at
equilibrium wherein eigenvalues and eigenmodes of the
local displacement correlation matrix convey information
about structural stability [19]. In this framework, eigenmodes
relate to the magnitude and directions of collective motion,
while the eigenvalues correspond to the excitation energies.
Displacements can then be expressed as a linear combination
of these modes with time-dependent coefficients. To the extent
that such approximations effectively describe non-equilibrium
jammed active matter [20], we use this framework to study
aggregated crowds and their penchant for collective motion.
In the context of human gatherings, our results enable an
understanding of specific mechanisms for dangerous collective
motion and the physical mechanisms underlying crowd
disasters [23].

In the sections that follow, we describe how to implement the
basic steps of eigenmode analysis and effectively interpret the
results for high-density human crowds.While themethod itself is
quite general, we demonstrate the protocol through the example
of an asocial model for high-density human collective behavior.
In step-by-step fashion, we specifically emphasize practical tips
for working with data, whether it be numerically simulated or
empirically collected.

2. METHODS

We divide the methods section into two subsections. The
first subsection describes a physical model for asocial human
collective behavior in high-density crowds. This model is
motivated by previous work and provides a specific means for
simulating individual human trajectories [23, 24]. The second
subsection details an analysis protocol that takes trajectory data
as input, and converts this information into a quantitative
description of emergent collective behavior. This protocol may

FIGURE 1 | Common examples of non-human granular media including (A)

quinoa, (B) muesli, (C) mixed candy, and (D) rice, compared to high-density

human crowds at (E) a Black Friday sales event and (F) an outdoor concert.

Similarities with the former inspires an analysis of the latter. This collection of

images represents a cross-section of the various geometries, heterogeneities,

and interactions that fall within the purview of granular media methods.

be broadly applied to trajectory data from sources other than the
asocial model.

2.1. A Physical Model to Study
High-Density Human Collective Behavior
To quantitatively model human collective behavior, we take a
Newtonian force-based approach to generate complex emergent
phenomena [25–29]. While systems studied within this “active
matter” framework are generally non-equilibrium, the resulting
phenomenology is often reminiscent of behaviors analyzed in
the fields of statistical mechanics, granular materials, and fluid
dynamics. As such, there is a rich tradition of concepts from these
fields intermixing [13–15].

2.1.1. Equations of Asocial Model
We specifically investigate human collective motion in high-
density crowds. We therefore simplify the richness of human
life to four forces, numerically simulate the resulting equations
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of motion, and investigate the emergent collective behavior.
Referring to these simplified humans as Self-Propelled Particles
(SPPs), we assume they are all interested in going toward a single
point of interest, P . This point could be the front of a concert
stage, the police line at a protest, or the exit of a stadium. While
these activities have clear social differences, their commonality is
in the accumulation of a large densely-packed crowd drawn by a
common attraction. Each SPP indexed by i can now be described
as a disk with radius r0 positioned at a point Eri(t) and subject to:
a pairwise soft-body repulsive collision force

EFrepulsioni = ǫ

N
∑

j 6=i

(

1− ri,j/2r0
)3/2

r̂i,j, (1)

which is non-zero only when the distance between two particles
|Eri − Erj| = |dijr̂i,j| = dij < 2r0 [23, 24]; a self-propulsion force

EFpropulsioni = µ(v0p̂i − Evi), (2)

where v0 is a constant preferred speed, Evi is the current velocity
of the ith SPP, and p̂i is a unit vector pointing from each particle’s
center to the common point of interest P ; a randomly fluctuating
force with components

EFnoisei = Eηi, (3)

drawn from a zero-mean Gaussian distribution and standard
deviation σ defined by the correlation function 〈ηi,λ(t)ηi,κ (t′)〉 =
2µ−1σ 2δλκδ(t − t′), ensuring noise is spatially and temporally
decorrelated; and finally, a wall collision force used to construct a
confining simulation environment

EFwalli = ǫ
∑

walls

(

1− ri,w/r0
)3/2

ŵ, (4)

which is pointed along each wall’s outward normal direction ŵ
and non-zero when the distance of the SPP from the wall ri,w <

r0. While other repulsion forces have been used in similar models
of human collective behavior [30–32], the functional form of
EFrepulsioni and EFwalli used here comes from treating SPP collisions
as a Hertzian contact mechanics problem involving frictionless
elastic spherical bodies [24, 33, 34]. Summing the forces from
Equations (1) to (4), we find the evolution of each SPPs dynamics
is driven by

Ëri(t) = EFrepulsioni + EFpropulsioni + EFnoisei + EFwalli = EFtotali , (5)

where the relative magnitudes of individual force terms can
be tuned through the scalar coefficients ǫ and µ. Because
Equation (5) lacks any terms that reflect social interaction, we
refer to it as an asocial model for high-density human collective
behavior [23].

2.1.2. Numerical Implementation
Simulations take place in a rectangular room with wall length
L ≫ r0 centered at the origin (0, 0). The attraction point P is

placed at the center of the right wall at (L/2, 0) and N SPPs are
seeded at random initial positions with zero initial speed and
acceleration. At every integration time-step we compute the total
force acting on individual SPPs at their current positions Eri(t)
and evolve their trajectories according to Equation (5) (Figure 2).
This calculation is performed numerically with the Newton-
Stomer-Verlet algorithm, which finds the next position using the
current velocity Ėri(t) = Evi(t) and current acceleration Ëri(t) =
EFtotali (t) according to:

Eri(t + 1T) = Eri(t)+ Evi(t)1T + 1

2
EFtotali (t)(1T)2. (6)

The next acceleration Ëri(t + 1T) = EFtotali (t + 1T) is then
calculated at this new position, so that the next velocity can be
determined by an average of the current and next accelerations:

Evi(t + 1T) = Evi(t)+
EFtotali (t)+ EFtotali (t + 1T)

2
1T. (7)

Looping this sequence of calculations produces trajectories for
each of the N SPPs (Figure 2). In Equations (6) and (7) the
parameter 1t defines the integration step, which should be small
enough to ensure smooth trajectories, but large enough to achieve
reasonable computation times. Here, we run our simulations for
t = 3,000τ units of time with 1T = τ/10 = 0.10, yielding a total
of 30,000 integration steps. Every 10 time steps we record each
SPPs position Eri(t) as well as the pressure due to radial contact
forces

Pi(t) =
1

2πr0

[

EFrepulsioni + EFwalli

]

· r̂i, (8)

where the dot product is with the unit normal vector centered on
the ith SPP. We consistently find transient motion dominates the
first ≈ 50τ of the simulation resulting in far-from-equilibrium
effects (Figures 2, 3, linear path segments). By 300τ the SPPs
have aggregated near P and formed a stable, dense, disordered

aggregate with EFpropulsioni acting similar to an external field
confining the SPPs. Within the aggregate, collision and noise
forces are responsible for position fluctuations, causing each
particle to move randomly around its average position (Figure 3
inset, densely accumulated trajectory data near the point of
interest P denoted by ⋆).

2.1.3. Model Parameters and Time Scales
Settingmodel parameters in terms of the fundamental simulation
unit length ℓ and unit time τ allows us to maintain careful
control over the relative force and time scales while not explicitly
committing to dimensionful units such as meters or seconds.
As such, we simulate N = 200 SPPs of radius r0 = ℓ/2 in
a region of size L = 50ℓ. These choices ensure the simulation
box size L is larger than the typical aggregated SPP group size
∼ ℓ

√
N. We also set the SPP preferred speed v0 = ℓ/τ , the

random force standard deviation σ = ℓ/τ 2, and the force scale
coefficients ǫ = 25ℓ/τ 2, µ = τ−1 [24]. For our analysis, we
run 10 independent simulations of the dynamics with this set of
parameters and random initial conditions.
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FIGURE 2 | Four screenshots of a typical simulation run for our asocial model

of high-density human crowds. Here, we see N = 200 SPPs aggregating near

a point of interest P denoted by ⋆, which is located at the right-most edge of a

simulation box. SPPs self-organize into a dense and disordered aggregate,

where shading is assigned according to the radial pressure at time t. The

rectangular outline for t = 15 gives an impressionistic sense of the simulation

box; the true border is taller and somewhat wider.

FIGURE 3 | Trajectories ri (t) for N = 200 SPPs in a typical simulation run of the

asocial model for high-density human crowds. After a transient period (radial

lines toward ⋆), the SPPs reach a stable state where they randomly oscillate

about their average position (inset, dense squiggles). Each SPP is given a

different color to more easily distinguish it from its neighbors.

Setting r0 = ℓ/2 means that in the absence of any other
interactions a SPP would move a distance equal to its diameter in
the time τ . This choice approximates relaxed pedestrian motion
if we were to have τ equal to one second [30].

The coefficient µ relates to an exponential relaxation time for
the self-propulsion force, which can be seen by solving for free
acceleration of a SPP. Specifically, dv/dt = µ(v0 − v) has a
solution v(t) = v0[1 − exp(−µt)] when v(t = 0) = 0. This
expression shows that an unobstructed SPP will exponentially
approach its preferred speed v0 with a timescale µ−1.

Both SPP-SPP and SPP-wall collisions are subject to aHertzian
repulsion force directed normally to the surface of contact with a
magnitude set by the coefficient ǫ. These forces are non-singular,
making them numerically stable and easy to simulate, which is
particularly useful for studies of jammed soft granular matter
[34]. In the context of human crowds, Equations (1) and (4)
greatly simplify collisional interactions, while still capturing the
fact that people can be partially compressed with a rising non-
linearity as the stresses increase. Here, ǫ is a constant for all
SPPs equal to 25ℓ/τ 2, which guarantees the collision force scale
is substantially larger than the self-propulsion force scale µv0 =
ℓ/τ 2.

To ensure collisions and random force fluctuations contribute
roughly equally to the SPPs dynamics, the collision time scale
τcoll and the random force time scale τnoise must be comparable.
In our asocial model, the random collision time scale τcoll =
1/(2r0v0n) ≈ (π/4)τ is given by the mean-free path (2r0n)

−1 ≈
(π/2)r0 divided by the preferred speed v0. The average crowd
density n ≈ N/π(

√
Nr0)

2 is estimated by noting the steady-
state configuration of SPPs is roughly a half-circle with radius

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 December 2017 | Volume 3 | Article 26

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bottinelli and Silverberg How to: Mode Analysis

√
Nr0 surrounding P . The noise time scale τnoise can be found by

calculating the amount of time required for random fluctuations
to change the correlation function 〈[vi(τnoise) − vi(0)]

2〉 =
2µ−1σ 2τnoise by an amount equal to v20. Hence, τnoise =
µv20/2σ

2. Because the unit speed v0 is fixed by the fundamental
simulation units, and µ is set by the self-propulsion relaxation
time, we simply let σ = ℓ/τ 2 to satisfy τnoise = τ/2 ≈ τcoll at
steady-state.

2.2. Analysis Protocol of Trajectory Data
In section 2.1, we outlined a physical model for generating
trajectory data of simulated human crowds using SPPs. In
this section, we provide a step-by-step protocol for analyzing
trajectory data using mode analysis as a means for predicting
emergent collective motion. While we demonstrate the protocol
with simulated data from the asocial model, our analysis can be
applied equally well to other active jammed systems. As such,
we cast our discussion in terms of “agents,” which could be
either SPPs, actual humans being studied with cameras, or other
examples of high-density active matter under consideration.

2.2.1. Step 1: Calculate the Displacement Covariance

Matrix Components Cij to Estimate the Ground-Truth

Correlation Matrix Cp

Each of the trajectories Eri(t) = 〈xi(t), yi(t)〉 provide spatially
resolved position data on the i = 1, . . . ,N agents at discrete
time points t. From these trajectories, we want to determine the
displacement correlation matrix Cp, which contains information
about pair-wise correlated motion arising from the local
interactions and the resulting collective motion. Ideally, this
matrix is a statistical quantity averaged over all realizations
of the underlying system. In practice, there are a limited
number of computational runs or experimental measurements
available. Thus, we calculate the covariance matrix [Cij], whose
components Cij converge to the ground-truth correlation matrix
Cp in the t → ∞ limit. These components are

Cij =
〈

[

Eri(t)− 〈Eri〉
]

·
[

Erj(t)− 〈Erj〉
]

〉

, (9)

where time averages 〈· · · 〉 are calculated for each realization of
the underlying random process over a statistically-independent
sub-sampling of the time series data. Conventionally, this is
the equivalence between time and ensemble averaging. Critical
Note 1:While Equation (9) is standard notation in the literature,
it obscures the fact that there are actually two sets of covariance
matrix components to calculate: one each for the x and y
directions. A more transparent representation would be

Cx
ij =

〈

[

xi(t)− 〈xi〉
]

·
[

xj(t)− 〈xj〉
]

〉

and

C
y
ij =

〈

[

yi(t)− 〈yi〉
]

·
[

yj(t)− 〈yj〉
]

〉

. (10)

However, the cumbersome nature of these expressions tends
to favor the aesthetics and compactness of Equation (9).
Critical Note 2: Time-averaging calls for a judicial eye that
balances two competing demands: sub-sampling in time should
be spaced out to reduce effects from auto-correlated motion,

while simultaneously leaving a sufficient number of statistically-
independent “snap-shots” of the system for the components of
the covariance matrix [Cij] to converge to the correlation matrix
Cp. A straight-forward convergence criteria is to ensure the
ratio 2N/Nt < 1.5, where Nt is the number of independent
snap-shots [16]. Critical Note 3: Because mode analysis depends
on the eigenvalues and eigenmodes of [Cij], the quality of
time averaging can be tested by examining how the eigenvalue
spectrum converges as a function of the temporal sampling
rate [16]. Specifically, the spectrum should be insensitive to
the sampling rate; comparing spectra generated at different
sampling rates will indicate whether a specific value is in
this regime. Critical Note 4: Many physical models can be
treated with scaling analysis to determine a minimal estimate
for the time scale of auto-correlated motion. In the asocial
model described in section 2.1, noise and repulsive collision
forces dissipate auto-correlation. Thus, the trajectory data should
be sub-sampled at temporal intervals spaced out longer than
τnoise and τcoll. Critical Note 5: In some circumstances such
as an external perturbation or sudden motion, the agents
being studied can undergo rearrangements in position that
change the internal structure of which agents are in contact
with each other. When this occurs, the covariance matrix
components Cij must be recalculated from post-rearrangement
trajectory data and convergence of [Cij] → Cp must be
rechecked.

Example: Determining appropriate temporal sub-sampling
of asocial model. For the parameter values described above,
we find the simulation reaches steady state after ≈ 50τ .
We generously discard the first 300τ to eliminate far-from-
equilibrium transients leaving 2, 700τ of trajectory data for each
SPP. Because τnoise = τ/2 ≈ τcoll, then τ/2 is the minimal
estimate for temporal sub-sampling. From this baseline, we check
convergence of the eigenvalue spectrum for intervals longer than
τ/2, and find a temporal sub-sampling of 10τ is adequate. We
are then left with Nt = (2, 700τ )/(10τ ) = 270 statistically-
independent snap-shots of the system to use when calculating
temporal averages in Equation (9), which is consistient with the
2N/Nt = 1.48 < 1.5 criteria.

2.2.2. Step 2: Calculate the Eigenmodes and

Eigenvalue Spectrum
Having calculated a displacement covariance matrix [Cij] that
approximates the ground-truth correlation matrix Cp, we
can now use standard numerical techniques to compute the
eigenvalues λm and their corresponding eigenmodes Eem. The
index m = 1, . . . ,N runs over all agents under consideration.
Often, the terminology “eigenmode” is simply shortened to
“mode,” which is a callback to the field’s roots in analyzing
harmonic vibrational motion. Critical Note 1: Sorting the
eigenvalues in decreasing order and plotting as a function of
index m gives the spectrum of the covariance matrix, which in
the t → ∞ limit converges to the spectrum of the correlation
matrix. Critical Note 2: As in the previous step, notational
conventions obscure the fact that there are two sets of eigenvalues
and eigenmodes. Specifically, both x and y directions have their
own eigenvalues λxm and λ

y
m for a total of 2N eigenvalues
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with two distinct spectra. Likewise, each eigenmode is a two-
dimensional displacement vector field. For example, the m = 1
eigenmode is more transparently expressed as 〈Eex1, Ee

y
1〉, with Eex1 =

{ex1,1, ex1,2, . . . , ex1,N} = {ex1,j} and Eey1 = {ey1,1, e
y
1,2, . . . , e

y
1,N} =

{ey1,j}. These 2N components indexed by j = 1, . . . ,N are the

m = 1 eigenmode values in the x and y directions for each
of the j agents. Critical Note 3: The eigenmodes are typically
normalized such that

∑N
j=1 e

x
m,j = 1,

∑N
j=1 e

y
m,j = 1, and

the norm
∑N

j=1 |Eem,j|2 = 2. Critical Note 4: Within a linear

approximation, the eigenmodes express relative magnitude and
directions for harmonic oscillation of the agents about their
mean positions. The eigenvalues relate to the corresponding
excitation energies of these modes. Trajectory data Er(t) can then
be decomposed into a linear combination of these modes with
a collection of 2N time-dependent coefficients. As the non-
linearity and non-equilibrium nature of the system asserts itself,
these approximations breakdown.

2.2.3. Step 3: Find and Remove Rattlers
Plotting low-m eigenmodes as two-dimensional displacement
fields frequently reveals a small number of agents Nr ≪ N
that represent a disproportionately large amount of the overall
motion. This phenomenon is well-known to arise in both
experimental and simulated jammed systems, where such agents
are called “rattlers.” While most often studied in colloidal
suspensions and vibrated/sheared granular packings, rattlers get
their name because they are surrounded by highly-constrained
neighbors that create a rigid cage enclosing enough space for
the rattler to freely move about [22, 35]. This under-constrained
motion is therefore a consequence of local structure. Because
(i) rattlers tend not to participate in global collective motion
and (ii) the location of rattlers is impossible to predict a priori,
we must identify them a posteriori, remove the Nr rattlers from
consideration, and recompute Equation (9) with the subset of
N − Nr agents. A threshold identification criteria is useful for
systematically finding rattlers. In particular, for each mode m we
check for agents with index j whose individual displacement

|Eem,j| =
[

(exm,j)
2 + (e

y
m,j)

2
]1/2

(11)

is greater than the mode’s average displacement

〈

|Eem|
〉

= 1

N

N
∑

j=1

[

(exm,j)
2 + (e

y
m,j)

2
]1/2

(12)

plus ξr times the mode’s standard deviation

σm =
[

(σ x
m)

2 + (σ
y
m)

2
]1/2

=





N
∑

j=1

[exm,j − 〈|exm|〉]2 + [e
y
m,j − 〈|eym|〉]2

N − 1





1/2

. (13)

More succinctly, rattlers are defined as agents with index j
with |Eem,j| ≥ 〈|Eem|〉 + ξrσm, for a given threshold value ξr .

Once identified, these Nr agents can be removed from further
consideration. Critical Note 1: The removal of rattlers ensures
low-m modes reflect genuine collective motion of the system
instead of the free vibrations of under-constrained agents.Critical
Note 2: Selection of an appropriate threshold should be done
by testing multiple values of ξr and examining how the fraction
Nr/N varies. If the threshold is too high, then the eigenmodes will
continue to be dominated by the uncorrelated motion of rattlers.
If the value is too low, then the analysis risks under-sampling
the calculation of Cij and no collective motion will be detected.
As a general heuristic, the value of Nr arising from ξr should
be the minimum value that removes anomalous uncorrelated
motion from the low-m modes. No single value of Nr/N will be
appropriate for all circumstances, and the selection of ξr should
be given due consideration. In the next step we provide further
useful information to aid in the choice of ξr and illustrate the
procedure in the case of our simulation data.

2.2.4. Step 4: Re-calculate the Eigenmodes and

Eigenvalue Spectrum without Rattlers
Having provisionally identified theNr rattlers in step 3, we repeat
steps 1 and 2 to re-calculate the eigenmodes and eigenvalue
spectrum from [Cij] with the remaining N − Nr agents. When
examining the new modes and spectra produced by step 2, we
generally find the first attempt at removing rattlers is insufficient
and steps 1 through 3 should be performed as an iterative
process to optimally determine ξr . Critical Note 1: Concretely,
this strategy starts with an initial guess for the threshold ξr ,
and determines a final value by qualitatively and quantitatively
checking how ξr affects the eigenmodes and eigenvalue spectrum.
The goal is to find a value of ξr that filters rattlers from the overall
collective motion in low-m eigenmodes. Critical Note 2: While
iterating, it’s useful to: (i) visually confirmwhether the eigenmode
plots are being affected by under-constrained motions, and (ii)
confirm the eigenvalue spectra retain their basic shape. This
information is essential for making an informed decision on the
next threshold value to test. Critical Note 3: A reasonable initial
guess for the rattler threshold is to set ξr = 1 with the expectation
that the final value will be larger.

Example: Iteratively selecting ξr . Working with trajectory
data generated by the asocial model, we perform steps 1
through 4 of the analysis protocol and test various values
for the rattler threshold ξr (Figure 4). In this instance, we
seek to find and remove rattlers from the first 10 modes by
examining values of ξr ranging from 1 to 6. As prescribed in the
protocol, we calculate and re-calculate the eigenvalue spectrum
eliminating provisionally identified rattlers from consideration.
These comparisons show the general form of the eigenvalue
spectra remain largely unchanged for a range of ξr , and the
number of rattlers decreases substantially for ξr > 1 (Figure 4D).
In addition to examining the spectra and Nr/N ratio, we
also examine plots of the modes before (Figure 5, red) and
after (Figure 5, blue) rattlers are removed with ξr = 4.
With this choice for ξr , rattlers are less than 1% of the total
number of agents, and we find in two separate simulation
runs that large irregular vector arrows in low-m modes are
no longer present. In this case, we have successfully filtered
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FIGURE 4 | The eigenvalue spectrum of the displacement correlation matrix before removing the rattlers (dashed black line, threshold for removal is infinitely large)

and after removing the rattlers using different values of the threshold ξr (solid colored lines, threshold for removal is finite) for the (A) x and (B) y components. (C) The

basic shape of the DOS is conserved for different values of the threshold ξr . (D) The fraction of rattlers monotonically decreases as the threshold value ξr increases.

rattler motion out from the overall collective behavior, leaving
a set of N − Nr eigenmodes and eigenvalues for downstream
analysis.

2.2.5. (Optional) Step 5: Alternative Heuristic Method

for Finding Rattlers
We briefly mention an alternative method for finding rattlers.
This heuristic involves the computation of each agent’s positional
auto-correlation time 1t∗ from the trajectory data Eri(t) =
〈xi(t), yi(t)〉 and the auto-correlation functions

χx
i (1t) = 1

T

T−1t
∑

t=1

[

xi(t)− 〈xi〉
]

×
[

xi(t + 1t)− 〈xi〉
]

, and

χ
y
i (1t) = 1

T

T−1t
∑

t=1

[

yi(t)− 〈yi〉
]

×
[

yi(t + 1t)− 〈yi〉
]

. (14)

Here, the normalizations are over all T time steps, and the
averaging 〈· · · 〉 is calculated for individual agents. We seek
minimal time delays 1tx and 1ty such that χx

i (1tx) =
χ
y
i (1ty) = 0, which average to the auto-correlation time

1t∗ = (1tx + 1ty)/2. Because rattlers are free to move within
their local region, they are generally not influenced by their
neighbors and we expect these agents to have the highest auto-
correlation times. Critical Note 1: The auto-correlation times are
independently calculated for each of the i agents even though
1t∗ does not have an explicit index i. Critical Note 2: Auto-
correlation measurements can have non-trivial behavior that

requires individualized assessment. Some cases of note include:
when multiple time delays where χi = 0 are found, we simply
take the smallest value of 1t; when there are no time delays
with χi = 0, it may be appropriate to fit a smooth function
and extrapolate the delay time that χi intersects zero; when the
auto-correlation functions are noisy and it appears that 1t as-
defined is erroneous, it may be appropriate to smooth the data
and infer a revised value of1t.Critical Note 3:While the heuristic
approach for finding rattlers has the advantage of being rapidly
calculated directly from raw trajectory data, it does not have the
same degree of accuracy as the threshold identification method.
This cost-benefit assessment suggests the heuristic approach may
find its most effective applications in real-time inference of crowd
diagnostics.

Example: Testing heuristic identification of rattlers. Step 3
of the mode analysis protocol identifies rattlers based on each
agent’s positional fluctuations within a given mode. Here, we
consider a side-by-side comparison for three simulation runs
showing how a threshold of ξr = 4 compares with the
distribution of auto-correlation times. Evidently, the agreement is
considerable (Figure 6, overlapping red circles and dark squares,
especially in runs 1 and 3), though certainly not perfect (Figure 6,
non-overlapping red circles and dark squares, especially run
2). When an abundance of data and analysis time is available,
the threshold approach is clearly preferable for its accuracy.
However, in circumstances that limit the availability of data or
when analysis is needed in near-real-time, the heuristic may be
preferable.
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FIGURE 5 | Visualization of five eigenmodes for two independent simulation

runs before (red) and after (blue) removing the rattlers with a threshold choice

of ξr = 4. Removing rattlers affects the first few eigenmodes by filtering out

large irregularly-oriented vectors, but has little effect at higher m.

FIGURE 6 | Heuristic identification of rattlers through their auto-correlation

time 1t*. Each SPP is shown as a square and shaded according to 1t*. In

runs 1 and 3 the SPPs with the highest auto-correlation time are also identified

as rattlers by the threshold method (red circles, ξr = 4). In run 2 this heuristic is

less successful at identifying rattlers near the center of the aggregate.

2.2.6. (Optional) Step 6: Calculate the Density of

States (DOS)
In mode analysis, the Density of States (DOS) D(ω2) is used to
quantify the probability of having a certain number of excitable
oscillations at frequency ω within a given energy range ∼ ω2.

This concept is well-defined at equilibrium, but more tenuous in
non-equilibrium systems such as the asocial model considered
here. The value of using a DOS analysis is that it sheds light
on how a perturbation will transfer energy into various modes,
as long as the perturbation itself does not substantially disrupt
the organization of agents that defines the modal structure.
To calculate D(ω2), we note the eigenvalues are related to
harmonic frequencies by λm = ω−2

m . Since oscillation energy
is proportional to the frequency squared, D(ω2) is essentially
a histogram of the inverse-eigenvalues. Critical Note 1: The
DOS conveys information about the rigidity of a solid; when
there are many low-energy modes, the system is “soft” and
will appear unstable to excitations. Here again, we mention
the caveat that “low-energy modes” in the asocial model are a
linearized approximation of the true response. Critical Note 2: A
useful conceptual touchstone is the Debye law for regular lattices
wherein the DOS is often expressed as the density of frequencies
ω as opposed to energies ω2. In d dimensions, the Debye law is
D(ω) ∼ ωd−1.

Example: Interpreting eigenvalue spectra through a DOS lens.
We previously analyzed the eigenvalue spectra to examine
their dependence on the rattler threshold ξr . To provide
additional context for these plots, we can explicitly plot the
DOS (Figure 4D) to reveal the distribution of low-frequency
excitations. These measurements provide a potential target of
opportunity for theoretical predictions.

2.2.7. (Optional) Step 7: Find Soft Spots
When studying jammed granular materials, certain regions are
often found to be partially under-constrained resulting in the
presence of “soft spots” that are more likely to undergo large
structural rearrangements when the system is perturbed [19].
In the context of analyzing dense human crowds, soft spots
localize the people undergoing the largest displacements. The
agents in these soft spots are known as “bucklers” [22], and
they can be identified with a thresholding process similar to
the one used to find rattlers. In this case, we seek the Ns

non-rattler agents indexed by j from the collection of low-m
modes with |Eem,j| ≥ 〈|Eem|〉 + ξSσm, where each term is defined
as in Equations (11)–(13), and ξS is a yet-to-be-determined
threshold for finding agents in soft spots. We also seek the
ND non-rattler agents indexed by i whose dynamics in 〈x, y〉
obey

〈|Eri(t)− 〈Eri〉|〉 ≥
N−Nr
∑

i=1

〈|Eri(t)− 〈Eri〉|〉
(N − Nr)

+ ξDσD, (15)

which identifies the agents whose displacement fluctuations are
greater than the average by an amount equal to ξDσD. Here,
σD is the standard deviation of displacements in 〈x, y〉 averaged
over the non-rattler population, and ξD is another yet-to-be-
determined threshold. Bucklers can now be defined as the set of
agents identified by both thresholds when ξS and ξD are chosen
to maximize the overlap between the two sets. This condition is
quantified by the normalized agreement function (NAF)
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NAF =
[

1− NS

N − Nr

]

·
[

1− ND

N − Nr

] |S ∩ D|
|S ∪ D| , (16)

where S and D are the set of agents identified by ξS and
ξD, respectively. Critical Note 1: The bracketed prefactors in
Equation (16) are weighting functions that dampen the measure
of overlap if either set oversamples the total population. Critical
Note 2: Bucklers tend to cluster in well-defined areas. In the
asocial model, one of these areas is the perimeter of the SPP
aggregate where the edge agents are trivially under-constrained
and can be ignored as an artifact. Critical Note 3: An analogous
thresholding can be performed with the SPP confinement
pressure defined in Equation (8) and used in place of the
average displacement fluctuations from Equation 15. This is
useful if pressure fluctuations are hypothesized to correlate with
“softness” in a specific study.

Example: Calculating thresholds and visualizing soft spots. For
each of the simulation runs, we identified which agents had
significant displacement fluctuations, pressure fluctuations, and
mode fluctuations when the prescribed thresholds ranged from
ξD, ξP = 1 to 7 and ξS = 1 to 5. Examining the simple
overlap between these sets without normalization prefactors
(Figure 7, top row), indicates a range of threshold values with
substantial overlap within the sets, particularly for low threshold
values. This agreement is spurious due to an oversampling
of the total population at low thresholds. Using appropriate
weighting functions from Equation (16) (Figure 7, middle row)
to normalize the agreement function reveals a more well-defined
range of thresholds for ξD and ξS wherein ≈ 10% of the agents
are in soft spots (Figure 7, bottom row). The agreement is
maximized for ξS = 2.5 and ξD = 4.5, and we take these
values to definitively identify soft spots for this example system.
Other thresholds may be more appropriate for different sources
of trajectory data. We also find essentially no correlation between
the confinement pressure fluctuations and softness, indicating
these quantities are essentially independent in the asocial model.
To visualize soft spots, we plot the dense aggregate of agents
and highlight individuals that were identified as having mode
fluctuations above the ξS = 2.5 level in at least one of the
first 10 modes (Figure 8). Color coding the first 10 modes for
three simulation runs and recalling that agents on the perimeter
are trivially under-constrained, we see soft spots are consistently
localized near the core of the aggregate. This implies a high-
probability of structural rearrangements will occur in this area
when the system is excited.

2.2.8. (Optional) Step 8: Find Soft Modes
In the harmonic theory of crystals, eigenmodes of the
displacement correlation matrix [Cij] fully characterize a linear
response of the system to perturbations [36]. When excited,
each of these “normal modes” requires an energy whose cost is
inversely proportional to their corresponding eigenvalue. While
useful for studying jammed granular systems, this linearized
theoretical framework can break down if harmonicity or
energy equipartition are violated. In such circumstances, an
equivalence between the dynamical matrix Cp and displacement
correlation matrix [Cij] becomes tenuous and deserving of

further consideration. However, information about the system’s
structural stability, coherent collective motion, and localized
kinematics may nevertheless be conveyed through “soft modes.”
These modes are the eigenmodes corresponding to the highest
eigenvalues of [Cij], which in turn, are the lowest excitation
energies of the linearized theory [17–19].

To determine which modes of [Cij] calculated in steps 1–4 are
soft, we compare the agent’s eigenvalue spectrum to a spectrum
arising from uncorrelated motion. Specifically, we generate a
set of N − Nr random displacements with zero mean and
standard deviation σRM . This standard deviation of the random
displacements is chosen to be equal to the standard deviation of
the agent’s displacements around their equilibrium positions. We
then calculate the covariance matrix and eigenvalue spectrum
for this Random Matrix Model (RMσ ). Comparing spectra, we
now have a threshold condition: when the eigenvalues from
steps 1 to 4 are greater than the eigenvalues from RMσ , we
identify the associated modes as soft modes because they relate
to correlated motion; when the eigenvalues from steps 1 to 4
are less than or equal to the eigenvalues from RMσ , we identify
the associated modes as essentially random uncorrelated motion.
Critical Note 1: When comparing spectra, all data should be
averaged over all independent simulation runs. Critical Note 2:
This approach has roots in principal component analysis and
studies of jammed granular systems, where soft modes indicate
preferential directions of relaxation in the system [16]. In terms
of human crowds, we interpret soft modes as the preferential
directions of collective motion because these modes feature low
excitation energies, suggesting their emergence is likely to occur
when a dense crowd is slightly perturbed.

Example: Using soft modes to concretely define “low-m” modes.
By calculating the RMσ spectrum and superimposing eigenvalues
from simulated human crowds, we see there are up to m = 6
soft modes in both the x and y directions (Figure 9A, modes
above dashed line). For practical purposes, we can now use the
RMσ threshold to quantitatively define these low-mmodes as the
system’s soft modes. Recalling that eigenvalues and oscillation
frequencies are related by λm = ω−2

m , we see in the DOS that
correlated motions of soft modes correspond to a low-frequency
Bosonic peak typically associated with long-range collective
motion near the jamming transition (Figure 9B) [37–39]. This
observation suggests the system is not mechanically stable, and
that small perturbations could excite soft modes resulting in
major structural rearrangements. In terms of human crowds,
this would explain from a physical point of view why sudden
collective motion can spontaneously emerge at high density.
To visualize these collective motions, we plot the displacement
vector fields for the first six soft modes from a single run
(Figure 9C). We see they indeed carry a high degree of spatial
correlation at low-m that rapidly diminishes with increasing
mode number. In this example the spectra are averaged over 10
independent runs and rattlers have been removed.

3. RESULTS

The previous section described an asocial model for simulating
high-density human crowds and provided a step-by-step
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FIGURE 7 | The agreement functions for the correlation between being in a soft spot (S), undergoing large pressure (P), and large displacement (D) before (top) and

after (bottom) the normalization by the weighting functions (center) that measure the size of the sets S,P,D. Arrows indicate the logical procedure followed to obtain

the normalized agreement functions.

protocol for identifying several different types of emergent
collective motion. Here, we draw inspiration from a variety of
physical concepts to further interpret the information conveyed
by mode analysis and its specific meaning for human collective
behavior.

3.1. The m = 1 mode Is a
Pseudo-Goldstone Mode
Symmetry plays a critical role for nearly all fields of modern
physics. In condensed matter, the spontaneous breaking of

continuous symmetries is often associated with the emergence

of long-range low-energy excitations known as Goldstone modes

[40–42]. For example, studies of flocking in active systems

have found the interaction of self-propulsion and directional

alignment breaks global rotation invariance, leading to rapid
collective directional changes known as the “Goldstone mode
of the flock” [43–46]. In other examples, where continuous
symmetries are instead explicitly broken by exogenous factors,
we find pseudo-Goldstone modes, which require a small but
finite energy for excitation. With these considerations in mind,
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we note the asocial model involves a propulsion force aligned
to a specific point of interest P that explicitly breaks 〈x, y〉
translational symmetry (Equation 2). We therefore predict a low-
energy long-range pseudo-Goldstone mode to be a fundamental
collective excitation of the asocial model.

One way to check if one or more of our system’s modes is a
pseudo-Goldstone mode is to examine whether the polarization
correlation length is system-spanning [46]. Practically, this
is accomplished by calculating the mean polarization vector
E8(m) = N−1

∑N
i=1 Ee im/|Ee im| and measuring the correlation

function of eachmode’s fluctuationsCm(d) = 〈[Ee im−E8(m)]·[Ee jm−
E8(m)]〉dij=d about this average value [46]. In this last expression,
the average is over all particles i and j whose pairwise distance
dij is equal to the distance d. We then define the correlation

FIGURE 8 | Identification of soft spots for three independent simulation runs.

Each SPP is shown as a disk and the star (⋆) represents the point of interest

P . Superimposing data for the first 10 modes shows that soft spots appear in

multiple modes in the same general area near the core of the aggregate.

Apparent soft spots along the periphery are artifacts due to under-constrained

edge effects.

length lc(m) as the minimum distance at which Cm(lc) = 0.
Plotting Cm(d) for a few modes shows that most have a relatively
short correlation length, while the m = 1 mode extends across
the entire system (Figure 10). This system-wide excitation is at
the lowest possible mode number, which in linear mode theory
corresponds to the lowest possible excitation energy. Thus, these
two pieces of evidence combine to strongly implicate the m =
1 mode as a pseudo-Goldstone mode. Because its origins can
be traced to a broken continuous symmetry, this long-range
highly correlated collective motion is an intrinsic effect of densely
aggregated agents.

In our asocial model, the m = 1 mode is a collective
motion that slides up-and-down along the right-most edge of
the simulation box (Figure 9C). In real-world circumstances this
means the most easily-excitable mode would result in a large
number of people being suddenly displaced together, possibly
toward a wall, concert stage, or some other barrier. Such a
situation has been widely observed in conjunction with the
emergence of shock waves and density waves during “crowd
turbulence” [12, 47]. Since its origins can be traced to the general
principle of symmetry breaking, this type of long-range collective
motion can be expected as a latent excitation arising in a wide
range of circumstances with the potential for causing crowd crush
casualties [48].

3.2. Topological Defect Density Drives
Disorder in the Modes
If broken symmetries and pseudo-Goldstone modes can explain
the m = 1 long-range collective motion, then what is the
most useful way to understand the remaining m > 1 modes?

FIGURE 9 | Eigenmode analysis of asocial model for high-density human crowds. (A) Eigenvalue spectrum λm of the displacement correlation matrix exhibits scaling

properties between λm ∼ m−1 and ∼ m−2 (black solid lines). Eigenmodes up to m = 6 in both x (blue) and y (orange) directions are larger than the random matrix

model (RMσ , dashed line), thus they are named “soft modes” and describe correlated motion. (B) The DOS exhibits a Bosonic peak in both the x and y components,

indicating mechanical instability. (C) Soft mode vector fields for run 1 (m = 1 to 6) are more spatially correlated than a mode below RMσ (m = 15).
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FIGURE 10 | The polarization correlation length identifies the m = 1 mode as a pseudo-Goldstone mode. (A) The correlation function Cm(d) for the mode polarization

fluctuations plotted against distance between particles d decays rapidly for modes m > 1, which can be seen in a heat map (B) for all modes. (C) The correlation

length for all modes defined as the distance ℓc where Cm(ℓc) = 0. (D) Examining the first 12 modes as a heat map and superimposing the correlation length number

illustrates where Cm(d) = 0.

Remarkably, and somewhat surprisingly, topological principles
provide useful insights. Two modes are considered topologically
equivalent if their vector fields can be continuously deformed
to match one another, and as such, the difference in excitation
energy will become arbitrarily small as their alignment converges
[42]. However, the introduction of a topological defect, such as
vortices in superfluids, magnetic flux tubes in superconductors
and edge-dislocations in liquid crystals, prevent convergence
and drive a persistent non-zero energetic difference. To check
whether topological defects play a meaningful role in explaining
the structure of eigenmode m, we calculate the winding number

charge qi = (2π)−1
∮

ℓ
E∇θ · Edℓi for each non-edge agent i

using a path ℓi that loops around i’s nearest-neighbors. Here,
E∇θ measures the change in orientation between each agent’s
eigenmode vector along the loop. This measure is 0 when there
are no topological defects, +1 if there is a vortex centered on
the agent, or −1 if there is an anti-vortex centered on the
agent. We can therefore identify each agent as coinciding with
a topological defect depending on whether the local vector field
makes a vortex with positive or negative charge qi. Qualitatively
examining qi for a handful of different modes, it is clear that
there are a number of topological defects, especially for m > 1
(Figure 11A). Recognizing that the rotation of the mode’s vector
field around these defects will reduce the correlation length, we
sum the total absolute defect chargeQabs(m) = ∑N

i=1 |qi| for each

mode (Figure 11B) and estimate the expected correlation length.
Assuming n defects are randomly distributed among N agents in
a half disk of radius R and area πR2/2, the spatial distribution of
defects can be expressed by a Poisson process of intensity ρq:

P(n,R) =
[

ρqπR
2
]n

2n!
e−ρqπR

2/2, (17)

where ρq = Qabs/N is the defect density. The probability to find
the first defect closest to the disk’s origin at a distance greater than
R is equal to F(> R) = P(no point within R) = exp[−ρqπR

2/2].
Differentiating with respect to R and being careful with the sign
of F(> R), we find the probability f (R) for the first neighbor at a

distance R is f (R) = πρqRe
−ρqπR

2/2. Thus, the average nearest-
neighbor distance 〈R〉 between any two points in the semi-disc
is:

〈R〉 =
∫ ∞

0
Rf (R)dR,

=
∫ ∞

0
πρqR

2e−ρqπR
2/2dR,

= −
[

Re−ρqπR
2/2

]∞

0
+

∫ ∞

0
e−ρqπR

2/2dR,
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FIGURE 11 | Topological defects drive disorder in m > 1 modes. (A) Winding

number charge qi for the soft modes of two independent simulation runs.

Each SPP is colored according to its winding number and topological defects

are centered on SPPs with qi 6= 0. In both simulation runs the number of

topological defects increases with mode number. (B) The total absolute

charge Qabs plotted against mode number m for 10 independent simulation

runs shows the number of defects increases with increasing mode number.

(C) Scatterplot of the total absolute charge Qabs vs. correlation length lc for

each mode of the 10 independent runs (circles) compared to the

parameter-free predicted estimate from our geometric argument (line).

=
√

2

πρq

∫ ∞

0
e−t2dt,

= 1
√

2ρq
, (18)

which is the average distance between two topological defects
at density ρq. To connect 〈R〉 with the polarization fluctuation
correlation length, we notice that if two neighboring defects are
both positive or both negative, the mode’s vector field cannot
change direction in the space separating them, therefore lc = 〈R〉.
However, if two neighboring defects have opposite signs, the
vector field must change sign and lc ≈ 〈R〉/2. Therefore, on
average we have

〈lc(m)〉 = 1

2
〈R〉 + 1

2

〈R〉
2

= 3

4

√

N

2Qabs(m)
. (19)

This last expression is a parameter-free theoretical prediction that
readily agrees with our numerical computations (Figure 11C),

suggesting that disordered features of modes m > 1 arise from
topological defects distributed throughout the system. For m <

50 (Figure 11B), we interpret this result as indicating that modes
cannot be continuously deformed into lower energy collective
excitations, while for m > 50 a maximum disorder is reached
due to a saturation in defect density.

3.3. Collective Motion has Microscopic
Structural Origins
Understanding collective motion in high-density crowds is
motivated by an impetus to predict and prevent human disaster.
Thus far, we have successfully linked individual trajectories to
emergent collective motion through mode analysis. While the
analysis provides insights such as the existence of soft spots
and psuedo-Goldstone excitations, the specific locations and
orientations of these phenomena depend on trajectory data.
Consequently, these details can only be unlocked through an
after the fact analysis, as opposed to the more-desirable goal of
assessing risk in real-time. Nevertheless, it should still be possible
to perform real-time risk assessment given that these collective
motions ultimately depend on the microscopic self-organized
structure of the crowd. The question remains: how do we make
such an inference?

When we examine the structure of high-density crowds, it
clearly deviates from the well-known hexagonal packing of 2D
hard disks under uniform conditions. In the asocial model, these
irregularities arise from a pressure gradient, which is calculated
by averaging Equation (8) as a function of distance from the
point of interest P (Figure 12A). The structural irregularities
created by this pressure gradient can be quantified by similarly
computing the average number of interacting neighbors, also
as a function of distance from P . Within the bulk of the
crowd, this value is typically equal to six (Figure 12B, black
line), which would be expected for homogeneous packing,
while increasing to seven near P due to the higher pressure
(Figure 12B, dashed black line). If we now filter our averaging
to examine just the bucklers within soft spots, we see the average
number of interacting neighbors is measurably higher, suggesting
that the local coordination number contains a signature of
these potentially high-risk locations (Figure 12B, solid red line).
Examining specific runs and comparing the local coordination
number (Figure 12C) to the location of bucklers in soft spots
(Figure 12D), we find a broad consistency between these two
measures. The critical point here is that the coordination number
can be extracted from a single “snap-shot” of the crowd,
whereas soft spots are identified through the full machinery
of mode analysis. Even if the mapping is not perfectly one-
to-one, coordination number may provide a valuable correlate
for predicting the location of high-risk areas before collective
motions become excited.

If soft spots are indeed a consequence of local structure, the
mechanistic connection remains to be identified and understood.
Therefore, we measure the two particle radial structure factor

g(d) = [(N − Nr)(N − Nr − 1)]−1
∑N−Nr

i=1

∑N−Nr
j 6=i δ(d − dij),

which quantifies the radial distribution of distances between
neighboring agents. Unlike globally averaged properties, g(d)
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FIGURE 12 | Local coordination number correlates with soft spots. (A) The

average radial pressure normalized by P0 = µv0(2π r0)
−1 reveals a gradient

within the aggregate. This pressure drives deviations (B) from homogenous

hexagonal packing as measured by the average number of interacting

neighbors at a distance r from the point of interest P . Hexagonal close

packings of hard disks have six interacting neighbors, which is added as a

dashed line for reference. (C) The local coordination number, shown here for 4

runs, can be computed from a snap shot of the system. Comparison with (D)

shows the coordination number strongly correlates with the location of soft

spots, which are found through more lengthy computations involving the

identification of aggregated bucklers (red).

provides information about the local structure [38]. For the
asocial model, it reveals that the overall structure has clear short
range order (Figure 13, peaks for d < 3) but no periodic long
range order (Figure 13, generally smooth distribution for d >

3). We see the position of the first peak centered at d = 0.8
suggests that, on average, the agents slightly overlap due to the
self-propulsion forces. When we filter our measurement and
reexamine g(d) strictly for the bucklers in soft spots, the data
shows a new sub-peak around 0.5 . d . 0.8, while a second
more prominent peak shifts to d ≈ 0.9. This seems to suggest
the structure within a soft spot is asymmetrically squeezed with
nearest-neighbors somewhat closer than average in one direction,
presumably in the direction of P , while also somewhat further
away than average from other neighbors. As a result, this irregular
structure provides a microscopic mechanism for bucklers to
easily displace when perturbed.

In terms of high-density human crowds, motion can be
thought of as the superposition of the most easily excited

FIGURE 13 | The structure factor g(d) helps explain why local coordination

predicts location of soft spots. (A) The structure factor g(d) shows short range

order (peaks for d . 3), but generally no long-range order. (B) Zooming in on

the blue boxed region from (A), we see differences in local structure between

bucklers in soft spots (red solid line) and the averaged aggregate (black dashed

line). All data is generating by averaging over 10 independent simulation runs.

modes. When motion occurs, our analysis predicts that people
in soft spots would be the ones displacing the most. We
therefore interpret soft spots as posing the highest risk for
tripping and subsequent trampling, especially if activated by
a sudden and unexpected external perturbation. Qualitatively,
this phenomenon has been observed in a number of crowd
disasters, when sudden unexpected movements of the crowd
cause individuals to trip and fall, resulting in injury or death due
to trampling or compressive asphyxia [12, 48, 49]. Furthermore,
the observation that these areas can be heuristically detected
through heterogeneity in the local coordination number provides
a potential target for real-time prediction and prevention.

3.4. The “Participation Ratio” and
“Effective Coordination Number” Do Not
Measure Collectiveness in the Asocial
Model
While we were able to successfully co-localize soft spots with
the local coordination number, there are two additional metrics
we tested that were found to provide insufficiently detailed
information. Nevertheless, because these metrics are more widely
used to study densely-packed jammed systems, we provide an
overview of our findings so that others may have our null
results as a reference. Our main finding with these metrics is
that they seem to detect a difference between high- and low-
m modes with a transition around m ≈ 50, similar to the
transition found when measuring the density of topological
defects (Figure 11B). However, this says little about soft modes,
the eigenvalue spectrum, the DOS, or auto-correlation length.
Any deeper significance for active matter systems apparently
requires further analysis.

A standardmeasure for the collectiveness of amode is given by
the participation ratio PR(m), which quantifies how many agents
in the systemmove when a givenmode is excited. In the literature
there are several definitions of this metric [16, 21], and while we
tested them all, we present results when PR(m) is calculated as

PR(m) =

(

∑N
i=1 |Eeim|2

)2

N
∑N

i=1 |Eeim|4
, (20)
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FIGURE 14 | While consistent with our general findings, not all measures of

structure explain collective motion. (A) The participation ratio PR(m) initially

decreases as a function of mode number, but after m ∼ 6 increases toward

the random case (dotted line). (B) The effective coordination number zeff (m)

shows the lowest modes are under-constrained.

which, respectively, takes values between 0 and 1 for fully
localized and fully extended collective motion [21]. Plotting the
participation ratio against mode number m provides a signature
of the system and gives an overview of the collective nature
of modes. In our case, we find the participation ratio for soft
modes is lower than the random matrix RMσ , and increases
toward 1/2 with mode number m (Figure 14A). This occurs
because the typical length of the displacements on the high-
m modes are highly similar while their direction is random.
Conversely, soft mode displacements are more variable in length
but more correlated in direction. This seems to suggest that in
the framework considered here, the participation ratio is not an
appropriate measure for detecting collective behavior.

Another commonly used metric to characterize modes is the
effective coordination number [21]:

zeff(m) =

(

∑N
i=1 zi|Eemi |2

)

∑N
i=1 |Eemi |2

− 3, (21)

where zi is the number of neighbors interacting with the ith agent
defined as dij < 2r0, and −3 is to remove degrees of freedom
associated with global 2D rotational/translational symmetries.
This expression calculates the average number of constraints
per agent in each mode, weighted by their displacement on
that mode. In jammed solids, its value depends on the amount
of compression and affects the frequency ω of modes [21].
Here, we cannot precisely relate the eigenvalues to the energy
of the system, therefore zeff(m) simply helps identify over- or
under-constrained modes. In particular, rigid stability requires
zeff(m) ≥ 3; in light of our results (Figure 14B), the system
appears generally non-rigid.

4. DISCUSSION

With an eye toward understanding, predicting, and preventing
tragedies at mass gatherings, we view our main results
as revealing mechanisms for the emergence of potentially
dangerous collective motion. By first identifying these principles
and outlining a quantitative framework for measuring their
existence, we are now in position to test their real-world
applicability using video data of concerts, pilgrimages, and
sporting events. This next step is a straight-forward empirical
data collection process, given the current availability of low-
cost high-definition digital cameras and inexpensive cloud-
computing resources for rapid image analysis. The only
remaining obstacle, therefore, is to develop computer vision
algorithms that robustly and automatically track individual
trajectories in footage of high-density crowds. While this image
analysis challenge is open-ended, it may be sufficient for our
purposes to simply study coarse-grained fields of view that
average motion over regional domains encompassing several
people.

If the methods outlined here prove to be broadly predictive
in describing high-density human collective motion when no
disasters occur, then they will become a valuable starting point
for developing conceptually new strategies that enhance safety
at mass gatherings. In the long term, we hope our results will
lead to practical tools for real-time monitoring and predictive
diagnostics at mass events.We also note that while the techniques
described here are motivated by human crowds, they provide
an analytical framework for extracting key insights from other
real-world problems such as the characterization of biological
tissues, the dynamics of migrating cancer cells, animal collective
motion, real-time material characterization, and self-monitoring
industrial assembly-lines.
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